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SYMMETRIC UNBOUNDED LIQUID BRIDGES

THOMAS I. VOGEL

A symmetric unbounded liquid bridge is that surface
formed by capillary action when a disc is withdrawn from
an infinite reservoir. As do all capillary surfaces, liquid
bridges satisfy the condition that mean curvature is
proportional to height. The profile curves of the bridge
surfaces are parametric extensions of the curves obtained
in the symmetric exterior capillary problem. The family of
profile curves is shown to have an envelope, and stability
and instability criteria are derived relating to this envelope.

Introduction* An unbounded liquid bridge is that surface which
is formed when an object is withdrawn a small distance from an
infinite pool of liquid, and the liquid is allowed to reach an equilib-
rium (see Figure 1). The adjective "unbounded" serves to distinguish
this surface from the bounded liquid bridges formed by drops of
liquid between two parallel plates, or by an object withdrawn from
a finite reservoir, neither of which will be studied in this paper.

object

FIGURE 1

The General Unbounded Liquid Bridge

In this paper, I will deal only with the symmetric surface
formed in three dimensions when the object withdrawn is a disc
parallel to the base plane {z = 0}. This is a problem in capillarity,
so that the shape of the free surface is determined by the inter-
action of the potential energy due to the lifting of the liquid in a
gravitational field, the surface tension of the liquid, and the energy
gained by wetting the disc. Specifically, for a given compact set
K, define an energy functional acting on sets by:

(0.1) &κ(A!) Ξ σP(A\ K) + pg\ z- σβP{A', & Π K) .
JA'DK
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Here £& is the disc lifted from the liquid, P(A'9 K) is (roughly)
the surface area of dA' Π K, P(A', & Π K) is the area of dAf Π & Π K,
σ is the surface tension of the liquid, p is its density, g is the
acceleration due to gravity, and β is a constant depending on the
liquid and the material of the disc. A set A (corresponding to
the liquid) will be a liquid bridge if for every compact set K and
every set A' equal to A outside of K, we have that

In §1, I show that a stable symmetric unbounded liquid bridge must
wet the entire disc.

The Euler equation resulting from this functional requires that
the mean curvature of dA be proportional to height above the base
plane. If in addition axial symmetry is assumed, then I obtain a
system of O.D.E.'s describing the profile of dA. Sections 2, 3, and
4 of the present work go into detail in characterizing the profile
curves. Of particular use is the fact that the family of profile
curves has an envelope. This envelope is indispensable in the study
of the conditions under which a given profile curve represents a
stable unbounded liquid bridge (§5). Unfortunately, I have been
unable to prove that the envelope is a C1 curve, and have been
forced to assume this (Conjecture 4.7) to obtain my stability and
instability results. The only previous stability result I have been
able to find is in a paper by Pitts [11]. He derives an instability
criterion which seems equivalent to mine. However, he was forced
to consider the slightly different problem of a large but finite pool
with the pressure prescribed at the horizontal point of the bridge.

It is important to realize that dA cannot be expected to be a
graph over the reference plane {z — 0}, that is, dA could fold over.
The unbounded liquid bridge problem is therefore in general a
parametric capillary problem as are the pendent drop (see Wente [15],
Concus & Finn [3]), and the sessile drop for contact angle >π/2
(see Gonzalez [6], [7], and Finn [4]).

1* An instability theorem* I will show that a symmetric
unbounded liquid bridge cannot exist unless the entire disc is wetted.
This has the curious effect of rendering the constant β in (0.1) much
less important in the characterization of liquid bridges than in other
problems such as sessile and pendent drops. If two discs are the
same height and have the same radius, and if both of them form
nontrivial symmetric liquid bridges, then the bridges will be the same
even if the values of β are different. The value of β will enter
into stability considerations.
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The following calculation was suggested by Nicholas Korevaar:

THEOREM 1.1. The symmetric unbounded liquid bridge problem
can only have a stable solution if the entire disc is wetted or none
of it is (in which case the solution is trivial).

Proof. The proof proceeds by contradiction. Let r = r(u) be
the radius of the symmetric bridge at height u. If there is a stable
symmetric bridge, then it is a fortiori stable under symmetric
perturbations. I will show later that a bridge which is stable under
symmetric perturbations is in fact stable under asymmetric pertur-
bations. To solve the symmetric unbounded liquid bridge problem,
therefore, is to find a smooth function r which minimizes the follow-
ing energy functional over compact perturbations:

G(f) = Γ[2στr/ι/l + (/')2 + πpguf2]du - πσβfih) ,
Jo

over the family of functions / with limtt_0^/(w) — +o°. Here h is
the height of the disc above the reference plane {z = 0}. If r{h) is
not equal to the radius of the disc, then it can vary in both direc-
tions. This fact will be used to construct a particular perturbation
for which the second variation S2G(r) < 0, which will contradict the
assumption that r(u) is an energy minimum. To be precise, if, for
η > 0, I define:

G,(/) - Γ[2τr(7/i/l + {ff + πpguf]du - πβσf\h) ,
h

then I will attempt to find a function y with y(η) — 0 and

~{Gr{r + εy)) < 0
dε2

at ε = 0.
Writing everything out explicitly, I have:

-0 = 2πσ \hy(—^L=^^ Tϊl + κur)du
J* \i/l + (r')2 (1 + (r')2)3/2 '

jΆ^=^ - β] ,
1 + (r'(fe))2 JLi/1 + (r'(fe))

where k = (pg/σ) > 0 is the so-called "capillary constant". Suppose
that r(u) is a local minimum of Gη. From the above equation, I
conclude:

( L 1 )

ΊxTVfr V7TΨ
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and

( L 2 ) •i + frW = β'
The latter equation comes from the fact that I allow y(h) to be non-
zero, i.e., that r(u) is assumed to be a local minimum of Gη over
perturbations which leave r(rj) fixed, but which might change the
value at h.

To find the second variation, I differentiate Gv(r + εy) again to
obtain:

d2Gη(r + εy)

de2

(1 + (rJY

where the boundary term cancels out when r satisfies (1.2). From
(1.1) I may write:

(1.3)
d2Gη(r + εy)

de2
du .

I will produce a particular y for which (1.3) is less than zero,
thus proving r(u) is unstable. Noticing that the coefficient of y2

in (1.3) is negative, the natural plan to follow is to find a y with
[\vΎ(rl(l + {τjψ2)du neglible compared to \ky\l/rVl + (τJ)du,
where η is properly chosen. To do this, I need some idea of how
fast r and r' go to infinity as u goes to zero, just using the fact
that r satisfies (1.1) and the condition that limu^0 r(u) = +oo.

From SiegeΓs asymptotic estimates for the exterior capillary
problem ([13]), I know that u(r) ~ (Ce~r\V~r) as r goes to infinity,
where u(r) is the inverse function of r(u) for small u, so that
u{τ) > e~2r for sufficiently large r. It follows that r(u) > —(1/2) log u
for u sufficiently small, since both u(r) and e~2r are decreasing in r.
It cannot be true that lim^0 (r'(u)/ — (l/2u)) = 0, or else by LΉδpitaΓs
rule I would have limM_0(r(^)/—(1/2) log u) = 0, which is absurd by the
above. Hence there exists an a > 0 and a sequence {ut} approaching
zero with:

? ^ ) α , so
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since r'(u) is negative for u sufficiently small.
Define the perturbation y^u) by:

(2u/Ui — 1 UJ2 <; u ^ Uf

(1 Ui ^ u ^ h .

