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COMPATIBLE PEIRCE DECOMPOSITIONS OF
JORDAN TRIPLE SYSTEMS

KEVIN McCRIMMON

Jordan triple systems and pairs do not in general possess
unit elements, so that certain standard Jordan algebra
methods for studying derivations, extensions, and bimodules
do not carry over to triples. Unit elements usually arise
as a maximal sum of orthogonal idempotents. In Jordan
triple systems such orthogonal sums of tripotents are not
enough: in order to ‘“‘cover’’ the space one must allow families
of tripotents which are orthogonal or collinear. We show
that well behaved triples and pairs do possess covering
systems of mixed tripotents, and that for many purposes
such nonorthogonal families serve as an effective substitute
for a unit element. In particular, they can be used to
reduce the cohomology of a direct sum to the cochomelegy
of the summands.

Throughout we consider Jordan triple systems J over an

arbitrary ring @ of scalars, having product P(x)y quadratic in x
and linear in y with polarized trilinear product {xyz} = P(z, 2)y =

L(x, y)z.

For easy reference we record the following standard

identities satisfied by the multiplications in a Jordan triple system:

(0.1)
(0.2)
(0.3)
(0.4)
(0.5)

(0.6)

0.7

(0.8)

P(P(x)y) = P(x)P(y)P(x)
P(x)L(y, ») = P(P(x)y, ) = L(x, y)P(x)
L(P(2)y, y) = L(z, P(y)x)
L(z, y)P(z) + P(z)L(y, x) = P({wyz}, 2)
[L(x, ¥), L(z, w)] = L({wyz}, w) — L(z, {yxw})
P(x, y)P(z) = L(x, 2)L(y, 2) — L(x, P(z)y) ,
P(z)P(z, y) = L(z, 2)L(z, y) — L(P(z)x, y)
P(P(x)y, z) = P(x, 2)L(y, ®) — L(z, y)P(x)
P({xyz}) + P(P(x)P(y)z, 2) = P(x)P(y)P(z) + P(2)P(y)P(x)
+ L(x, y)P(z)L(y, x)

(see [2], [3], [8] for basic facts about Jordan triple systems).
We recall the 3 basic examples of Jordan triple systems. The
rectangular » X q matrices with entries in a unital algebra D with
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involution ¢ — @ become a triple system
M, (D): P(x)y = «(y'z) (if p<q) or (x§)x (if p=q.

We always assume p + q =38 since M, (D) is just D; here D
must be alternative (though the involution is arbitrary), and if
» +q=4 must even be associative. When D is associative the
triple structure is given by P(x)y = zy'z. If p=q=n M, , (D) is
just the j-isotope P(x)y = U(x)y’ of the unital Jordan algebra M, (D)
of m X n matrices, with respect to the adjoint involution ¥ = "
In general we have a decomposition M, (D) = @icizpizizc DEi;
where

P(aE)BE;; = a(ba)E,; = (ab)aE,;
(aEbE ;cE,} = a(be)E,
{cE\;bE,;aE,;} = (CE)QEM
{aE,;bE,;cE,} = a(be)E, = (ab)cH,

0.9)

for 7 #1,j5 # k, while all other ‘“unlinked” products P(aE;)bE,,
(7, 8) # (1, 7)) and {aE,;bE, cEy} ((r,s) = (k, ), (1, 1)) are zero.

The alternating matrices (those skew-symmetric X' = — X with
diagonal entries X;, = 0) over a commutative associative algebra C
form a Jordan triple system A,(C) under the product!

A (C): Pyx)yy = axy'x = —ayx .

When C has an involution ¢ — &, the map X7 = X* is an involution
on A,(C), and we can form the j-isotope

S.(C): Py(x)y = Pu(x)y’ = ay'c = —ayx,

which is called the symplectic triple system S,(C). We may view
A, (C) as the special case of a symplectic system S,(C) where C has
trivial involution. Note that the involution is not used in deter-
mining the matrices in S,(C), only in defining the product: both

1 We remark that the alternating matrices also form a subsystem of M,(C) under
the product Py(x)y=xyx, but in general (e.g., over R) this system contains no tripotents
at all, whereas under P, the symplectic matrix units F,;=E;;—E;, always are tripo-
tents. We also remark that the space of all skew-hermitian matrices X'=—X forms
a Jordan triple system Sk(M,(C)) under Plx)y=xy'cx=—axyx. For even n=2m this is
just an isotope of the Jordan algebra H:,(C,s) of symmetric elements relative to the
symplectic involution X°=SX!S-'=—SX'S (S the standard symplectic matrix) under
Ulx)y=xyx, since X—SX is an isomorphism of Sk(M,,(C)) with the isotope Ps(x)y=—
Uz) U(S)y=—=(SyS)x. In particular, in characteristic #2 alternating is the same as
skew 80 Asn(C) and S:,(C) are isotopes of Hin,(C, o), and only the case where » is odd
produces something new. (Note that for a nontrivial involution the space of hermitian-
alternating matrices spanned by the ¢{ij>=cE;j—¢E;; for i#*j does not form a triple
system under XY'X, since {1<12>1{23>¢(31>}=(¢—c)E; is alternating only when é¢—c¢=0).
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A,(C) and S,(C) consist of the same alternating matrices. In terms
of the basis elements oF,; = a(E;; — E;;) = —aF;{(acC, i # j) the
product takes the explicit form

P(aF,,)bF” = aEaFij

{aF;bF;cF} = abeF,

{aFiijijFki} - O

{aF;,bF ;¢ F) = al;cF”

(0.10)

for distinct 4, 7, &, [, while all other “unlinked” products P(aF;)bF,
((ky 1) # (4, 9), (4, %)) and {aF,bFycF,} ((k, 1), (L, k)€ {i, j} x {r, s}) are
zero. We are interested only in S,(C) for n = 4, since for smaller »

(0-11) SI(C) = 0, Sz<c) = C’ Ss(C) = M13(C)

because aF, + bF; + cFyy— o, + bE,, + cE,; is an isomorphism of
S,(C) on M, ,(C), under which the symplectic units {F,, F, F.} cor-
respond to the rectangular row units {¥,, K., E}.

Just as general symplectic matrix systems are obtained as
isotopes of alternating systems, so we can obtain general hermitian
triple systems as isotopes of the Jordan algebra H,(D, D,) of n X n
hermitian matrices X** = X over D whose diagonal entries lie in a
given ample subspace D, (a subspace of symmetric elements in the
nucleus of D containing 1 and closed under aDy* < D, for all a € D).
Here D is forced to be alternative with D, contained in the nucleus
if » = 8 and associative if n = 4. If j is an automorphism of D of
period 2 commuting with the given involution * and leaving D,
invariant, we can define the hermitian Jordan triple system to
consist of the same hermitian matrices under the j-isotopic product
U(x)y? where y’ denotes the result of applying j to all the entries
of the matrix . As in the symplectic case, j is used only in
determining the product, not the matrices. By commutativity, a=
a*? defines another involution on D, and for =-hermitian matrices
X = X** we have X’/ = X** = X, so the product can also be written
as H,(D, D, j): P(x)y = Ulx)y’ = Ulx)y'(=xy'x if D is associative).
Whether D is associative or not, H,D, D, j) is spanned by the
alij] = al,; + a*HEj, ait] = aFE,; for a€ D, a,€D,, with products

Pla[ii))bi[ii] = aybial)[ii] = ao(boa)[ii]

P(afiiDblig] = a(d*a)lij] = a(ba)[is]

P(a[ijDbol5] = a(®ia®)ii] = a(b,a?)[ii]

{alig1bli5le[ik]} = a(d*ic)[ik] = a(be)[ik]

{aliglblksle[kil} = tlad*ie))[ii] = t(a(be))[id]
(k = 1 allowed)

(0.12)
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{alijlblkslelkl]} = a(d*ic)il] = a(be)[il]
(k=jori=jork=1=jor +=7, k=1 allowed)
for distinet indices 4, j, &, [, and all other unlinked products vanish.
The old unit element ¢ has P(c)y = y?, so ¢ remains the unit only
if j =1 is trivial. Thus the algebra case H,D, D,) results from
choosing the trivial automorphism 5. If j is not an inner automor-
phism on J, i.e., 7 is not of the form U(u)x, then H,(D, D,) is not

a Jordan algebra: there is no unit element u, since P(u)= U(u)P(¢c)=
I iff Uu) = P(c) = j.

1. Compatible tripotents. An element ecJ is tripotent if
P(e)e = ¢; such an element determines a decomposition I = E,P E, P
E, of the identity operator on J into a direct sum of Peirce pro-
jection operators

Efe) = P(e)’, E(e) = L(e, e) — 2P(e)*,

(L.1) Eye) = Ble,e) = I — L(e, ¢) + P(e)? .

Such an operator decomposition leads immediately to a Peirce decom-
position

J=4, @ DI, (J: = Je) = Eye)])

of the underlying space J. (Following Loos, we use as indices the
eigenvalues 2,1,0 of L(e, ¢) rather than the indices 1,1/2,0). The
Peirce spaces are sub-triple systems characterized by

Ji(e) = {x|L(e, e)x = P(e)x = 0}

Ji(e) = {x| L{e, e)x = z, P(e)x = 0}

Ji(e) = {x| L(e, e)x = 2x, Ple)x = %, % = &} .
A peculiarity of triples is that P(e) is not the identity on J,(e) but
merely an involution # — Z. The Peirce spaces multiply according to
P(J)J; C oy, {J:J;J} CJi_ji or more specifically for ¢ = 2,0, j =
2—1

P(J)J; = {JJJ;} = 0, P(J,)J, CJ;
(12) P(Ji)J1= O: P(Jl)JzCJJy {JoJlJz}CJx

{(JiJ J.} oy, {J T} Jy, P(J)I, C ;.