Then,

(i.4)
(r')2)δ/2 J^i/2(^)2 (1 + (r')2)3

~ ( ) 2 J | ' | 3

I now claim that limM_0+ (r'(u)/r(u)) exists and equals — oo. For
its existence, note that:

d fr'{u)\ = rr" - (r')2

 = 1 + fcurjl + (rf)2)3/2

 > Q

du \ r(u) / r2 r2

from equation (1.1), so that r\u)\τ{u) is strictly increasing. That
the limit must equal -oo is clear, since r'(u)/r(u) = d/du (log (r(tt)),
where log r{u) -> + °° as u goes to zero. From this fact and equation
(1.4), I may conclude that:

(1.5) p [y-(u)Yn J du ̂
J/ (1 + (r')2)8/2

du ^ \ du
(r')2)8 / 2 (%)2 Ĵ i/2 (r')

for sufficiently small ut. Since r'\u) > 0, r ' is monotone, so for
small u I can estimate (1.5) by:

\ [Vi(
J Uj/2 (1 + (r')ψ2 ~ (u^ir'iut))2/ 2

ϋ

so as -i approaches infinity, this term goes to zero.
However, the other term in (1.3) is

which stays strictly below zero as i —> oo. This shows that
(d2/dε2)Gu./2 (r + eyt\=0 < 0 for i large enough, thus demonstrating
that the symmetric liquid bridge problem has no stable solution if
the endpoint r(h) is not somehow restricted. The crucial point in
this calculation is equation (1.2), which causes the boundary term
to cancel in the expression of the second variation. Equation (1.2)
need not hold if I consider only perturbations which do not increase
r(h). Instead, I get the inequality
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(1.6)
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r'{h)
l/l + (r\h)Y

<β

(equality is excluded by the preceeding calculation). Physically,
what this means is that in the symmetric unbounded liquid bridge
problem, the only time a nontrivial stable bridge can be formed is
when the entire disc is wetted, and the contact angle between the
normal to the surface at the edge of the disc and the downward
normal to the disc has cosine less than β.

Even when a nontrivial symmetric liquid bridge has a constraint
on r(h)9 the profile curve must still satisfy (1.1). I may assume
that /c = 1 by making the usual transformation

-L=r(i/ R u) • τ{u) ,

so that I have:

(1.7) rr"
(1 + (r')2)3/2 1/1 + (rj = UT

I no longer have the initial condition (1.2). The profile curves
which satisfy (1.7) and the condition that limu^0 r(u) = + °° form a
one-parameter family (see Figure 2). It is inconvenient, however,
to express this parametrization when the curves are considered as
functions of u. This leads us to the next section.

FIGURE 2

2* The profile curves in parametric form* Equation (1.7) can
be written in a more elegant and useful form parametrically. Fix a
profile curve r(u) and let ψ(u) be the angle π/2 — tan~x(r'(^)). This
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(r(ψ),u(ψ))

FIGURE 3

Parametrization by the inclination angle f

is called the inclination angle of the curve (see Figure 3). Clearly
dψ/du < 0, so ψ{n) can be inverted to obtain u(ψ). The radius, then,
is expressible as r(<ψ ) = r(u(ψ)). The differential equations that r(ψ)
and u(ψ) satisfy are:

(2.1)

and

(2.2)

du _ — r sin ψ
dψ ru + sin

dr _ — r cos
dψ ru + sin

The method of parametrizing each curve by the inclination angle
is used by Finn for the sessile drop [4], where he obtains equations
similar to the two above. Wente [15] obtained equations (2.1) and
(2.2) for the pendent drop. Finding appropriate initial conditions
for these equations in our case is something of a problem. The
portions of the profile curves from ψ = π/2 to ψ = π have already
been studied, as they are the solutions to the symmetric exterior
capillary problem (see Johnson and Perko [8], Siegel [13], and
Turkington [14]). In particular, Johnson and Perko have shown
that for a given radius σ > 0, there is a unique curve satisfying
(2.1), (2.2), lim^or(^) = +oo, and being vertical at radius σ. Let
T{σ) be the height of the vertical point of that curve which is
vertical at radius σ (see Figure 4). Turkington has shown that
T{σ) ~ σ log (1/σ) as σ approaches zero, and T{σ) ~ V 2 as a ap-
proaches + co. Siegel has shown that T(σ) is strictly increasing in
σ. The boundary conditions for r(ψ; σ) and u(ψ; σ) are:
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FIGURE 4

The Curve of Vertical Points T{σ)

u(. |; σ) =

(2.3)

(2.4)

Later in this paper I will show that T(σ)eC1(09 + °°).
Siegel has shown that for ψ ^ ττ/2, it is impossible to have two

distinct profile curves having the same inclination angle ψ at the same
height u. Formally, if u(ψ0; σλ) — u(ψ0; σ2) for π > ψ0 ^ π/2, then
aλ = σ2. Theorem 2.3 will extend this to the entire range π > ψ ^ 0.
I first need the following lemmas:

LEMMA 2.1. Lei .Γ, = (r(ψ; σ), u(ψ; σ)) be a particular profile
curve. Pick ψoe [0, π)f and let r 0 = r(ψ0; σ) and u0 = u(ψ0; σ).
Then the volume of the solid obtained by rotating the unbounded
region with boundary u = u0, u = 0, r = 0, and Γσ around the u
axis is

2πrQ sin ψQ + πrluQ .

Proof. This is an application of Laplace's formula for the
volume contained by a symmetric capillary surface (see Laplace [9]),
which is obtained by an integration by parts. The one point to
check is that the boundary term at infinity from the integration
vanishes. This, however, is easy to verify, using Gerhardt's result
that the height of the profile curves decreases faster than e~r as r
approaches +oo (see Gerhardt [5]).

This lemma thus gives an easy way to find the volume of liquid
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lifted by a disc if the radius r0 of the disc, the height uQ of the
disc above the base plane, and the contact angle ψQ of the surface
with the disc are known. The next lemma is a technical one, used
in the proof of Theorem 2.3.

LEMMA 2.2. Preserving the notation of Lemma 2.1, let ψoe
[0, π/2]. Let A be the solid obtained by rotating the region bounded
loy r — r0 and Γσ and let B be the solid obtained by rotating the
unbounded region between Γσ and the r axis from r — rQto r — + °°
(see Figure 5). Then

B\ - \A\ = 2πr0sinψ0 .

FIGURE 5

Proof of Lemma 2.2

Proof. The volume of the solid described in Lemma 2.1 is
\B\ — \A\ + πr%uOf from which the result follows.

THEOREM 2.3. If u(ψ0; σx) = u(ψ0; σ2) for ψ0 e [0, π), then σ, = σ2,
that is, the profile curves are the same. (As mentioned above, this
has been proven by Sίegel for ψ0e[π/2, π)).

Proof. I will proceed by contradiction. Let Γx and Γ2 (cor-
responding to σx and σ2 respectively) be two profile curves con-
tradicting the conclusion of the theorem, and suppose σx < σ2. There
is a largest angle ψ0 < π/2 for which u(ψ0; σλ) = u(ψ0; σ2), since we
know that this equality cannot hold for ψ0 ;> π/2. By the convexity
of the profile curves, u0 — u(ψ0; σλ) — u(ψ0; σ2) is the lowest height at
which Γx and Γ2 have the same inclination angle. For ease of
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notation, let Γ1 and Γ2 stand for the parts of the profile curves
beneath u = u0 for the rest of the proof.

It is clear that Γx and Γ2 cannot cross more than once, for if
they did, there would be a height ux < uQ at which Γ1 and Γ2 have
the same inclination angle. I therefore have two cases to consider:
case I, that /\ and Γ2 do not cross, and case II, Γ1 and Γ2 cross
precisely once.

Case I. (See Figure 6.) Since T{σ) is strictly increasing, there
must hold:

(2.5)

FIGURE 6

Theorem 2.3, Case I

Rewrite equation (2.1) as:

du —sin

u +

Because r(ψ0; 0Ί) < r(ψ0; σ2) (the curves do not cross), it follows that:

u
dψ

Thus, u(ψ; σ,) > u{<f\ σ2) in some open interval (n/τ0, ψ) B^t f r o m

this and (2.5), it follows that there is a ψ^e (fQ, π/2) with u{ψx\ σ±) =
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uiψi, σ2), contradicting the choice of ψ0. This eliminates case I.

Case II. (See Figure 7.) Let Aι and Bx be the solids described
in Lemma 2.2 corresponding to Γu and similarly with A2 and B2.

FIGURE 7

Theorem 2.3, Case II

Since σ1 < σ2, it follows (see Johnson and Perko) that the height at
which Γx recrosses the line r = r(φ0; σλ) is less than the height at
which Γ2 crosses r = r(ψQ] σλ). This implies that Bλ gΞ B2, so \Bλ\ <

\B2\.