We will make frequent use of the fact that multiplications L(x, y)
by elements in the same Peirce space leave all Peirce spaces invariant,

(1.3) L(x, y)J; < J; .

We also have the general rules
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(1.4)  L(w,e) = L(e, T,) , P(@)P(e) = P(e)P(T,) (w.€Jy(e)) .

(See [2], [4] for results on Peirce decompositions.)

If ¢ and f are orthogonal tripotents, the corresponding Peirce
projections commute and yield a double Peirce decomposition of the
space. However, ¢ and f by no means need be orthogonal in order
for this double decomposition to exist: all that is necessary is that
e and f be compatible in the sense that the corresponding Peirce
projections commute,

(1.5) [Eie), E(f)]=0 (i,5=0,1,2).

We can describe rather briefly the condition that two tripotents be
compatible; it is very important that this depends only on the
tripotents themselves, and not on the triple system in which they
are imbedded.

1.6. CoMPATIBILITY CRITERION. Two tripotents e, f are com-

patible iff {eef} lies in J(f), in which case it is symmetric under the
snvolution P(f) of J(f):

{eef} = P(f){eef} .

Proof. First let us show this condition is symmetric in ¢ and
f, i.e., it implies {ffe} € J,(¢). For arbitrary tripotents e, f, if we
write « = {eef} in terms of its Peirce components z = x, + 2, + @,
for xz;€J,(f) we have 2x, + x, = L(f, f)x = {ff{eef}} = {Lle, e)P(f)+
P(f)L(e, e)}f (by (0.4)) = L(e, e)f + P(f)Lle, e)f = (@, + &, + @) + Z..
Thus always z, = 0 and always z, is symmetrie,

1.7 {66f}=902+001, xzer(f)9 962=9_62=P(f)902.

The condition {eef} e, is just that x, = 0. Now assume {eef} € J,(f),
i.e., 2,=0 and {eef}=x,; then P(e){ffe}=P(e)L(e, f)f={—P(f, e)L(e, e)+
P(P(e)e, f) + P(Ple, fle, e)}f (by linearized (0.2)) = —{fx.e} + {eff} +
{x,fe} = {ffe} from (1.4) since Z,=x, by (1.7). Thus {ffe} = P(e){ffe}
Jy(e) and the condition is symmetric in ¢ and f.

Now we show the condition {eef}cJy(f) (and its consequences
{ffe} € Jy(e)) are necessary and sufficient for compatibility (1.5).
Certainly they are necessary: L(e, e)f € L(e, e)J,(f) = {E(e) +
2E () EL(f)] = E(f){E(e) + 2E(e)}J C J(f) by (1.1) and commuta-
tivity. The hard part is showing sufficiency. Since the Peirce
projections E,(e) of (1.1) are linear combinations of L(e, e), P(e),
and I it suffices to prove

(i) [Lle, o), L(f, N =0

(ii) [Lde, o), P(f)] = [L(f, f), Ple)] = 0
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(iif) [P(ey, P(f)] = 0.

Furthermore, by symmetry in ¢ and f we need only prove the first
part of (ii).

For (i) we have [L(e, e), L(f, f)] = L({eef}, f) — L(f, {eef}) (by
(0.5)) = L(x,, f) — L(f, %) = L(f, %) — L(f, «,) = 0 by (1.4), (1.7), and
the hypothesis {eef} = x,. We remark that if 1/2€ @ then (i) already
yields (ii), (iii) since 2P(f) = L(f, f)* — L(f, f) is generated by
L(f, f) according to (0.6).

In general, for (ii) we compute [L(e, e), P(f)1={L(e, e)P(f)}P(f)—
P(fHP(f)Lle, )} = {P({eef}, f) — P(f)L(e, e)}P(f) — P(f}{P{eef}, f)—
L(e, e)P(f)} (by (0.4)) = P(x,, f)P(f) — P(f)P(x, )= P(f)P(Z,, f)—
P(f)P(x,, f) = 0 from (1.4) and (1.7).

Before considering (iii) we pause to establish

(iv) P(e)lf = z. e Jy(f)

(v) Lle, e)x, = x, + 22,

(vi) P(@)f = 2, + %, + 2,

By (ii) P(e)* commutes with L(f, ) and hence leaves its 2-eigenspace
invariant: {L(f, f) — 2}f = 0= {L(f, f) — 2}P(e)’f = 0 =2 = P(e)’f =
2, + 2, for 2z,=0. Hence L(e, e)x, = L(e, e)’f = {L(e, ¢) + 2P(e)’}f
(by (0.6)) = @, + 2(2, + %) = 2, + 22, as in (v). On the other hand,
identifying Peirce components in 0 = {P({eef})) + P(P(e)*f, f) —
P(e)’P(f)—P(f)P(e)’ — Lle, e)P(f)L(e, e)}f (by (0.8)) = P(x.)f + {247} —
z — P(f)z — L(e, )T, = P(@,)f + 22, — (2, + 2) — 2, — (¥, + 22,) (by
(V) = P(x,)f — (2, + 7, + @) — 2, yields 2,= 0, so 2 =z, J,(f) as in
(iv), and P(x,)f = 2, + Z, + x, as in (vi).

Finally we are ready to establish (iii).

[Py, P(f)] = {P;P(fNP(f) — P(fUP(S)P(e)} = {P({eef}) +
P(P(e)'f, f) — P(f)P(ey — Lle, e)P(f)L(e, )}P(f) — P(f){P({eef}) +
P(P(e)'f, ) — P(e)*P(f) — Le, e)P(f)L(e, )} (by (0.8)) = [P(x.), P(f)] +
[P(zs, f), P(f)] — [Le, e)P(f)L(e, e), P(f)] (using (iv)) = P(f)UP(Z.) —
P(x,) + P2, ) — Pz, )} — P(x, f)L(e, e)P(f) + P(f)L(e, e)P(2,, f)
(using (1.4) and (0.4)) = P(f)P(Z,~ 2, f)— Pz, fH{P(@, f)—P(f)L{e, )} +
P(f){P({eews}, ) + P(a,, {eef}) — P(x,, f)L(e, e)} (by (1.7) and (0.4)) =
P(f)PZ, — 2, f) — P(x,, [} + P(/){P(x, + 22, f) + P(x, x.)} +
[P(x,, 1), P(f)]L(e, e) (using (v) and (1.7)) = P(f){P[®. + 2, + @, f) —
P(f)L(z,.f)L(f, x,) + 2P(x,)} + 0 (using (1.4), (1.7), and noting by
linearized (0.6) that P(x,, f)* = L, %) L(f, f)+ L(x,, f)L(f, 2,) — L(z,,
{w. ) = L(w,, x){L(f, f) — 2I} + L(x,, £)L(f, x,), yet P(x, f)* lives on
Jo(f) where L(f, f)=2I, so P(x, f)=E,P(x, f)=P(f)L(x, £)L(f, x,)
on J) = P(fUP(P(x.)f, f) — P(f)L(x,, £IL(f, x,) + 2P(x,)} (by (vi)) =
P(f)P(ws, LS, 2) — L(f, f)P(w) — P(P(f)2, £IL(f, 2.) + 2P(w,)} (by
(0.7), (0.2)) =0 since L(f, f) = 2I on J(f) and P(f)x, = %, = 2, by
a.7. O
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COROLLARY 1.8. Twripotents e, f are compatible iff

f=fi+ fi + fo for elements f,eJ(e) N J(f) .

This will be the case under any of the following conditions:
(1) e, f are orthogonal: P(e)f = P(f)e = L(e,e)f = L(f, fle =0
(ii) e, f are collinear: Pe)f = P(f)e=0, L(e, e)f=f, L(f, fle=e
(iii) ome lies im a single Peirce space of the other, fcJ(e) for
1=2,1,0
(iv) f=fo+ fi + fo for orthogonal tripotents f; < Je).

Proof. If e, f are compatible the Peirce i-component f; = E(e)f
of f remains in J,(f); conversely, if f,eJ(e) N J(f) then {eef} =
2f, + fieJy(f). (i)-(iii) are special cases: (i) feJy(e), (ii) f € Ji(e), (iii)
fede). For (iv): {ffe} = 3 {f.fie} (by orthogonality f; L f;) < Jx(e)
by (1.3). ]

REMARK 1.9. The condition that an element f=a,+ a, + a,
(a; € Ji(e)) be tripotent is
a, = P(a,)a, + P(a)a, + {a,a,a.}
(1.10) a, = P(a)a, + {aoaqaz} + {aoaoal} + {a2aza1}
a, = Play)a, + P(a)a. + {a,a.a.) -

For such an f, the compatibility condition {fe}ecJ,(e) reduces by
(1.3) to

1.11) {a,a.e} + {a.a.¢} = 0
in which case

{a.0.0.} = {aoaoa.} = —{a,a,a.}
{a'la/la0} = _2P(a1)a2: {a’lala’?} = "2P<a1)ao

so the tripotence condition becomes

a, = P(a,)a, — P(a,)a,
(1.12) a, = P(a)a, — {aa,a.}
Ay = P(ao)ao - P(al)a’Z .

From this it is easy to see that if a,= 0 then f= a, a, is the
direct sum of two orthogonal tripotents, similarly if a, = 0 or a, =
0. Thus a compatible f is not too far away from being a direct
sum of orthogonal tripotents f; € J,(e). ]

If J is a Jordan algebra instead of a triple system and e, f are
idempotents (& = e, f* = f) instead of merely tripotents, then com-
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patibility reduces to

1.13. CoMPATIBILITY CRITERION FOR IDEMPOTENTS. Two idem-
potents e, f in a Jordan algebra are compatidble iff f= f,D f, for
orthogonal idempotents f; e J(e).

Proof. The condition that f = a, + a, + a, is idempotent is

a, = a; + Eye)a:
(1.10) a, = (a, + a,)0a,
a, = a; + Ee)a;

and compatibility (1.11) becomes
(1.11") o, + a,0a, =0,

hence a, = 0 and a, = a a, = a} are orthogonal idempotents. Con-
versely, if f= f, + f, then e, f are compatible by (1.8iv). O

Note that the strong compatibility comdition that the operators
P(e), L(e, ¢) commute with P(f), L(f, f) (not merely P(e)® and P(f)?)
is not an intrinsic condition: it depends on how e, f are imbedded
in J. For example, ¢ = 1[12] and f = 1[13] are collinear and strongly
compatible in D[12]+4 D[13] = M, ,(D), but not in Hy(D) since P(e)P(f)
1[33] = P(e)1[11] = 1[22] == 0 = P(f)P(e)1[33].

The most important examples of compatible tripotents are either
orthogonal e L f (each lies in the 0-space of the other) or collinear
e T f (each lies in the 1-space of the other). In the remainder of
this section we investigate what collinearity amounts to in basic
examples of triple systems. Recall that tripotents e, f are collinear
if P(e)f = P(f)e =0, L(e, e)f = f, L(f, fle = e.

Let us note that in a Jordan algebra we cannot have collinear
idempotents; collinearity is strictly for tripotents.

PROPOSITION 1.14. Two nonzero idempotents in a Jordan algebra
can never be collinear.

Proof. If ecJ,(f) and feJ,(e) are idempotents then f={eef}=
eof =eof =eof’={efft =e, so f=P(f)f = P(f)e=0 and dually
e = 0. (Alternately, if feJ,(e) then f*edJdy(e)+ Ji(e), so the only
idempotent in Ji(e) is f = 0. Or yet again, the result follows directly
from (1.13).) O
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Collinearity in JT(A)

From any associative algebra A we can form a Jordan triple
system JT(A) on the linear space A by

P(x)y = xyx .

Here an element x is tripotent iff zxx = x, i.e., 2* = . In this case
e = «* is an ordinary associative idempotent, and ex = 2¢ = 2. Thus
2 lies in the unital Peirce subalgebra ede and is a “square root of
unity” therein. Examples of collinear tripotents are the matrix
units *=E, y=E,; or x=EK,+ E,,y = E,;+ E,. The latter
example is quite general, since we have

1.15. COLLINEARITY THEOREM FOR JT(A). Two nonzero tripotents

z,y im JT(A) are collinear iff there is a subalgebra B = My(®) of
Awithx=E,+ E, y=E,+ E,.

Proof. Tripotence means «° = 2z, ¥* = y and collinearity means
xyr =yxy = 0, oy + yo* =y, y’x + 2y* = 2. Then z*y’=(y—yx*)y=
Yy — x*y) = y*2*, so a direct calculation shows

en = TY' = Y& en= YT ey = Y’y
6 = YT en=2TY e;=20Y ey =YL ex=2aY ex=Yx

form a complete family of matrix units, hence yield an isomorphism
of My(®) into A by E,; — e;;, With © = e, + ey, ¥ = €3 + €. |

Collinearity in JT(J)

Generalizing the previous example, if J is any Jordan algebra
we obtain a Jordan triple system JT(J) by forgetting the squaring
operation:

Px)y = Ulx)y .

In a Jordan algebra we define an element x to be strictly tripotent
if it “strictly” satisfies the relation «* = «, i.e.,

(1.16) =2, = a".

Thus there is a distinction between x being strictly tripotent in the
Jordan algebra J as in (1.16), and merely being tripotent #*= z in
the Jordan triple system JT(J). The two notions coincide if J is
special or nondegenerate or if 1/2€®.

LEMMA 1.17. An element x is tripotent in JI(J) iff x lies in
J.(e) for am idempotent e with «* =z, x* =e. If J has no trivial
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elements 2z with 22 = V(z) = U(z) =0 (e.g., if 1/2€® or J is nmon-
degenerate), or if J 1is special, then «° = x implies x* = &%, so all
tripotents are strict.

Proof. Always 2* = 2z implies (2*)? = Ulx)s® = Ulx)x® = 2*, so
ot = ¢ is idempotent with U(e) = U(x)* = U(x)* so that Ule)x = x. If
J is special, JC A", then 2° = ¢ implies z2® = 2z, i.e., #* = 2> In
the general case there is no “left multiplication by 2«” (though
1/2 V(x) works when 1/2e€ ®@). The element z = x* — «* may not be
zero, but it has '

22 =2 — 20" =2o(x* —2) =0
V)=Vt —a)= V(E,2*—2)=10
UR)=Ux* —2)= Ux)U* —x)=0.

Thus when J has no such trivial 2 we have 2 =0 and z* = 2*. [

REMARK 1.18. When 2* = 2 we do not always have z=0, as
the example J = @[x]/K shows for @[x] the polynomial ring in one
indeterminate and K is the Jordan ideal spanned by z — a? 22* —
2¢t, ' — ¢ for ¢+ = j mod 4. Here J is spanned by 1 = ¢, x, 2 with
=14z 20=0=12:=0, but z+0 if 1/2¢ Q. ™

An example of collinear tripotents in the Jordan matrix algebra
H,(D) of Hermitian » X n matrices over D is x = 1[12], y = 1[13].
This example is in fact typical.

1.19. COLLINEARITY THEOREM FOR J. Two mnonzero strict
tripotents x, y in a Jordan algebra J are collinear iff there is a
subalgebra B = Hy(®P) with x =1[12] = E, + E,, y =1[13] = E,, + E,.

Proof. The condition is clearly sufficient. To see it is necessary,
note that striect tripotence in means ¥* =2, 2 =24, ¥’ =y, ¥ =9
and collinearity means U(x)y = Uly)x =0, 2oy =y, yox =2.
From (0.8), (0.4), (0.6) we get U(x) = U({yyx}) = Ux)U(y)} +
UyyUx)+ V(y, ») Ux) V(y, v)= Ulx) Uy)* + Uly) Ulx) + V(y, y){— V(y,
y) + 2U(x)} = U)U(y) + U(y)U) + {—2U0(y) + V(y, y}Ux) =
Ulx)U(y): — Uy)*U(x)+ V(y, y)U(z) and similarly U(z)=— U(x) U(y)*+
UyyUlx) + U@)V(y, y), so [Ul®, Uy"] = U@)[Ulx), U] + [Ulx),
Uy U(x) = Ue){Ux) — V(y, »)Ux)} + {Ulx) V(y, ) — U@)}Ux)=0,
hence U(x*)y* — Uy®x* = U U1 — Uy U1 = 0 and U(ad)y*=
Uly»x* by (1.16). Then a calculation analogous to (1.15) shows

e,= Uy’ = Upx® e,= Uy e,= U’
Up =% U3 =Y U3 = LY
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forms a family of hermitian matrix units and thus yields an imbed-
ding H,(®)— J sending 1[i¢i] — e, 1[15] — us;- ]

Collinearity in JT(4, )

A more general method for obtaining Jordan triples 7' from
Jordan algebras J is through P(x)y = U(x)y* for some involution =
of J. However, there seems to be no relation between tripotents
xeJT(J, ) and idempotents in J (in general there don’t seem to be
idempotents in J). In the special case where J = A%, so Pa)y =
xy*x, an element x is tripotent iff x = a + b for a cede, bcecA(l—e)
satisfying aa™® + bb* = ¢ for a symmetric idempotent e (namely ¢ =
xx*, a = ze, b = (1 — ¢)). Collinearity becomes complicated,

1.20. COLLINEARITY THEOREM FOR JT(A4, *). Two nonzero tripo-
tents x,y in JT(A, =) are collinear iff there are two families e,
€y, €53 AN i1, [, fz 0f symmetric orthogonal idempotents and ele-
ments x;;, Yi; 1 e Af;; such that

T =T+ Loy Y= Yz + Ya

Tty = Yuslts = €1, Toullsi = €35, YuYs = g

T = Y51¥s = fur  To%io = fooy  YiiWis = Jfos

Proof. a—d = (2* g) imbeds JT(4, ) in JT(B) for B=M,(A),
so from (1.15) 2’ = e}y + ey, ¥ = ¢ls + ¢ for &= (g ”51‘1‘)(»5, i=1,2
it

ey = (gf"g) (i, k=1, 3), e, = (8" ]g) we get the result.

2. Compatible Peirce decomposition. A finite family & =
{e,, -+, e,} of tripotents is compatible if every pair e, e; is compa-
tible. Now any time we have a finite number of commuting decom-
positions I = Ey(e,) + E,(e;) + Ee;) relative to e, ---, ¢, we can put
them together to get a simultaneous decomposition

I= gl{E2(6i> + Ei(e:) + Eye)} = o ‘%m o Eq. ...

of the identity operator for
E(il,w',i,ﬂ) = Eil(el)Eiz(e?)' . Etn(en) .

By commutativity these E’s are supplementary projection operators,
and hence yield a compatible Peirce decomposition.