The next step is to show that \A2\ tί |AX|. Since the profile
curves cross once, r(τ/r0; σx) ^ r(^0; σ2). Let Γ' be the curve obtained
by translating Γ2 to the right by r(ψ0; ax) — r{ψQ) σz) units (so that
Γf is not a member of the family of profile curves). Let A! be the
solid formed by rotating the bounded region between Γf and the
line r — r(ψ0; OΊ) around the u axis.

It cannot happen that Γf intersects Γt below the height uQ, for
if it did I would have a smaller value of u at which Γ1 and Γ' have
the same inclination. But then Γx and Γ2 would have the same
inclination at that height, contradicting the choice of α/r0. Hence Γf

lies entirely to the left or entirely to the right of /\.
Since σx < σ2, we must have Γ2 to the right of Γλ for ψ > π/2

(see Johnson and Perko), hence Γ' lies entirely to the right of Γ19

I may then conclude that \A'\ ^ IAJ. However, since r(ψ0; σx) ^
r(φQ;σ2)9 I have \A2\ ^ |AJ. Therefore, I find that

(2.6) \Bλ\ - |

This is a contradiction, since

\B2\ - |A2 | .
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\B1\-\A1\= 2πr(ψ0; σx) sin ψ0 ^ 2πr(ψ0; σ2) sin ψ0 = | B2 | - | A2 \

by Lemma 2.2. This completes the proof of Theorem 2.3.

COROLLARY 2.4. JVb two distinct profile curves can cross twice.

As σ tends to infinity, the profile curves tend to "look" like the
solution to the one-dimensional problem, that is, the surface formed
when the disc has expanded to a half-plane. The one-dimensional
profile (ίβo(ψO, Woo(ψO) solves the equations:

(2 7)

and

where the vertical point is on the u axis.

THEOREM 2.5. As σ-»°o, r(ψ;σ) — σ approaches t^{ψ) almost
uniformly in ψe [0, π), and u(ψ; σ) approaches Uoo(ψ) almost uni-
formly in ψ.

Proof. Let t{ψ\ σ) = r(ψ>; σ) — σ. I can then write:

du _

dt ___
dψ

— sinψ

u

\(7 + V

dt _ — COSn/r

dψ ~

and

t( —) =

As σ goes to infinity, the coefficients of the above equations
tend almost uniformly to the coefficients of (2.7). By the theorem
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on continuous dependence of solutions of O.D.E.'s on their parameters,
the conclusion of the theorem follows.

REMARK 2.6. It is not difficult to integrate (2.7) to obtain:

UJiψ) = l/2 COS π/r + 2

il) + tan - 2 sin (±) + Vΐ - logψO = log

This is the continuation of the one-dimensional solution which was
known to Laplace. It has been expressed as a function of height
in Bakker [1].

It will be useful to obtain some estimates on the behavior of
the profile curves. The first is obtained by a reflection argument.

THEOREM 2.7. u(ψ; σ) < 2T(σ) for all ψe[0,π), and all σe
(0, +00).

Proof. Fix σ > 0. The profile curve Γσ can be considered as
the union of the graphs of two functions of r, wλ(r) and w2(r),
where w1 represents the lower part of the curve and w2 the upper
part. Let ψλ(r) and ψ2(r) be the corresponding inclination angles.
These functions satisfy:

(2.8) (r&inφX = -rwx,

and

(2.9) (rsin^ 2) r = — rw2

with appropriate boundary conditions, since 1/r (r sin ψ)r is the
symmetric mean curvature operator. Define a function w3(r) by:

wB(r) - 22V) - Wi(r) ,

so that the graph of wz(r) is the reflection of the graph of w1 across
the line u — T(σ). Let ψ3 be the corresponding inclination angle,
so that ψ3(r) = π — ψλ{r).

I then have:

(rsinf 3 ) r = -rw1 ,

hence

(2.10) (r sin ψs)r ^ (r sin ψ2)r ,

since w2 ^ wλ.
Moreover, this inequality is strict for r > σ. I also have
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sin^3(<j) = sin^2((7). Integrating (2.10), I get

sin ψ3(r) > sin ψ2(r) for r > σ ,

so

w'3(r) > w'2(r) for r > σ .

But wz(σ) = w2(σ) = T(σ), so

() f r > σ .

It is clear that wB(r) < 2T(σ) for all r, from which the desired
result follows.

THEOREM 2.8. Using the bound in Theorem 2.7, I can estimate
r(0; σ). Integrating (2.9) from r(<f0; σ) to r(0; σ), ^ o e [0, π/2], I have:

S r(0 ,σ) Γr(O σ)

d(rsin^2) = I —rw^dr .

Putting in the bounds u(^0; ̂ ) ^ w2{r) ^ u(0; σ), there follows:

(2.11) vi K g ) ( r 2 ( 0 ; σ ) - r 2 ( ^ ; g ) ) ^ r(*,; C7) sin f 0

holding for 0 ^ f0 g ττ/2.
Letting ψ0 = π/2, the above becomes:

Since w(0; σ) < 2Γ(σ), I obtain:

T(σ)( r 2 ( 0 ; g ) ~ g 2 ) ^ σ ^ T(σ)(r2(0; σ) - σ2) .

It follows that:

(2 1 2 )

Inequality (2.12) may be used to estimate r(0; σ) as σ goes to
zero. Since T(σ) ~ σlog (1/σ), and

it follows that:
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1
(2.13) r(0;σ) = O( —

\V log (l/σ)

as σ —> 0.
To get some idea of the behavior of the curve (r(0; σ), it(0; σ))

as a approaches zero, consider the ratio u(0; σ)/r(0; σ). From the
preceding estimates it follows that:

o<

But

thus

lim
<7->0

From this I conclude that the curve of horizontal points
(r(0; σ), t̂ (0; σ)) becomes horizontal at (0, 0). This is in contrast to
the fact that the curve of vertical points (σ, T(σ)) becomes vertical
at the origin.

REMARK 2.9. The fact that (r(0; σ), u(0; σ)) goes to (0, 0) forces
the curves (r(αV0; σ), ii(^ ^)) to go to the origin for 0 <I ψQ ^ π/2.
This, in combination with Theorem 2.8 shows that the curves
OK ô; ό), uiψo', ^)) a r e graphs of functions of height defined on the
range (0, Woo(ψ\>)) (This is already known for π ^ ψQ^ π/2). To be
specific, if σ1 > σ2, then u(ψ0; σλ) > τι(ψύ; σ2).

REMARK 2.10. All of the profile curves must lie beneath the
curve u = 2T(r). This comes from Theorem 2.7, the fact that
σ ^ r(π/r; σ) for all ψ, and the monotonicity of T(σ).

3. Diίϊerentiability of Γ(<J) I will need to differentiate equa-
tions (2.3) and (2.4) with respect to <τ, so it is necessary to show
that T(σ)eC1(0f °°). To do this, first define a slope function p(R9 u)
on the region Re (0, oo), ue (0, T(R)) by p(i2, %) = du/dr\r==R for that
unique profile curve (r(^; σ0), %(^; (70)) with r(ψ0; σo) = R and (̂α/r0; σo) = u
for some ^ 0 ^ (π/2, π). Of course, p(i?, tc) = tanπ/r0 for this o/r0. That
this is a valid definition is seen from Lemma 4.1 of Johnson and
Perko [8]. In this §1 will only be working with the lower parts of
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the profile curves, ψe(ττ/2, π).

The plan of action is to show that for fixed R sufficiently large,
p(R, u) is C1 in u for u sufficiently small. Once I have that, I will
be able to prove some regularity results by the theorem on continu-
ous dependence of solutions of O.D.E.'s on their parameters. I need
to know some properties of p(R, u). Johnson and Perko prove the
following:

LEMMA 3.1. For fixed R, p(R9 u) is continuous, negative, de-
creasing in u, with:

lim p(R, u) = 0 ,
u->0

and

lim p(Rf u) = — °o .

I have to be able to refer to the lower parts of the profile
curves as functions of r, so define w(r; R, u) to be the portion of
that profile curve from ψ = π/2 to ψ = π which passes through
(R, u). (This is only for 0 < u ^ T(R).) If I let wf be (d/dr)w(r; R, u),
then w(r; R, u) satisfies (again from Johnson and Perko):

(3.1) w" = w(l + (wOT2
(r

with boundary conditions:

(a) w(R; R, u) = u

(3.2) (b) lim w(r; R, u) = 0
r-*oo

(c) w\R; R, u) = p(R, u) ,

where (3.2) (c) is the definition of p(R, u).
I will need to know some properties of w(r; R, u).

LEMMA 3.2. Let R > 0, Γ(i2) > u > 0, r ^ i?, u, < u2. Then:
( i ) w(r; i2, w) > 0, w'(r; R, u) < 0, w'\r\ R, u) > 0,
(ii) 0 < w(r; R, ut) < w(r; R, u2)
(iii) 0 > w'(r; R, uj > w\r; R, u2)
(iv) 0 < w"(r; R, uλ) < u/\r; R, u2)
(v) w(r; R, u) < ce~r\V r , e = c(JBf u)
(vi) 0 > w'(r; ϋϊ, u) > c1(d/dr)(e-r/v/Ίr), cx = cx(i2, w).

Proof. Part (i) is proved in Johnson and Perko. To see part
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(ii), note that w(R: R, uλ) < w(R; R, u2) and if w(r; R, uL) = w(r; R, u2)
for some r > R, the curves would be identical. The argument for
pait (iii) is the same, since if w'(r; R, uλ) = ιv'(r; R, u2) for r ^ R,
then by Theorem 2 of Johnson and Perko, the curves would be the
same. Part (iv) follows from (ii), (iii), and (3.1). Part (v) is proved
by Siegel [13], p. 49, and part (vi) is easily obtained from SiegeΓs
estimates.

LEMMA 3.3. Fix RQ>0, uoe (0, T(R0)). Then for sufficiently
large R > RQt p(R, u) is differentiate on the interval (0, w(R; RQ, u0)).

Proof. Let u and u + δ be less than w(R; Ro, u) for R to be
chosen later, and δ Φ 0. Let

R,u + δ)- w(r; R, u)
δ

Then vδ satisfies (Siegel [13], p. 57):

(3.3) v'i +
qδ/ qδ

where

qδ(r) =[{1 + [w\r; R, u) + t(w'(r; R, u) - w'(r; R, u + δ))]2}-3/2dt
Jo

with boundary conditions vδ(R) = 1 and lim^oo vδ(r) = 0. From Lemma
3.2, part (iii), I have that w\r; Rf u) and w\r\ R, u + S) are bounded
by w'(r; Ro, u0). From this it follows that:

/7 1 <^" p(qi T? \

r

and
e-2τ

q0 < C^UQ, Ro) .

Hence, by a calculation of Siegel, there exists an R — R(R0, u0)
such that for r > R, the function U = Ae~rjV~r satisfies:

(3.4) U" + ui^ + &) >—U for r>R.
qδ

I can also choose R large enough so that

— > 0 r>R,
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and

(— + 5 i ) > 0 r > R .

\r qδ)
Choose A to be eRλ/R, and consider the function vδ — U. From (3.3)
and (3.4) it follows that this function cannot have a negative
minimum. But vδ(R) — U(R) = 0 and l i m ^ (v/r) — Z7(r)) = 0, so we
may conclude that:

(3.5) vδ(r) ^ C7(r) for r > R

independently of u and δ.
The reason for looking at vδ(r) is that

= W'(R> Jg, M + δ) - w'(R; R, u)

δ

_ p(R, u + δ)- p(R, u)_ ,

so that if I show that lim,^ v5(JB) exists, I will have shown that
p(R, u) is differentiate in u. However, from equation (3.5) and the
fact that vδ(R) = U{R) = 1, it follows that:

v't(R) ^ U\R) > - oo ,

holding independently of <5. From Lemma 3.2, I know that v'δ(R) is
bounded above by zero. So, for any sequence {<5J going to zero, I
can, by taking a subsequence, assume that:

= L^ U\R) .

Let v(r; u) be the function solving

(3.6) v" + i Y— + 5l) = - v , R.y

\r q I q
with I;(JB; U) = 1, v\R; u) = L, and

'(r; Λ, u))T3/2

on some maximal interval of definition of v, [R, Rλ), R^ °°. (It
should be observed that v(r; u) also depends on L.) From the
definition of qδ(r) and part (iii) of Lemma 3.2, it follows that qδ(r)
converges to q(r) uniformly in [R} +oo) as δ tends to zero. By the
theorem on continuous dependence of solutions of O.D.E.'s on their
parameters, it follows that vδ.(r) approaches v(r; u) almost uniformly
on the domain of existence of v(r; u).

I now claim that ^ = + 0 0 . On [R, RJ, v(r;u)>0 and
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v'(r; u) < 0, since vδ. —> v almost uniformly. From (3.6) I know that
v"(r\ u) > 0. Thus v(r; u) is monotone decreasing and bounded from
below by zero, and v'(r; u) is monotone increasing and bounded from
above by zero. Hence v and vf are bounded on [R, Rλ), and it follows
from well known existence theorems that ϋ^ = + oo. In addition,
the limits v(°°;u) and v'(°°;u) exist and are finite, with v\°°\u) <I
0 <* v(°°; u). Since v(r; u) is bounded, v'(oo; n) = 0, and since v\r\ u)
is bounded, #"(°o; u) = 0. From equation (3.6) we then get v(°o; u) = 0.
(The preceding argument showing that Rt = oo and v(oo u) = 0 is
similar to one of Johnson and Perko.)

It can be shown, however, that there is only one v(r; u)
satisfying (3.6), v(R u) = 1, and v(°°9u) = 0 as follows. Suppose
there are two such functions vι and v2. Then vt — v2 satisfies (3.6),
with boundary conditions (vλ — vz)(R) = 0, and (vt — v2)(°°) = 0. But
no function satisfying (3.6) can have a positive maximum or a
negative minimum, so vL — v2 = 0, and vλ{r) = i;2(f).

Thus, for any sequence of S's going to zero, there is a sub-
sequence {δt} with lim^oo v'h(R) = V'(JB, W) where v'(Λ; ^) doesn't
depend on the sequence chosen. Hence limδ_0 v'δ(R) exists and equals
v'(Rf u), so p(Rf u) is difFerentiable for 0 < u < w(R; ROf u0).

LEMMA 3.4. Under the same assumptions as above, p(R, u) is
C1 on (0, w(R; Ro, u0)) for fixed R.

Proof. From the proof of Lemma 3.3, I know that dp/du(R, u) =
vf(R; u). Pick some ζG (0, w(R; RQ9 uo))9 and let {ζj approach ζ. To
show that dp/du(R, u) is continuous at (R, ζ), I must show that
lim^oo v\R; d) = v'(R; ζ). As in Lemma 3.3, by taking a subsequence
1 can assume that:

lim v\R\ Q - M > - - ,
ΐ-*oo

since eR\/R{e~r\V r) is a subsolution to (3.6). But the coefficients of
the equations for v(r; ζ j are converging to the coefficients of the
equation for v(r; ζ). Let vx{r) solve (3.6) with v[{R) = M. As in the
proof of Lemma 3.3, vγ{r) is defined on [Ry oo) and is zero at infinity,
so vx(r) — v(r, ζ). Hence M = v'(R; ζ), so it follows that

Therefore p(R, u) is C1 as a function of u on (0, w(R; Ro, u0)).