= D T

2.1) (igsesrig) €12,1,0)
Jiiomrim = By = Eyle) - B, (e,)] = J,(e) N+ N J; (e,)
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of the underlying space J. We retain the parentheses in the sub-
seripts to distinguish them from the standard orthogonal Peirce
decompositions.

WARNING. The labelling of mixed Peirce spaces IS NOT SYM-
METRIC IN THE INDICES 4, ---,1,; it depends on an ordering
e, -, ¢, of the compatible tripotents. It therefore differs from
the usual labelling in the case of two orthogonal tripotents. Indeed,
if ¢,, ¢, are orthogonal the above 9-term decomposition J=3; ;=210 Jus
reduces to a 6-term decomposition since

J(z?) = J(zl) = Juz) =0,
and

J = J(zm @Jm) @ J(oz) @ Juo) @ J(ou @ J(oo)
(J(tj) = Jy(e) N Jj(ez))

is usually written as
J = Jn@Jm@Jn@Jm@JZO@Jw (Ju = Jz(ei)1 th = in) .

It must be emphasized that such a 3"-term mixed Peirce decom-
position relative to compatible ¢, ---, ¢, is much more complicated
than the 1/2(n + 1)(» + 2)-term decomposition relative to orthogonal
e, ***, e, The usual philosophy behind Peirce decompositions is to
reduce the abstract product on J to more tractable products between
the individual Peirce spaces J;. In the case of mixed Peirce decom-
positions, however, the product rules for the Peirce spaces are
simply those of the individual tripotents (e.g., P(J s10)) 1220y < J 200y SiNCE
P(Jy(e)d(e)) I ey), P(Jy(e.)](ez) C Ji(es), P(J(es))does) C Joles) by (1.2)).
There is almost no relation between the Peirce decompositions since
there is almost no relation between the tripotents.

We seldom want to consider all terms of a mixed Peirce decom-
position individually. For many purposes a very crude decomposi-
tion J=J,PJ, D J, of J suffices, where J, is the part “covered”
by the e’s (the part where they act, in concert, like a unit), J; is
the part “half-covered” by the e;’s and J, is orthogonal to the ¢;’s.

2.2. PEIRCE DECOMPOSITION RELATIVE TO A COMPATIBLE FAMILY.
If & ={ey, : -+, e} 18 @ compatible family of tripotents in a Jordan
triple system J, there is a Peirce decomposition
J=J(&)D (&) D J(Z)
for
JI(&) = Zzu Je) = > J(i1,~--,2,---.i,,)
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J(&) = ZilJl(ei) N ;C! {Joe;) + Ji(e)} = ; ezu:'o,J“l""’l"""“’
J(&) = N Ide) = Tormor -
These spaces multiply according to the orthogonality rules

(Pl) P(JO)J2 = P(J2)Jo = {JonJ} = {JzJoJ} = P(JO)Jl =0,
(P2)  P(J)d, C Joy {JoJoi} © oy, (T o} Ty, T} I, + g
(P3) P(J)d, + P(Jo)d, + P(J ), + {Ji o} + IS} T, + J1

whereas we can only say P(J)J, and P(J)J, lie somewhere in J.

Proof. Clearly from (2.1), we have a direct decomposition of J
into the sum J;(Z") of those J,, ..., with (j = 2) at least one 2,
(7 =1) at least one 1 but no 2’s, (=0) only 0’s. The product
rules follow ‘“componentwise” from the rules (1.2) for the individual
e;’s. For orthogonality (P1), P(x)y = {xyz} = 0 if one of x, y is from
J(&) and the other from J(Z), note the element from J, lies in
at least one Jy(e;), and the element from J, lies in all Jy(e;) and
hence in particular in Jy(e;), where any product with adjacent terms
from J,(e;) and Jy(e;) vanishes by (1.2). Similarly, if x,zed, y€J,
then y lies in some J,(¢e;) and x and z both lie in Jy(e;) so that
P(x)y and {xyz} lie in P(Jy(e,))J.(e;) = 0.

For (P2), if =,y lie in J, they lie in all Jye) so that P(x)y
does too, i.e., lies in J,; if zeJ, then 2z lies in all J(e;) + Ji(e;) and
in at least one Jy(e¢;), so {xyz} lies in all {J(e;)Jo(e;)(Jole;) + Ji(e;))} <
Jo(e;) + Ji(e;) with at least one Ji(e), i.e., in J,. Finally, {wzx} in
{JJ.JJ}} or {JJ.J;} has no component in any J,(e;) since {JJJ (e)}
Jy(e;) + Ji(e;), and when weJ, there is no component in J, either
since {J2(e£)JJ} C Jye) + Ji(en).

For the relation (P3) we need only show the products P(x)y,
{xyz} have no components in J,. This is clear if an external factor
2 lies in J,: z lies in some Jy(¢,), and {J(e,)JJ} < Jy(e;) + Ji(e;). The
only product without such external factor from .J, is P(J,)J,; but
if z,zeJ, and yed, then z lies in some Jy(¢,), ¥ lies in Jy(e;), and 2
lies in Jy(e) + Ji(e)), so P(x)y € Jy(e,) and {wyz} e Jy(e;) + Ji(e;) has no
component in J,. ]

Covering families

We say a compatible family & = {e, ---, e,} covers J if J =
J(&) = 3, J,(e,) is the sum of the various Peirce spaces J,(e;) where
e; acts as unit. J is locally unital if it possesses a compatible
covering family &. For example, if J itself has a unit element ¢
(invertible tripotent) then & = {¢} is already a covering family.
We will see in §3 that semisimple systems are always locally unital.
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For certain purposes the covering family & serves just as well as
a unit element.

If J, are locally unital with covering families &, then their
direct sum J=J, @ --- @ J, is locally unital with covering family
& = U &, (note that e, fe & are compatible if they lie in the same
#,;, and orthogonal—hence compatible—if they lie in different &,
&;). If & covers J and f: J—J’ is a homomorphism, then by
(1.6) f(Z) = {f(e,)} remains compatible and covers f(J)cJ’, so the
image f(J) inherits local unitality. If KcJ is a subsystem con-
taining &, & serves as covering family for K as well. Thus we
have

PROPOSITION 2.3. A finite direct sum of locally unital Jordan
triple systems is again locally unital. Any homomorphic image of
a locally unital system is locally unital. Any subsystem containing
the covering family remains locally unital. O

As an example, a useful tool in breaking semisimple algebras
down into simple ones is the fact that a unital ideal is necessarily
a direct summand. The same holds for locally unital triples.

PrOPOSITION 2.4. If K 4s a locally unital ideal in a Jordan
triple system J, then K is a direct summand:

J=KBK =J,8J,.

Proof. Let & = {e, ---, ¢,} be a compatible family of tripotents
in K which covers K. Since ¢;€ K<|J and the Peirce projections
Ey(e;), E(e;) of (1.1) are multiplications by e; we must have J,(e;) =
Efe)J K for k= 2,1: Jye;,) + J(e;) C K. Summing over all 7, we
get J,(&) + J(&) K. On the other hand, since & covers K we
have K = K(Z)CJ(Z). Thus J(&) =0, J(&)= K, and J = KP
K’ for K' = J(%). The orthogonality relations (P1) of (2.1) show
this is a direct sum of triple systems, hence J’ is a complementary

ideal. 1

We remark that it is essential here that the family & be finite:
if J = A% is the unital Jordan algebra obtained from the associative
algebra A = @I + K (K the row-and-column-finite matrices in M. (®)),
then & ={F, E, ---} (F, the n X n unit matrix) is a compatible
cover of K, but K is not an ideal direct summand of J.

It is also essential that the family & be compatible, as the
following example shows. Let J = @e @ J,,D &f be a unital Jordan
algebra with unit 1 = ¢ + f, and J,, trivial (e.g., if JC M,(®) with
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e = ey, f= ep J,=De,). Then K = Q¢ + J,, is an ideal which is
not an ideal direct summand, yet it is covered (even spanned) by
e and all ¢; = e + 2, for some finite basis {z;} for J,. These ¢, are
idempotents but are not compatible with e: {eee;} = 2¢ + 2, ¢ Jy(e;)
since z, ¢ Jy(e,).