THEOREM 3.5. The slope function p{r, u) is C1 in the region
W = {(r, u);0<r< oofo<u
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Proof. Pick (r0, u0) e W, and consider the profile curve
w(r; r0, u0). Define the region WtrQtUQ) to be the set {(r, u) e W; u ^
w(r;rQ,uQ)}9 and let W^,UQ) = W- Wko,uo)- From Lemma 3.4, there
is an R ^ r0 with p(R, u) eC\0, w(R; r0, u0)) as a function of %.
From Lemma 3.2 and the continuity properties of the profile curves
proven by Johnson and Perko, I know that W^rQ}Uo) is swept out by
the set of curves {w(r; R, ξ); 0 < ξ < w(R; r0, u0)}. I can consider
this set as the set of functions satisfying (3.1) with initial conditions
w(R; R, ξ) = ξ and w'(R; R, ζ) = p(R, ξ). These initial conditions are
C1 in ζ, so by the theorem on continuous dependence of solutions
of O.D.E.'s on their parameters (see e.g., Petrovsky [10]), it follows
that w(r; R, ζ) and w'(r; R, ζ) are C1 functions of ζ and r.

To prove that p(r, u) is C1 is TF ô,Wo), I must show that given
(r, u) G WΐrQtUo)9 I can define (at least locally) ξ(r9 u) so that
u — w{r; R, ζ(r, u))t and ζ is a C1 function of r and t6 (the dependence
of ζ on i? will be understood). It will then follow that p(v, u) =
w'(r; R, ξ(r, u))9 which is clearly C1 in r and u.

To define ξ(r, u) implicitly as the solution of

(3.7) u - w(r; R, ζ) ,

I need (d/dξ)w(r; R, ζ) Φ 0 to use the implicit function theorem. To
simplify notation, let w(r; R, ξ) be (d/dξ)w(r: R, ζ). Differentiating
(3.1) with respect to the parameter ξ, I obtain:

(3.8) w" - (1 + (w')Y\w + w{w'f + Zww'w') - — ( 1 + ?>{wj)
V

with initial conditions:

w(R; R, ξ) - 1 ,

and

w\R; R, ξ) - 22-(R, ξ) .

Since dp/dξ(R, ξ) = vf(JS; f), where i; is the auxiliary function from
Lemma 3.3, it is not difficult to check that dpjdξ{R, ξ) < 0 if v is to
go to zero at infinity. I shall use this fact to show that w' < 0 on
the interval (r, R), from which it follows that w(r; R, ξ) > 1, enabling
me to solve (3.7) for ξ by the implicit function theorem.

Since w\R; R, ζ) < 0, let y be the largest number less than R
for which w\y\ R, ζ) — 0. Integrating from y to R, I have that
w(y\ R> ζ) > 0, so from equation (3.8), it follows that w"(y\ R, ξ) > 0.
But this contradicts the assumption that w'(η\ R, ξ) < 0 for η e (y, R).
Thus there is no such y, and wf is negative on (r, R), which, from



SYMMETRIC UNBOUNDED LIQUID BRIDGES 225

the discussion above, enables me to solve (3.7) for ξ as a C1 function
of r and u. It follows that p(r, u) is C1 in r and u in W^0,UQ).

There was nothing special about the point (r0, u0); indeed, r0 could
be as large, and uOf as close to Γ(r0) as desired. Hence p(r, u) is
C1 in the region W.

LEMMA 3.6. The curve p(r, u) — e is the graph of a C1 function
°f r for ~ °° < c < 0.

Proof. From Johnson and Perko I know that the curve p(r, u) = c
is the graph of a function of r. Fiom the proof of Theorem 3.5,
— oo < dp/du < 0 for all (r, u) e W, so by the implicit function
theorem, p(r9 u) — c can be solved for u as a C1 function of r. Call
this function Tc(r).

LEMMA 3.7. For any rx > 0, T[(r) is bounded on (rlf +oo) uni-
formly in r and c.

Proof. Let x(r; R, c) denote the unique profile curve with
derivative c at r = R, so that x(r; R, p(r, u)) = w(r\ Rf u). From
Siegel [13], p. 42, I have:

x^r, χt2, w <̂  — ^ 1 — v , iΐ i, c

for R1< R2< r. Let ?* approach i22 to obtain:

t/v^-/T2j -^£'2, ^ / —-̂  tΛ^JΠL^j - ^ ^ 1 , ^ /

But x(r; r, c) = Γβ(r), so

It follows that:

TC(R2) - Te(Rx) , TC{RX)

JX2 — lίi JX1

Since (r, Tc{r)) e W, I have that Γe(r) < VT, thus

in (ru +°°), bounding the derivative.

THEOREM 3.8. The function T(σ) is in C\0, +co).
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Proof. Consider the initial value problem:

du __ — r sin ψ

dψ ru + sin ψ

dr _ — r cos ψ

dψ ru + sin ψ

= t

ψ, ί) = Γ̂ (ί) ,
4

which is analogous to equations (2.1) to (2.4).
Since T_λ{t) is C1 in ί, it follows that w(ψ ; ί) and r(ψ; ί) are C1

in α/r and ί. Differentiating the above equations with respect to the
parameter ί, there holds:

(3.9)
dψ L {ru + sin τ/r)2 J '

and

(3.10) 7Γ~ = CC

with f (3ττ/4; ί) = 1, ώ(3ττ/4; ί) = T'-^ί), where r = dr/dt(ψ; t) and
ώ = du/dt(ψ; t).

The curve (r(π/2; ί), u(π/2; t)) is the same as the graph of Γ(σ).
The only way that it could fail to be a C1 curve is if r(π/2; t0) =
ύ{πj2) t0) = 0 for some t0. But for that t0 there would hold
dύ/dψ(π/2) to) = df/dψ(πl2; t0) = 0, from (3.9) and (3.10), so by the
usual uniqueness theorems for ordinary differential equations I would
have ύ(ψ; tQ) = f(ψ; t0) = 0. This contradicts the initial conditions,
thus (r(ττ/2; ί), u(π/2; t)) is a C1 curve, and so is the graph of T(σ).

However, this does not imply immediately that T(σ) is a C1

function of σ. T\σ) is continuous where it is finite, but it might
go off to infinity. I next show that this cannot occur except at
σ — 0. From Johnson and Perko, I know that Tc(σ) increases to
T{σ) as c tends to — oo. But T'£σ) is uniformly bounded on (rl9 +<*>)
by V 2 /r1 for all rx > 0, so it follows that T'(σ) is also bounded by
l/ΊΓ/r! on (rlf +oo). Hence the only point at which T'(σ) can blow
up is σ = 0. From Turkington's estimates it is seen that T\σ) does
in fact blow up there.

4* The envelope* The envelope is determined by the condition
that:
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\ψ; σ) r\f; σ) _

(φ; σ) f{f\ σ)

or equivalently

(4.1) F(ψ, σ) = ύ(ψ; σ) cos ψ — f(ψ; σ) sin ψ — 0

(see Finn [4] for this equation), where ύ(ψ; σ) = du/dσ(ψ; σ) and
r(α/r; σ) — dr/dσ(ψ; σ). I will show that for any σ, there is precisely
one angle | G ( 0 , π) which will solve F(ψ, σ) — 0. I will also show
that if ψ = 0 is another solution to (4.1), then this point will be
isolated from the rest of the envelope curve.

Differentiating (2.1) through (2.4) with respect to the parameter
σ, permissible since T(σ) e C1, I obtain the following needed equa-
tions:

(4.2) sin tΓ
dψ L (ru + sin

(4.3) cosfΓ
df ψi(ru + sin-f)2

(4.4) ώ(|-; σ) = 2"(σ) ,

(4.5) f ( - | ; σ) = 1 .

LEMMA 4.1. If for a fixed σ, r(ψQ; σ) > 0, then r(ψ; σ) ̂  0 for

Proof. From Remark 2.9 it follows that for fixed α̂ , w(α̂ ; 6r) is
increasing in σy thus Λ(ψ; σ) ̂  0 for all α/r, σ. This fact and equa-
tion (4.3) imply the desired result, since if r(ψ\ σ) < 0, we have
dr/df > 0.

LEMMA 4.2. If ά(0; σ0) = 0, ίfee^ r(0; σ0) < 0.

Proof. The proof is by contradiction, so there are two cases
to eliminate:

Case 1. ύ(0; σ0) = 0, r(0; cr0) = 0.

If this occured, then equations (4.2) and (4.3) would be zero at
ψ = 0. By well-known uniqueness theorems for solutions of O.D.E.'s,
the only solution to (4.2) and (4.3) would be ύ(ψ σ0) = r(ψ ; σ0) = 0.
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This violates (4.4) and (4.5).