Orthogonal families

We may regard (2.2) as an analogue for triple systems of the
Peirce decomposition relative to a single idempotent &. If we have
mutually orthogonal families &, ---, &, (for example, if &, consists
of compatible tripotents from J; in a direct sum J=J, 8 :--- B J,)
we have the following triple system analogue of the Peirce decom-
position relative to orthogonal idempotents &y, « -+, &,

2.5. PEIRCE DECOMPOSITION RELATIVE TO ORTHOGONAL COMPATIBLE
FAMILIES. If &= &,U---U&, is the union of mutually orthogonal
compatible families &, ---, &, of tripotents, then the Jordan triple
system J has orthogonal Peirce decomposition

J = @ Jij (Jij = in = Jij(g))

057,750

Jor
Jiu = J(&) = J(&) N ]Q Jo(&;)
Jii = J(&) NI(&5) = J(&) N I(&) ﬂij J(&)
Jw = J(&)N g J(&;) ’
Jop = f:l J(&)

The Peirce decompositions relative to & and &, are recovered by

T(E) = 5T TE) = 3 Ty + Ty (&) = Ty

3=

JAE) = Ju, J(&) =y +.Z iy Jo &) =,k§: Sin
J+#1,0 I k#t

The Peirce spaces multiply according to the following rules. A
product is zero unless its indices can be linked or linked through 0,

P = {JiJud .} =0 if {kU}N{i, =0

(2.6) _
or {k, 1} 10,4, j, r, s}

where the only possible nonzero unlinked products are (for i, j, k, 0+)

(UL) PJ)dwCdy + Ji

2.7
@D (e PUNG T+ T+ T
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(U3) {JudwJu} CJy
(U4) {JJiJ it Cdu

while for distinct linked indices 1, 7, k, 1, 0

(P1) PWJu)u C iy + Jiy P(Jo)doe C Jo

(P2)  P(Ji)Ji © 45 + Jii + 05 P(Joi)o © I35 + I,
P(JiO)JiiCJii + Jto + JOO

(P3) P(J)di; Ty + Jij + i + Jjo, P(Ji)Jeo Ty + T + Joo

(P4) {Judid;5}cdy; (5= 0 allowed)

(P5) {Judud}cdy; (1= 0 allowed), {Jududw} CJu + Ji

P6) {JdiJi}Cdu + Ji; + I (5,1 = 0 allowed)

(2.8) @1 {Juwdiid it CIu (5 = 0 allowed), {Judi 50} © I + s

{Jodoid i} C Ju

P8) {Juid it © . (5 = 0 allowed), {Ji;d;;d 50t CJu + I35

P9 {Jiiisdit C Tins {Josdoior} © Tor + s (S i} St + Joges
{JijJijJio} cJy + Jij + Ju

(P10) {J.;d 5} CJu + Ji (4, B = 0 allowed),
{Joi i1} C o + Jo5 + o + i

(P11) {JJdu} <y (4, k = 0 allowed)
(i 1T ko) S Jio+ S g

Proof. & is compatible iff each &, is, since elements from
distinet &, &; are orthogonal and hence automatically compatible
by (1.8i). We order the tripotents in & so &, < &; if z<g if

& = ley, -+ -, €} then the indices in & ={ey,, * -, €1n) €, ) €op;- 3
€., - °, €, are arranged in successive ranges correspondmg to
gly Tty gn'

The simplifications in the orthogonal Peirce decomposition as
compared with (2.1) depend on the well known

LEMMA 2.9. If e, f are orthogonal tripotents in a Jordan
triple system then

(i) Je)TJI(f)

(ii) Ji(e) N Ji(f) S Jole + f)

(iii) f e, f, g are orthogonal then J(e) N J,(f) < J(g).

Proof. (i) Ju(e) = P(e)d C P(Jy(f)J CJi(f). (ii) Ple+f)=Ple, f)
on Jy(e) N Ji(f) since P(e) =0 on J(e) and P(f) =0 on J,(f), so
Ple + f) = Ple, f) = L(e, e)L(f, f) + L(e, £)L(f, e)—L(e, P(e, f)f) (by
linearized (0.6))=L(e, e)L(f, f) (as L(e, f)=0 by orthogonality ¢ f)=
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I on Ji(e) N Ji(f), and Ji(e) N J(f) T J(e + f). (iii) If gle, f then
gle + f, so then result follows from (i) and (ii). 0

Continuing the proof of (2.5), by (2.9i) an element in J(&))
automatically lies in Jy(&;) for all j # 1 by orthogonality of &, &;
80 Jy = J( &) C Nz Jo(L;) is the sum

Jii = Z J(O,"‘,021:1,"',?,"',imQO,"',O)

of those Peirce spaces in (2.1) having at least one 2 in the 4th
range of indices (hence 0’s in all other ranges).

By (2.9iii), an element cannot belong to three different J, (%),
so J\(&) = 25 (&) N N (JA(&5) + (&)} is the sum

J{o = ZJ(o,...,o;,;l,...,1‘...Yim;0,...,0) ('l:,,. =1 or 0)

of those Peirce spaces in (2.1) having no 2’s and at least one 1 in
the ith range but no 1’s (only 0’s) in the other ranges, together
with the sum

Jij = Z J(O,"':U?il"",1,"'y‘imi"'iilx“',ly'",.’l'p;ox"':o) ('l:,., j,,. =1 or O)

of those Peirce spaces in (2.1) having no 2’s but at least one 1 in
the 7th and jth ranges (hence 0’s in all other ranges).

Finally, J(2) = N J,(Z&,) is the Peirce space with no 2’s or 1’s,
only 0’s:

Joo = J(O,~“,0:---‘.0,-'-,0) .

This yields the decomposition J = @ J,; and the expression for
J(&) and J(&;) in terms of the J;;.

Most of the Peirce relations follow directly from (2.2) (P1-3) in
the form of the rules

(A) P(Ji,’i)Jkl c Z {JPler qe {7’; j, k; lr 0}}

{Jiidud mat © 224 pa |0, 9 €13, 7, K, 1, m, m, O}}
(B) P(J,,)J or {J,JJ} has no component in J,, for
e, upnir,st= o

C) {J(&)(E)J (L)} J(Z,) has precisely one index 7

D) PUI(ENI(ZL,) (L, + J(ZL,) has at least one index 7.
(We need only verify (A), (B). For (A) note that for all other
indices » we have J;;, Ji, J.. and their products falling in J(&,) =
Siparrdpee For (B), either »,s #0 or t,u#0. If ,s+0 and r=s
then J,, C J(&,), while if », s, 0 = then J,, is spanned by the vari-
ous Jy(e,,) N Ji(e,,) C Jyle,, + ¢,) by (2.9ii) and orthogonality &, L &,,
go in either case P(J,)J or {J,JJ} lies in J, + J, and has no com-
ponent in J,,cJ,. If ¢, u # 0 we similarly have J,, spanned by
various J,’s with J,,C J,, where P(J,)J and {JJJ} CJ, + J, have no



74 KEVIN MCCRIMMON

component in J,, CJ;.)

For (2.6), if {k, I}N{¢, 5} = @ then in particular 0 cannot appear
in both pairs. If 4, j % 0 then as above J,; is spanned by J,’s with
Ju C oy 80 P(J )y = {JiJud} = 0 follows from P(J,)J, = {JJJ}=0.
Similarly if &, I # 0 it follows from P(J,)J, = {J,J,J} = 0. If {k, }&Z
{3, 3, 7, s}, say k 1, j, r, s, then the product falls in P(J(Z)NJ( &)+
J(Z)} = 0 as long as k # 0, while if k¥ = 0 by the above we must
have 1e{i, j} N {r, s} so by symmetry we may take 1 = j = r, there-
fore the only possible unlinked products are (replacing s by k) of
the form

U P(J )y or {Jydoidpt (1, 5,k+0, k+1).

Starting from (A) in all instances, we analyze these unlinked
products. In the first, either ¢ = 7, in which case (Ul) results from
(B) (r = 1), or else 1 ## j, in which case (U2) results from (E) (r=1).
In the second product either 7 = j #* k, whence (U3) results from
©) (r=k), B) »r=1) and dually if ¢~ 5 ==Fk, or else 4, 7, k +,
whence (U4) results from (C) (» = ¢ and » = k).

To analyze the linked products (P1-11) we again start from (A)
in all instances. (P1) results from P(J,)J,CJ, and P(J,)J,CJ, + J;;
(P2) results from (D) (r = j) when j # 0; (P3) results from (B)
when 7 #= 0; (P4) results from (B) (r = s = 4; r» = s = 7); (P5) results
from (B) (» = s = 1) plus, when j # 0, (C) (» = j); (P6) results from
B) (r =s=1); (PT7) results from (B) (r =s=1; =3, s = k) plus,
when k # 0, (C) (r = k); (P8) results from (C) (r =1; = k) when
1,k + 0, and (C) (r = 1) when k= 0; (P9) results (see below) from
(C) (r =k) plus B) (r = 4,8 = j) when k # 0, and from (B) (r = 1,
s=17J; r=1, s=0) when k = 0; (P10) results (see below) from (D)
(r = 1) when 70, and from (B) (»r =0, s=j; r=Fk, s =0) when
2 =0; (P11) results from (C) (»r =14; »r=1) when [+ 0, and from
©) (r=1) plus (B) (r =k,s =0) when Il = 0.

To see there are no components of {J;;J;;J,;} in J; in (P9)
(i, 7+ 0 but k& = 0 allowed) we may assume x,;, ¥;;, 2, lie in Peirce
spaces Jy,,....,) of (2.1). Then y,;; lies in some Ji(e;) for e;e &,
whence z,; does too (otherwise it lies in Jy(e;) with z,, and {xyz}e
{(JoJio} = 0), in which case {xyz}e {J,J,J,} CJie;). This cannot be
true for all ¢;€ &; if there is to be a component in J;, so some
e;€ &; has y,;€Jy(e;), whence z,;¢€J,(¢;) (otherwise x,;¢€Jy(e;) and
again {xyz} € {JJJ,} C Ji(e;)). At the same time 2 lies in some J\(e;)
for e, € &,, whence y ¢ J,(e;) too (if yeJ,(e) then yeJye +¢}), ¢
Je; + e;) by (2.9ii), and {xyJ} = 0), whence in turn z,ecJe)
(otherwise zeJ,(e;) and {xyz}e{JJJ,} CJ(e;) would have no com-
ponent in J;). But then z, yeJye, + ¢;) by (2.9ii), zeJ(e; + e;),
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and again {xyz}e {J,J,J,} = 0 leads to a contradiction. Thus there
never is a component of {x,¥.;2,} in Jj.

To get rid of the components J,; J; in (P10) we may assume
by symmetry that j=0. If k=0 then J;, reduces to the term
Jyw, and if & # 0 our argument for J,; will apply to J,,. Thus we
may assume 4, j #* 0 and show there is no component in J;;. J;; is
spanned by the various Jy(e; + ¢;) where in (2.9ii) we saw P(e;,+e;)=
Ple,, ¢;)%, so J;; is spanned by elements {ex;;¢;}, where {{e.x;;¢;}¥1%u)} =
{ewii{eyinre) — ety e} +{2uleieyte;) (by (0.5))={ex:;{e;yewl}
(by (U), (2.6) for 14, j#0)={e;yile®:;2u}} — {{e;¥ne:}®ii20} + (¥ 025} 20i}
(by (0.5)) = {e{ynexis}zi} (by (U), (2.6) again)e{J(&;)JJ(& )} C
J(&;) involves no index j. O

Note that when & = &, consists of a single family, the decom-
position J = J, P J,, P J,, and Peirce rules (2.7), (2.8) reduce to
(2.2). It is easy to give examples where the unexpected Peirce
terms in (2.8) are nonzero if one of the spaces is of the form J,,
since this may include elements which “ought” to belong to J,;. For
example in (Ul), in a matrix algebra M, (@) if we take &, = {e,, €u}
then e, €Jy, e,€J;, (not J;!1), exed;; so {ene1ses) = €1 € Jiy N P(J ).
Similar arguments apply to all components except

(U2)" P(J;;)dy; in J;

®2) P(J;))J, in J; (1 =0 allowed)

(P8)  P(J)yy in Ju, Jug

P6)  {JiJ .} in Jy;

P9y {Jidi w0} in Jy.

It is not clear whether such terms can actually exist.

Whatever their defects and uncertainties, such decompositions

are intrinsic.

ProPOSITION 2.10. If & = &, U---U &K, is a union of mutually
orthogonal famsilies ‘é:, of compatible tripotents in J, them any
Jordan triple system J D J inherits the Peirce decomposition

J= @ JA&) for Ty(®)> I &) .
Any ideal K <] J imherits the decomposition
K= K,; for K;; = KNJ (&) .
Any bimodule M for J inherits a decomposition
M=@M,; for M;=MnNJ (&) (J=JO M)

though in general the M,; are mot sub J-bimodules. Such super-
systems, ideals, or bimodules inherit Peirce multiplication rules
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corresponding to (2.7), (2.8).

Proof. & = U &, remains compatible in any larger J since by
(1.6) compatibility of e, Sfisan element condition {eef }= P(f){eef} and
thus remains true in J. Thus & decomposes J with Ji, = E,;J)>
E,(J) = Ji;. Since these Peirce projections E;; = 3 E,..,, are
multiplication operators, they leave any ideal K invariant, so K =
SE(K) for E (K)=KnNEj J)=KndJ,; In particular, any
bimodule M is an ideal in the split null extension J=J@ M, so
M = @ Mﬁ. D

3. Grid decompositions. We wish to show that semisimple
Jordan triple systems are locally unital, indeed have very special
sorts of covering families. An orthogonal-collinear family is a
family & = {¢;} of tripotents such that any two e, ¢; are either
orthogonal or collinear; such families are automatically compatible
by (1.8i-ii).

If e, is collinear with both ¢, and e, in an orthogonal-collinear
family, e, Te, T ¢;, then either e, T e, are collinear (so we have a
“line” of tripotents e, — e, — e,), or else e, | ¢, are orthogonal (so we
have the start e,—e, of a quadrangle). This latter configuration is

€5
very important—it can always be completed to a true quadrangle

€, [}

34———‘63

where adjacent corners are collinear and opposite corners are ortho-
gonal.

Quadrangles

We define a quadrangle of tripotents to be an ordered quadruple
{e,, e, e, e} of tripotents such that

3.1 6 T €1y € L €ryoy {€:051:0010) = ;4 (indices mod 4) .

Examples are {Ezn Eis) EJS’ EJT} ln M q(D) (py q > 2)! { 5y Fih Fkl;
Fk:l} ln Sn(C) (n Z 4)’ and {Hza’ Hzl, Hklr Hka} !n H (D -DO’ .7) (n 2 4)'

QUADRANGLE LEMMA 3.2. e, Te, Te, e Le suffices for quad-
rangularity: this implies e, = {ee.e;} is a tripotent collinear with
e, e; and orthogonal to e, such that {ee.e} = e, {ee.e.} = e, {ee0,}=
e, 30 {e, e, e, e} s a quadrangle.
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Proof. One can verify this directly, or use the exchange
automorphisms of [7] taking e, e, ¢, ¢, — e, e, —e,, —e; and e, e,, e,
€y —> €y, 63, €, €. D

The Peirce decompositions (2.1) and (2.2) simplify in the ecase
of a quadrangle

3.3. Quadrangular Decomposition. If & = {e, e, ¢, e} s a
quadrangle of tripotents im J then the multiplication operators
satisfy

(i) Le;, en1) = Llesys, €4.) (tndices modulo 4)

(ii) P(ei)P(ei—l—l) = P(eir5)P(ess)

(iii) Lde,, e,) — Le,, €,) + L(e,, ¢;) — Le,, e,) = 0.

The Peirce decomposition relative to & is J = Jy(& )P J(Z) P J(&)
where

JA(Z) = {Jewn + o + T + Jomn} + {Jeon + Juo
+ S + o}

JU(E) = {Jwn + Ty + Joun} + {Jwen + Jonn}

J(&) = J o000

(iv)

while all other Peirce spaces vanish.

Proof. For (i) we have L(e;, e,,) = L(e;, {€i1:€i1€:}) = —L(e;ys,
{eireie:}) + L{eeiio€irs), €:) + L({eeieirs}, e:10) (by linearized (0.8)) = —
0 + 0 + L(e;s, €;4,) by quadrangularity. For (iii) we have L(e, e,)+
L(e,, e,) = Lie,, {ese.e.}) + Ly, {ese.6.}) = L{eseses}, ) + L({eeie}, ;) (by
linearized (0.3)) = L(e, ¢,) + L(e,, €). For (i) Pleys)Ple;y,) =
P({e.eirieiro)Plei,) = {P(e)P(eis)P(eiss) + Pleu)P(ei)Ple) + Lie,
i) P(eir)Leisoy €:13) — Pleiss, Ple)Pleii1)eis)} P(eiss) (by (0.8) and (i)
above) = P(e,)P(eiy1)P(€::)” (BY eiys L €i, Pleisi)eis. = 0, and (0.2) with
P(e;0)eirs=0)=P(e){P({:11€:4:0:12}) + P(eis1, Plesro)irr) — Pleiye) Plesy,) —
L(e;128i10)P(eir) L(eiss, €:0)}  (by  (0.8)) = P(e,)P(es) (by e L ey,
Pe.io)ec, = 0, Ple){eize:d} C Pe){J(e)JJT} = 0).

To obtain (iv) we show the 81 terms J; = Jy 4,4, for Ie
{2, 1, 0}* of the Peirce decomposition (2.1) relative to & = {e,, e, e, ¢,}
reduce to the above 14 terms, i.e., the other 67 vanish. Frome, |
e, e, L e, and (2.91) we see that whenever I has an index ¢, = 2
then J, vanishes unless 4,,, = 0. This gets rid of 45 spaces

J(mj) = J(Zilj) = J(u’zj) = J(im) = J(izil) = ijz) =0.

Applying (iii) to Ji 4.4, shows (i, — 4, + 4 — 9)] = 0 there, so
J, =0 unless %, — %, + 4, — %, =0 on J,. This gets rid of 16 more
spaces
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J (2001) = J, @00 = | (0210) = Juzn = Juom = Joeny = ooy = J ooy = 0

Jwon = Jaun = Juuy = o = Juon = oo = Joonn = Sy = 0«
If we assume 1/2€ @ we could deduce the remaining 6 spaces vanish,
S ooony = J o200y = J 000y = J(oxol) = Juyun =0,

but in general we must give a different argument for these: they
vanish because of Jy(e,) N Ji(€irs) C Jo(€ir1) N Jles4s), Which follows
since for e;, we have L(e;,,, €;1,)C=1{e;1.{€i1:0:1:8:}2} = — {1 {e: .20}, s} +
{ei1€i0{ei s} +{eiriedes sei o} =0 by linearized (0.3) and x 1 e;, €4,
and also P(e;1,)x = P({;1:¢:15¢:})% ={P(e:.2) P(es15) P(e;) + Ple;) Ple;15) Ples1) +
Ple, ec1)Pleiss)Ple, ei1s) — P(P(eiss)eiss, Pleeis)}x = 0 using linearized
(0.1) plus 2 1 e, e;,, plus e, 1 ¢;,,,. Thus the 67 spaces vanish, leav-
ing the 14 spaces of (iv). O

Another way to see the last 6 spaces vanish is to note that for
collinear tripotents, certain of the Peirce spaces are tied to each
other.

LeMMA 3.4. The Peirce spaces relative to collinear tripotents
eT f satisfy

(i) J(zo) = P(e)J(zz), J(oz) = P(f)J(zz), J(zz) = P(e)J(zo) = P(f)J(oz)

(ii) Juy = Lle, o, Jony = L(f, e)J uo)-

Proof. (i) P(e)*=1I on J,(e) shows via (1.2) that J,,=P(e)P(e)d o, C
P(e)d o0 T Janyy 80 o0y = P(e)J 2y, J 02y = P(€)' sy =P(€)J o0y, and dually
for f.