Case 2. ύ(fi; σ) = 0, r(0; σ) > 0.

From (4.2) I have dύ/dψ\f=Q = 0. By LΉόpitaPs rule, it follows
that:

Hence

lim

so for small positive ψ, w 2 — f sin ψ < 0. From (4.2), it follows
that dύ/dψ < 0 in (0, η) for some positive rj. But this contradicts
Lemma 4.1, eliminating this case also.

LEMMA 4.3. ύ(ψ; σ) > 0 for ψe(0, π).

Proof. Suppose ύ(ψQ; σ) = 0 for ψ*0e(0, π). There must hold
dύ/dψ\ir=irQ = 0 from the nonnegativity of ύ. From this fact and
equations (4.2) and (4.3), it follows that f(ψ0) σ) — 0 and df/dψ\ψ=ψQ=0.
But this gives as the unique solution ύ(ψ; σ) = r(ψ; σ) = 0, a con-
tradiction.

THEOREM 4.4. On any profile curve Γσ there is exactly one
angle Ίjr(σ) e (0, π) for which F($(σ)9 σ) = 0. In addition, ψ(σ) < π/2.

Proof. F(ψ, σ) > 0 for ψ near zero by Lemmas 4.2 and 4.3, and
F(π/2f σ) = — 1, so there is at least one intermediate zero. I have
that F(φ, σ) < 0 for ψ > π/2, since r(ψ; σ) ̂  0 for f > π/2 by Lemma
4.1. I need concern myself, then, only with f e(0, π/2). Let ψλ be
the first zero of F on Γσ. From (4.1) and Lemma 4.3, it follows
that f(ψi', σ) > Of and therefore f(ψ; σ) ̂  0 for ψ > ψx from Lemma
4.1. However,

(4.6) = —ύ(ψ; σ) sin ψ — r(ψ; σ) cos ψ ,
oψ

so for ψ > ψlf dF/dψ < 0, and F cannot have a second zero.
It is important to note that I haven't ruled out the possibility

that F(0, σ) — 0 for some σ. However, this is the same as ά(0; σ) = 0,
and since w(0; σ) is increasing in σ, this can happen only for isolated
σ. These isolated points, then, could not be part of the envelope
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curve given by ψ(σ) which can be shown to be continuous in σ.
From now on, I will exclude the exceptional case ψ — 0 from the
discussion of the envelope.

I should point out that Theorem 4.4 does not imply that a
profile curve cannot intersect the envelope twice in (r, u) space.

Let E(σ):R^R2 be given by E(σ) = (r(f (σ); σ), u(ψ(σ); σ)), so
that this is a parametrization of the envelope.

THEOREM 4.5. As σ approaches + co, u(ψ(σ); σ) approaches
u<JQ) = 2, so that E(σ) has the line u = 2 as an asymptote.

Proof. As σ goes to infinity, r does also. Equations (4.2) and
(4.3) therefore approach

dψ

uniformly, with initial conditions

This has the unique solution ύ = 0, r = 1. So, by the theorem on
continuous dependence of solutions of O.D.E.'s on their parameters,
ΰ(ψ) σ) goes to zero uniformly in ψ as σ goes to infinity, and r(ψ; σ)
similarly approaches 1. Hence as σ goes to infinity, f{σ) approaches
zero, yielding the desired conclusions.

REMARK 4.6. E(σ) lies beneath the curve u = 2T(r) (from Remark
2.10) and therefore goes to zero at r = 0.

I was unable to advance much further in my study of the
envelope without making the following assumption:

Conjecture 4.7. The envelope is a C1 curve.

I did not find a way to prove this. I expect it to be true, since
the analogous result has been proven for the pendent drop (see
Wente [15]). It is well-known that if the envelope of a family of dif-
ferentiable curves is differentiate, then at each point of this envelope
there is a unique member of the family tangent to it. From this,
and the fact that 0 < f{σ) < π/2, we may conclude from 4.7 that
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E(σ) is the graph of an increasing function of r.

THEOREM 4.8. Assuming 4.7, it follows that no profile curve
may cross the envelope.

Proof. Case 1. Suppose that for some σ0, ΓQ (corresponding to
σ0) crosses E(σ) twice at heights uλ and u2. There then would be a
height u0 between ux and u2 at which E(σ) and Γo have the same
inclination. But then there would be a σλ Φ σQ with u{ψ(σ^)\ σj = u0,
so, since E(σ) is assumed to be C1, Γo and Γx would have the same
inclination angle at height u0, contradicting Theorem 2.3.

Case 2. Suppose that Γo crosses E(σ) once. Then the point of
crossing must of course be (r(f(σ0); σ0), u(ψ(σ0); σ0)), and E(σ) has
inclination ψ(σ0) there (otherwise I can use the argument of Case 1
here). Since Γo crosses E only once, we cannot have Γo above E
at height less than u(ψ(σ0); σ0). Thus the only possibility to consider
is that Γo lies below E for angles greater than ψ(σ0) and above E
for angles less than f(σQ) (see Figure 8).

FIGURE 8

Proof of Theorem 4.8

From Theorem 4.5, E(σ) has the line u — 2 as an asymptote.
Since u(Q; σ) increases also to 2 as σ approaches infinity, it follows
that u(0; σ0) < 2. Since ψ(σ) > 0 for all σ, the envelope is never
horizontal, hence at height v(0; σ0), E has a steeper inclination than
ΓQ. However, for u slightly larger than u(ψ(σ0); σ0), Γo is steeper
than E, since Γo rises above E. From this I conclude that there
is a height between u(0; σ0) and u(f(σ0); σ0) at which E and Γo have
the same inclination angle. This leads to a contradiction by the
same argument as in Case 1.
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THEOREM 4.9. Assuming 4.7, it follows that through any point
(r0, uQ) there pass at most two profile curves /\ and Γ2. In addition,
if u(ψ(σ^)\ 0Ί) < uQ, then u(ψ(σ2); σ2) > u0. (If (r0, uQ) is between the
envelope and the r axis, there will be at least one profile curve
through it.)

Proof. From Theorem 4.8, I may assume that (r0, u0) is not
above the envelope. I may also assume that (r0, u0) g E(σ), since
there will be only one profile curve intersecting any given point of
E{σ). The theorem will follow if it is shown that there is at most
one profile curve through (r0, u0) touching E(σ) at a height below
u09 and at most one profile touching above u0.

To prove the first part of this statement, suppose that there
are two profile curves Γ1 and Γ[ passing through (r0, u0) and con-
tacting the envelope at a height lower than u0. By Theorem 4.8,
Γ1 and Γ[ cannot cross E(σ). From this and the fact that the
profiles are functions of height defined down to u = 0, it is easy to
see that Γλ and Γ[ must cross again, violating Corollary 2.4. Thus
there is at most one profile through (r0, u0) touching the envelope
below u0.

The proof of the second part is similar. Suppose that Γ2 and
Γ'2 pass through (r0, u0) and that u(f(σ2); σ2) > u(ψ(σ2); σ2) > u0. Γ2

and Γ2 can't cross again, but what could happen in this case is that
Γ2 could go beyond the horizontal point of Γ2 and reach the envelope
in that way (see Figure 9). In this case, however, Γ2 has a larger
inclination angle than Γ2 at height u(fi; σ'2)f but at uQ, Γ2 has a
smaller inclination. This leads to the usual contradiction with

E(σ)

FIGURE 9

Proof of Theorem 4,9
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Theorem 2.3.

5* Stability• In this section I will always be assuming Conjec-
ture 4.7. I will obtain the following results: In the completely
wetting case β — 1 (see equation (0.1)), the profile curves are energy
minimizing over compact perturbations below the point of contact
with the envelope, but once a profile has touched the envelope, it
is unstable. In the case β < 1, the curve is unstable if it has
touched the envelope or has inclination angle less than cos"1 β,
otherwise it is stable. A good reference for the methods from the
calculus of variations needed in this section, especially the concept
of a field of extremals, is Bliss [2].

The first problem to eliminate is the fact that I do not know a
priori that if a bridge is stable under compact symmetric perturba-
tions then it is stable under compact asymmetric perturbations as
well. To handle this difficulty, I first need the following technical
lemma:

LEMMA 5.1. Let A be a set containing i?71"1 x R~, with the
property that

a{δ) = inf {\x\\(x, δ)edA}

goes to infinity as δ goes to zero (I have the liberty to redefine A
on a set of measure zero for this). Let B containing Rn~λ x R~ be
a compact perturbation of A, with AΔB £ K, where AΔB = (A — B) U
(B — A). Given ε > 0, there is a d > 0 and a set B with AΔB Q
Kf]{u^ δ}, and &K(B) < &K(B) + ε.

Proof. Let Bδ = (B n {u ̂  δ}) U (A n {n ̂  δ}) for any δ > 0.
Since K is compact, by the condition on dA it follows that
(dA ΓΊ {u < δ}) Π K = 0 for δ less than some δQ. For any δ < δQ, I
have that [ \DXBδ\ ^ ί \DXB\. This follows from the fact that

the plane u = δ is a minimal surface, thus {u = δ} Π B is the surface
of smallest area with boundary {u = δ} π dB. But for δ sufficiently
small,

μn(Anκn{u<})<,
pg

so that changing from B to Bδ only increases the potential energy
due to gravity by a small amount, while actually lowering the
perimeter in K. So, for sufficiently small δ, Bδ is the desired B,
proving the lemma.
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The problem of asymmetric perturbations is handled by the
following theorem.

THEOREM 5.2. If a symmetric liquid bridge lifted by a disc is
an energy minimum over symmetric compact perturbations, it is
also an energy minimum over nonsymmetric compact perturbations.

Proof. Let Ω be the symmetric liquid bridge lifted by a disc
£& at height h, and suppose Ωλ to be a compact perturbation with
(ΩJΩJ Q K, and ^K{ΩX) < g"x(i2). By enlarging K9 I may assume
that it is symmetric about the xn axis.

From Lemma 5.1, there is a set Ωλ and a δ > 0 so that φλAΩ) Q
Kn{u^δ} and

Let Ω\ be the symmetrization of Ω1 as described in Gonzalez [7].
Then Ω[ = Ω below height u — δ, so that Ω{ will be a compact
perturbation of Ω. Hence, since K is symmetric,

The result now follows, since Ω[ is a compact symmetric perturbation.

REMARK 5.3. The following is also true: if Ω is stable over
sufficiently small symmetric compact perturbations, then it is stable
over any sufficiently small compact perturbations. The proof is by
the same argument as above, and noting that if 3Ωγ in uniformly
within some ε of dΩ, then so is dΩ{.

REMARK 5.4. A similar result is proved by Wente [14] for
pendent drops in a completely different manner. The above proof
can also be made to yield Wente's result. In the case of the pendent
drop, Ωγ can be symmetrized directly, rather than going through Ω19

since it is not necessary to avoid noncompact perturbations.
Let Y be the open set in the (r, u) plane between the envelope

and the r axis. I will show that the profiles {Γσ} considered from
ψ r= ${p) to ψ = π, and their slopes, form a field of extremals (see
e.g., Bliss [2]) in Y. I will again be treating the profile curves as
graphs of functions of height. The functions r(u; σ) satisfy equation
(1.7) and the initial condition r\T(σ)\ σ) — 0. Let q(r, u) be defined
on Y by

Q(r0, u0) = ^f
du

for that unique curve passing through (r0, uQ) and touching the
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envelope above u0. Note that q(r, u) = l/p(r9 u) where the latter
function is defined.

LEMMA 5.5. Assuming 4.7, the slope function q(r9 u) is C1 in
r and u in the interior of Y.

Proof. The Jacobian J of the C1 map from (φ, σ) to (r(ψ; σ),
u(ψ; σ)) is:

J = ύ— - r— = - (f sin ψ - u cos f) .
dψ dψ ru + sin ψ

By Theorem 4.4, this is nonzero for f(σ) < ψ < π, since the zeros
of J determine the envelope. Restricting attention to ψe(ψ(σ), π),
from Theorem 4.9 I know that Y is singly covered by the profiles.
Hence I can invert the map and find ψ(r9 u) and σ(r9 u) as C1 func-
tions of r and u. It is not difficult to see that:

g(r, u) = cot ψ(r, u) .

Therefore, q will be C1 in r and u if sin ψ Φ 0. But this is indeed
the case, since ψ < π on all profile curves, and 0 < f(σ) by Theorem
4.4.

THEOREM 5.6. The one-parameter family of profile curves r(u; σ),
restricted to the part of the profile with ψ > ψ(σ), form a field of
extremals for the energy functional

= J (2πfχ/Γ+Jfψ + πuf)du =E J F(u, f, f')du

in the region Y.

Proof. All that is needed for this is that Y is simply covered,
and that the slope function q(r; u) is C\ proven in Lemma 5.5. See
Sagan [12].

LEMMA 5.7. The Weierstrass E function

E(u, r, r', R) = F(u, r, R') - F(u, r, r') - {R - r')FΛu, r, r')

is strictly positive if rf Φ R\

Proof. E(u9 r, r\ R') = (2πr/i/l + {rJ){Vl + {RJ V\ + (rj -
(1 + RY)}. Writing this as:

E{u9 r9 r\ R') - - ^ ^ = = { ^ 1 + {RJ + (r')2 + {R'rJ

- τ/1 + 2r'R + (R'r'f} ,
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the result follows.

THEOREM 5.8. Fix an extremal r(u\ σ), where as before I restrict
my attention to that part of Γσ with ψ(σ) < ψ < π (so that the
domain of r(u; σ) is restricted to (0, u(ψ(σ); σ))). Pick uu u2e
(0, u(ψ(σ); a)) with u2 > ux. Let y(u) be a differentiate function on
[ul9 u2] with y(Uί) = r(ux; σ), y(u2) = τ(u2; σ), and the graph of y con-
tained in Y. Then

(5.1) \U2F(u, r, rf)du ^ [**F(u9 y, yf)du
Jul Ju±

with strict inequality holding in (5.1) unless r{u\ σ) = y(u) for u e
[uu u2].

Proof. This follows from well-known properties of fields of
extremals. The statement about strictness of inequality (5.1) comes
from Lemma 5.7, since

= I E(u, r, g, y')du ,

and yr — q on [ul9 u2] would imply that y(u) — r(u) from the defini-
tion of q.

COROLLARY 5.9. The bridge surface obtained by rotating the
profile curve (r(ψ; σ)9 u(ψ; σ)) with ψ e (ψ(σ)9 π) is energy minimizing
over smooth compact perturbations which are contained in the solid
obtained by rotating Y.

Proof. This follows from Theorems 5.8 and 5.2, and noting that
the symmetrization procedure (see Gonzalez [7]) yields not only a
symmetric surface, but one with the property that the radius is a
(single-valued) function of the axis of symmetry.

To go along with the stability result of Theorem 5.8, there is a
companion instability theorem which states that if a profile curve
touches the envelope, it is unstable. To demonstrate this, I need
the following technical lemmas.

LEMMA 5.10. Suppose that r(u) e C\09 h] has the following
properties:

( i ) rf(u) < 0 in a neighborhood of zero.
(ii) reL2(0, h],
(in) On the interval [δ, h], δ > 0, r minimizes I(r) (see Theorem

5.6) over perturbations leaving r(h) and r(δ) fixed.
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Then r(u) minimizes

/(/) = \h2πf(f + l/l + (/')*) + πuf*d<ι
Jo

over the set of perturbations leaving r(h) fixed and r fixed in a
neighborhood of zero.

tu

Proof. Since 0 < r' + i/l + (r')2 ^ 1 in a neighborhood of zero
by part (i), I can conclude immediately that Ί{r) < °° by part (ii)
and the Schwarz inequality. Now, on any interval [δ, h], I(r) and
Ί{r) differ by the constant π(r\h) — r2(δ)) which will remain the same
after any perturbation leaving r(h) and r(δ) fixed. The result
follows.