(ii) Juy = {eed} = {(Lle, f)f)edw} © Lle, f){fedun} — {fe(Lle,
DI} + {F (LS, e)e)d ) (by (0.5))CLle, f)Jun S oy (since {JfJ )
(SN} = 0), so Jy, = Lie, f)J o, and dually. |

These are special instances of a global exchange automorphism
[7] which exchanges ¢ and f. From these we see J ) =P(e,) 200y =
0, Juun < Lley, ) oy N Jo(en) C{Ji(e)J(e)J} N Ji(e,) = 0, and similarly
for the other spaces.

Rigidity
Two orthogonal tripotents e L f are automatically 7igid in the
sense that not merely e, but the whole Peirce space J,(¢) governed
by e, falls in J(f) by (2.91). Unfortunately the analogous property
need not hold for collinear tripotents. We say collinear e, f are

rigid or rigidly imbedded in J if the whole Peirce space governed
by e falls in J,(f)
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(3.5) Ji(e) i (f) (e T f rigid) .

In view of the Peirce decomposition Jy(e) = J iz D Jio1y D J o0y in (1.2),
rigidity means Jy(e) = J ), i.€., Jo = Jup = 0. From (3.4i) it suffices
if either J, or J., vanishes, since they are interchanged by P(e).
In particular

(3.6) eT f are rigid iff J,, =0,

which shows rigidity is symmetric. The condition J, = 0 is that
e and f do not “overlap” in J, in the sense that they have no
common elements in their 2-spaces.

An important situation where rigidity is automatic is the case
of division tripotents, those e for which J,(e) is a division system
all of whose nonzero elements x are inmwvertible in the sense that
P(x) is an invertible operator. Such tripotents are found in abundance
in systems satisfying the d.c.c. on inner ideals. Slightly more
general are the domain tripotents, for which Jy(e) is a domain in
the sense that all nonzero x are cancellable, i.e., P(x) is injective;
this is equivalent to the condition that there be no zero divisors
P(x)y = 0 for , y # 0. At the other extreme from this case where
Jy(e) is small is that where J,(e) is large, namely the case of a full
(maximal) tripotent e with Jy(e) = 0.

PROPOSITION 3.7. If e is a full or domain tripotent, then any
tripotent f collinear with e is automatically rigidly imbedded with e,

Ji(e) i (f) .

If e is a domain tripotent them a monzero tripotemt f in J,(e) will
be collinear with e as soon as P(f)e = 0.

Proof. Suppose ¢ and f are collinear. If ¢ is full then Jy(e)=0
implies J,, = 0 and e, f are rigid. Suppose now that e is a domain
tripotent, J,(¢) is a domain. But P(J,))e C P(J(f))J.(f) = 0 by (1.2),
80 J = 0 and hence ¢, f are rigid.

Now suppose e is a domain tripotent and f a tripotent in J(e)
with P(f)e = 0. Then collinearity reduces to {ffe} =e. Writing
e=1x,+x, + 2, for Peirce elements x; € J,(f), we have x, = P(f)%e =0
by hypothesis, so x, = {ffe} € {J.(e)J (e)J,(e)} C Jy(e), so also z, = e —
2, € J(e), yet P(x)x, = 0 by (1.2). Since J,(¢) is a domain this forces
one of x,, x, to vanish. Here x, = 0 would imply e = z, is orthogonal
to f, so instead it must be x, that vanishes, and ¢ = 2, = {ffe}. [

Rigidity is not an intrinsic property of the tripotents, it depends
very much on the imbedding. For example, ¢ = E,, and f= E,, are
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rigidly imbedded in M,.(D), but not in the larger system H,(D, D,,
J) (imbedded via e = H,, f= H,), since here e¢ and f overlap on
J(zz) = Do[ll]-

Grids

An orthogonal-collinear family &£ = {e;} is rigidly imbedded or
rigid in J if each collinear pair e, e¢; is rigid (we observed that
orthogonal pairs are always rigid). Thus for each 4, j either Jy(e;)C
Jo(e;) or Jy(e;)  Ji(e;), according as e; L e; or e; T ¢;.

A grid is a rigid orthogonal-collinear family & which covers J
and is closed under multiplication, in the sense that for distinct
e, [, 9€& {efg} is zero or (up to sign) a tripotent in &. (By ortho-
gonal-collinearity, P(e)f and {eef} automatically vanish or fall in &.)
J is basically determined by £.

GRID DECOMPOSITION 3.8. If the Jordan triple system J posses-
ses o grid & then it has a grid decomposition
J=@J,

Jfor
J, = Ju(e) = Ji(e) N {fDGJl(f)} N {QeJo(g)} .

These subspaces multiply according to
(G1) PJ)],cd,, PWJ),=0
(G2) {JJJjcdrifeTfand {JJ,Ji}=04if el f
G8) {(JJIJ}=0if el for fLlgor eTg (ie., unless eTfT
gle)
(G4) {(JJJcd, for eTfTgLle, where {e f, g, h} forms a
quadrangle with h = {efg}.
J decomposes into a direct sum J=J B --- BJ, of ideals J, =
J&:) = Dlecs, Jo(e) corresponding to the commected components &, of
& under the equivalence relation generated by collinearity (e ~ f
ifeTe,T---Te, TS for some e;).

Proof. The description of J,(¢) follows from orthogonal-colline-
arity and rigidity. Thus the spaces J, are independent, and by the
covering property J = J,(&) they span J, so J =@ J,. The rela-
tions (G1), (G2) hold whenever e, f are rigidly imbedded, by the
Peirce relations (1.2). For (G3) note that if ¢ T f T g the product
vanishes when e T g by rigid collinearity, {J,J;J,} CJy(e) N J(f)N
J,(g)=0 by (3.6). For (G4), recall by (3.2) that {e,f,g,h} does form a quad-
rangle whenever eT f Tgle. By rigidity, {J.JJ,}C{J.(h)J(h)J(h)}C
J(h) = J,, where we have used the closure property of a grid to
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insure that +h belongs to & (note J_, = J,).

From these rules it is clear that the J,(&,) are orthogonal
ideals summing to J (if ¢;€ &, ¢;€ &; distinet then ¢; L ¢;, and a
product is always connected to both outer factors). 1

This allows us to concentrate on “connected” grids. To a con-
nected grid we can attach a coordinate algebra D: we choose a
tripotent e€ & and introduce D = J,e). By connectivity all J,(f)
are isomorphic to J,(¢) by a chain of exchange automorphisms T',, ...,
[7], so J is a direct sum of copies of D. The exact description of
J reduces to the selection of canonical identification or symmetry
maps J,(f) — Jy(e), and the description of the collinear product (G2)
and quadrangular products (G4). We will carry out this program
for rectangular, symplectic, and hermitian grids in a subsequent

paper [7].
Examples

We now want to exhibit grids for all semisimple triple systems.

ExAmPLE 3.9 (Unital grid). If J is a unital Jordan algebra,
then J has as covering grid & = {1}. O

ExaMPLE 8.10 (1 x 2 Grid). The triple system M, (D) of 1 x 2
matrices (as in (0.9)) over an alternative algebra with involution
has covering grid & = {E,, E,} consisting of two rigidly collinear
tripotents E,, E,. Here J,(E,;) = DE,;, J(E,;) = DE,, J(&;) =0,
(k=3 —17). 1

ExaMpPLE 3.11 (Rectangular grid). The triple system M, (D) of
rectangular matrices (as in (0.9)) has as covering grid the rectangular
grid & = {E,;} of all rectangular matrix units F,;. Here J,(E,;) =
DE;;, J(E;;) = Yu.; DEy + 3. DEy;, J(Ei;) = Sizin:; DEy, so Ei,
E,, are rigidly collinear if they share a common row index 7 =1Fk
or column index j =, and are orthogonal otherwise. O

ExAmMPLE 3.12 (Symplectic grid). The symplectic triple system
S,(C) of alternating matrices (as in (0.10)) has symplectic grid & =
{F;|i < j} consisting of the symplectic matrix units F;(F;, = —F;,
F,;,=0). Here Jy(Fy;)= CFy, J(Fi;)= 34.i; CFy + CFy;, J(F;) =
Siiige CFy so Fy F, are rigidly collinear if they share a common
index and are orthogonal otherwise. d

ExAMpLE 3.13 (Hermitian grid). The triple system H,(D, D,, J)
of m X n hermitian matrices (as in (0.12)) is an isotope of a Jordan
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algebra, hence trivially has unital covering grid & = {1}. It also
has an orthogonal-collinear cover & = {H,;|i < j}, of all off-diagonal
hermitian matrix units H,; = H;; (¢ < j); here J,(H,;) = D] +
D['LJ] + Do[jj]: Jl(Hii) = Dlksini D[ik] + D[kj], Jo(Hij) = Dlker,; Dolkk] +
S iz DIk, so Hy, H,, are collinear if they share a common index
and are orthogonal otherwise. However this compatible family is
not a grid in the sense of (38.8) since the collinear tripotents are not
rigidly collinear: Jy(H,;) N J,(Hy) = Dy[ii] # 0. The hermitian grid
& = {H;|1 < j} IS NOT A GRID; it remains compatible, though no
longer orthogonal-collinear. 1

ExAMPLE 3.14. If J = 0" with P(x)y = 2{x, y)x — <{x, Sz)Sy for
{x, ¥ = 3, xy; the standard inner product on @* and S the reflec-
tion in some subspace of @", then J contains invertible tripotents
e where {¢,¢) =1 and Se = * ¢, hence J is an isotope of a Jordan
algebra and has covering grid & = {e}. O

The remaining basic examples of Jordan triples are really Jordan
pairs. For our present purposes we prefer to consider Jordan pairs
as polarized triple systems, consisting of a Jordan triple system J
together with a decomposition J = J,@ J_ such that P(J)J. =
{JJJ} =0 (¢ = £1). Thus the only nontrivial products have the
form P(J.)J_. or {J.J_.J.} falling in J.. Then J = (J,, J_) consists
of a pair of spaces acting on each other like Jordan triple systems,
but with trivial action on themselves.