LEMMA 5.11. Suppose that on (0, h] there are two positive func-
tions Tχ(u) and r2(u) in C\Q, h] with:

( i ) τ[{u) < 0, r'2(u) < 0 for u in a neighborhood of zero,
(ii) rlfr2eL\0fh]
(iii) 7(n)</(r2)
(iv) rι{h) = rt{h)
(v) r^u) < r2(u) in a neighborhood of zero.
Then a function rB(u) can be constructed with rz(h) = r2(h),

rB(u) — τ2(u) in a neighborhood of zero, and /(r3) < I(r2).

Proof. Let ε = ϊ(r2) - /(n), and pick δe (0, 1) so that Γr? <

S δ JO

r\ < ε/16π, and r[ and r2 are negative on (0, δ]. Let φ be a
0

C°° nondecreasing function with φ = 0 on [0, δ/2] and ̂  Ξ 1 on [δ, + oo).
Define r3 by:

rz(u) = φ^r^u) + (1 - φ{u))r2{u) .

Then,
7(r3) = Γ2τrn(r; + l/l

J

δ/2
2τrr3(r3 + l/l

S δ/2

2πr2(r; + λ/l + (r2)
2

0
From assumption (v) and the definition of r3, it follows that

r'lu) < 0 on (0, δ], thus

0 < rί + v/1 + (rD2 < 1 .

I may therefore write:
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/(r3) < Γ2πn(rί + ]/l + {r[f ) + πur\du

G δ Cδ \

Wilt \ 1^1)
δ/2 J δ/2 /

+ πδmax(\ \τλ\\ \ \r2\
2)

\ J δ/2 J δ/2 /

S δ/2 Cδ/2

\n\+πδ\ |r2o Jo

By Schwarz's inequality,

S δ Cδ

o Jo

so by the choice of 3, it follows that

Ί(r%) < [^πrM + l/l + (n)

Since rι is positive, I have that:

and r2 also fulfills the other requirements laid out above.
The above two lemmas where inspired by Gerhardt's variational

approach to the exterior problem [5], although they yield a much
weaker result. The difference is that Gerhardt was able to consider
his surfaces as graphs over the base plane, whereas I am forced to
work with functions of height.

u=2

FIGURE 10

Lemma 5.12
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LEMMA 5.12. Let E(σ0) = (r(f(σ0); σ0), u(ψ(σ0); σ0)) be a point on
the envelope. Let σx e (0, σ0). Let C = {E(σ); ax < σ < σ0) U {(r(f; σx),
u(ψ; σj)\ ψe {f{σ^), π)} {see Figure 10). Tλe^, abusing notation
slightly, Ί{Γσ) — Ί(C) on the interval (0, u(ψ(σQ); σ0)].

Proof. This is essentially the same as the envelope theorem
(see Bliss [2]). The one difference is that I do not have a central
field of extremals, i.e., a field emanating from one point. I must
use a limiting argument. Pick a radius R, and let p2 and pz be the
intersections of the line r = R with Γo and Γ1 (corresponding to σ0

and σλ) respectively. Following Bliss, let ΓQ2 be the part of Γo from
E(σ0) to p2, let Γ13 be the curve Γ x from E(σ^ to p3, let C01 be the
envelope from E(σ0) to E(σλ) and let C23 be the segment connecting
p2 and ps. The Hubert invariant integral I* is

Q2)
(5.2)

for a function f(u) (see Bliss [2]). I have:

(again abusing notation). I t is clear from (5.2) that Ϊ*(CO1) = I(C01)f

since on the envelope, the second term in the integral is zero. What
must therefore be done is to show that as R—» oo, /*(C23) can be
made as small as described.

/* (C23) = I 2πR(q + i / l + q2) + πuR2

(5.4) — 2πRq( 1 - ) — , ^
vl + g

- πuR2du ,

where u2 and ^ 3 are the heights of p2 and ps respectively. First,

R/vl + q2 du approaches zero. On the segment C23

there holds:

q(u9 R) ^ q(u29 R) ^ 0 .

Since <J(M2, 22) = r\u2\ σQ), it will suffice to show that for fixed σQf

r(u2; σo)/rf(u2; σ0) approaches zero as u2 goes to zero. But this was
seen in the proof of Theorem 1.1.
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S U2

uR2du approaches zero. But

S u2 D2 T?^nι^
uK au = — ( u 2 — wί;) < .

From SiegeΓs asymptotic estimates [13], I know that u2 ~ Ce~n\v/R,
so that this term also approaches zero. Thus as R—> o°, 7*(C23)-^0.

From this fact and equation (5.3), I have

(5.5) Krn̂  (7(Γ02) - 7(Γ13)) = Ϊ(CJ .

By the Lebesgue dominated convergence theorem, the left hand side
of (5.5) is approaching

7(Γ0 n {u ^ u(f(σ0); σ0)}) - 7(Λ f] {u ^ u{${σύ\ σ,)}) .

This yields the desired result, since C = C01U (A IΊ {% ^ ^(^(^"i); î)})

REMARK 5.13. The envelope does not satisfy differential equation
(1.7). Indeed, the envelope has mean curvature approaching zero
at large radii, but its height does not go to zero. It can also be
shown to behave incorrectly for small radii. This is in contrast
with the fact that the envelope of a family of curves satisfying a
first order differential equation is a singular solution of that equation.

LEMMA 5.14. Given the curve C in Lemma 5.12, there is a
perturbation C which leaves C fixed at h and in a neighborhood of
zero, and

Ϊ(C) < Ϊ(C) .

Proof. Pick two points P and Q on the envelope between E(σ0)
and E(σλ). Since the envelope does not satisfy the Euler equations
(Remark 5.13), it follows that there is a curve 7 which is the graph
of a function of height connecting P and Q, with

7(7) < Ϊ(EPQ) .

(Here EPQ is the part of the envelope between P and Q.) Replacing
EpQ by 7 gives the desired result.

THEOREM 5.15 (Instability). In the symmetric liquid bridge
problem for a disc of radius R at height h, if a profile curve goes
through the point (R, h)9 and touches the envelope at a height less
than or equal to h, then it represents a surface which is unstable
under compact perturbations.
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Proof. This is shown by putting together Lemmas 5.10 through
5.14. Given a curve Γo which touches the envelope, I can construct
the curve C in Lemma 5.12 to have the same I energy, and perturb
C as in Lemma 5.14 to get C, with Ϊ(C) < Ϊ(ΓO) on (0, h]. Now C
and ΓQ agree at height h, but not in a neighborhood of zero.
However, C and Γo satisfy the hypotheses of Lemma 5.11, so that
C can be perturbed to obtain C* with Ϊ(C*) < Ϊ(ΓO), and C* equalling
Γo in a neighborhood of zero. From Lemma 5.10, I then conclude
that Γo does not minimize / over compact perturbations, as I wished
to show. In the construction of C, σx can be chosen as close to σQ

as desired, showing that JΓ0 is unstable even under small perturba-
tions.

REMARK 5.16. Combining the above theorem with Corollary 5.9,
Theorem 4.8 and Theorem 4.9, I can make the following statements
for the completely wetting case β — 1: For a disc of radius R at height
h > 0, if (R, h) is outside of the region Y (this includes the possibility
that (R, h) is on the envelope), there is no stable unbounded sym-
metric liquid bridge. If (R, h) is contained in Y, there is precisely
one stable profile through that point, and there is at most one un-
stable profile through (R, h). (Recall that Y is the open region
between the envelope and the r axis.)

REMARK 5.17. I can also characterize the stability of liquid
bridges for 0 <; β < 1. It is still true that if (R, h) £ Y, there can
be no stable symmetric bridge. Let ψ be the inclination, at (JR, h),
of the profile curves through (R9 h) which touches the envelope h.
From inequality (1.6), if cos^ ^ β, then the bridge is unstable. If
cos ψ < β, then the entire disc is wetted, so the stability criteria
are the same as in the case β = 1.

I would like to thank Prof. Robert Finn for all his help in this
reserch. My thanks also to Nicholas Korevaar, Frederic Brulois,
Henry Wente, and Claus Gerhardt for helpful conversations.
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