The polarized triples we need to consider have the special form
J = J@ J obtained by pairing two copies of the same Jordan triple
system J, = J_ = J with P(z.)y_. = P(x)y. J is isomorphic to J®Q
for 2 = 0, @ &_, with P(z)y = P(x)y* where the exchange involution
P y)*=yPx is induced from the exchange involution on L.
The map ¢ —% =2 @z is an isomorphism of J with H(J, x). If
& = {e;} is a compatible or orthogonal-collinear cover or grid for J,
then & = {¢.} is a family of the same sort which covers J since

jk(gi) = Jk(ez) D Jile).

ExAMPLE 3.15. If J=J&J results from doubling a Jordan
triple system J having grid &, then the Jordan pair or polarized

Jordan triple system J has grid &. O

Since all semisimple Jordan pairs with d.c.c. on all inner ideals
are direct sums of simple systems of the above types 3.9-3.15 ([2,
p. 138-139]), as are the semisimple Jordan triple systems finite-
dimensional over an algebraically closed field of characteristic +#2
([3, Th. 10.3, p. 63]), and grids are inherited by direct sums, we
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have

GRID THEOREM 3.16. Any semisimple Jordan pair with d.c.c.
on inner ideals, or semisimple Jordan tripvle system finite-dimen-
sional over an algebraically closed field of characteristic #2, has a
covering grid of tripotents which are pairwise orthogonal or col-
linear. N

It will be important when we try to lift tripotents, that the
covers are not merely compatible, but actually orthogonal-collinear.

4, Peirce reflections. A Peirce decomposition J = J,P J, P J,
relative to a tripotent ¢ determines an important automorphism of
period 2, the Peirce reflection S,(x, + ®, + x,) = @, — T, + %o,

4.1) S,=E,— E, + E, = B(e, 2¢) with S, = (—1)* on Ji(e) .

These generate a normal subgroup of the group of automorphism,
TS, T = S;,, and play an important role in many applications.

We wish to try the same thing for an arbitrary compatible
family of tripotents & in place of e. The Peirce reflection S.
relative to this family is defined to be

(4.2) Sy = E(&) — E(&) + E(Z), so s, = (—1)" on J(&)

for the Peirce projections E, (%) of J on J,(&) in (2.2). These are
normalized by automorphisms,

ngT—I = ST(?/") .

However, in general the invertible linear operator S. of period 2
is not expressible as a B operator and is not an automorphism of
the triple system. The conditions for it to be an automorphism are

LEMMA 4.3. The Peirce reflection Sy relative to a compatible
family & = {e, -+, e,} of tripotents is an automorphism of J if
the Peirce decomposition J = J, D J, B J, (for J; = J(&)) satisfies
the Peirce rules

(i) PW)J,cd,, P(J).CJ,

(ii) P, + ) Cdy + Joy, P(J)d, T,

(iii) {(JJ(L: + )}, + I,

(iv) (S}

Proof. The map S=I1I@ —I on J . P J_ is an automorphism
if the subspaces J.(¢ = +) satisfy (x) P(J.)J.CJ,, (x*) P(J)J_.CJ_,,
(x*x) L(J,, J)J_.CcJ_.. By (4.2), for J, = J, + J, and J_ = J, these
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reduce to (x) = (i), (x*) = (ii), and (x**) = (iii) 4+ @iv). O

These conditions are necessary if J has no 2-torsion. On the
other hand, if J has characteristic 2 then all Peirce reflections
reduce to the identity map, which is automatically an automorphism.

We verify these conditions for two special situations which are
important in constructing symmetries of matrix systems [7].

PROPOSITION 4.4. The Peirce reflection S, will be an automor-
phism in either of the two following cases: if & = {e, f} for two
collinear tripotents e, f with Peirce decomposition

Jz(g)) = Jm)@ J(m, Jl(g) = J(u) &) Juo) EB J(om Jo(g) = J(oo)

satisfying the conditions

(23) J(zz) = J(zo) = J(oz) =0

(2b) P(J e = PJuw)f=0

(2e) L(J o), Jun)e = L(J yopy Ju))f = 0
or if & = {e, f, k} for three pairwise collinear tripotents e, f, k with
Peirce decomposition

(&) = J(zzo) © J(zoz) & J(ozz) @ J(zu) © S D J(uz): Jo(g) = J o0
Jl(g) = J(uo) @ J(1,01) 69 J(ou)
satisfying

(Ba) Juj = Jiyo = Jujn =0 unless i=j=1or i=2, j=0,or
i=0,j=2
(3b) J(m) = J(uw) = J(oxo) = Jmm) = 0.

Proof. Consider first the case & = {e, f, k} of three tripotents.
To verify the conditions (i)-(iv) of (4.3,) by symmetry in e, f, & and
the fact that always L(J,, J;)Jx CJg, it suffices to verify (i'-ii’)
P(J w0) and P(J oy, Juon) and P(J ) and P(J g0y, J 02y + S iy + J any) and
P(J o)) and P(J 1y, J ) leave J, and J;+J, invariant, (iii") L(J w0, Juom)
leaves J, + J, invariant, (V') L(Jeu, Juan) and L(J ey, Jen) and
L(J 0y, Joy) leave J, invariant (noting that L(J .y, Jwm) = 0 ete.
when corresponding adjacent indices are 2,0). By the individual
Peirce relations, the only nontrivial products in (i’-ii’") are P(J 110 )(J w10y +
J(220) + J(ooo)) CJ(IIO) + J(ooo) + J(zzo), P(J w109, Juon)({J(uo) + Juon + J(ou)} +
{Jew + Jow}) C{Tuwn + Jun + Jem} + {Jwn + Jen} where Jo = 0 by
(33), P(J(zzo))J(mx c J(zzo), P(J(zzo), J(ozz))J(m) C J(m), P(J(m)y J(uz))(J(zu) +
J(121)) c J(121) +J(211), P(J(zzo); J(zu))(J(zzo) +J(zu)) c J(zu) +J(220)7 P(J(zu))('](zu) +
J(zzo) + J(202)) C J(zu) + J(zoz) + J(zzo); P(J(211)7 J(uz))({J(m)} + {J(zoz) + J(zu) +
J oy + Jum)) Tl em} + (T + Jun + Jem + J e} Where J = 0 by
(3a); in (iii") are L(J 0, J aon)( @ + Jaim + J eom) C S aooy + S oy + S
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in (iv") are L(J e, J @) o + Jwn) ST + oo Where o =0
again by (32), L(J ), J eon)d woy C J oy LT o0y S 1) wony C S ey Thus
the conditions of 4.3 are met, and S, is an automorphism in this
case.

Now consider the case & = {e, f}. We first note that conditions
(2a)-(2c) imply the further conditions

(2a’-b") P ulJen + Jan + Jun + Ty + o} = 0

(2¢") P ooy S uy + S} = 0

(2e")  L(J a1y Juor + J o) oy = 0

(2" L(J aoyy Jun) uy = LI oy J 1)) oy = 0.
Indeed, (2a-b) imply (2a’-b") since P(2,,)y ;= {€uy .S} 1} —{(P(@) )Y .S}
(by (0.4)) = 0 by (2b) and {x,,y;,f}€dJ:_;>, = 0 for j =2 or 0 by (2a).
(2¢) implies (2¢') since {XWYuRo} = {Tw{¥uRof}f} (by linearized (0.8)
acting on xy) = {x,w.f} = 0 by (2¢), and {x,yu2u} = {rwefleyural} (by
linearized (0.3) on z,,)) = 0 by (2¢), (2¢) implies (2¢”) since {2 Ywlu} =
{zo{¥w f}f} (by linearized (0.3)) = 0 by (2¢), and (2¢) implies (2¢”')
since {®,Wu2.} = {®w¥uf}f2e} (by linearized (0.3)) = 0 by (2¢) again.
Thus we may employ all these.

To verify (4.3(1)-(iv)) for & = {e, f} it suffices by symmetry in
e, f and L(J;, J)Jx CJgx to verify (i'-ii") P(Juy), P(J o)y P a0y Jun)s
P(J yory o)y P(J o)y P(J a1y, Juny) all leave J, and J, + J, invariant,
(ii") L(J uy, Jun) and L(J ), J o) and L(J yo, J o) leave J, + J, in-
variant, (iv') L(J ., Ju,) leaves J, invariant. By the Peirce relations
(1.2) the only nontrivial products in (i'-ii") are P(J))({J ey + J oo +
Joo} + T + Juo + Jo}) {0 + 0 + 0} + {Juy, + 0 + 0} by (22" — b'),
PJ )T + Jun) TO + Juyy by (22), P(Juy, Jun){J ey + T} +
{J(ll) + J(IO) + J(Ol)}) c {J(OO) + J(Zl)} + {J(IO) + J(ll) + 0} by (za’)7 P(J(IO)?
J(Ol))(J(OO) + {J(ll) +J(10) +J(01)}) c 0+ {0 + J(Ol) + J(IO)} by (zcl)’ P(J(zl))J(ZI) c
Iy P ey Ju){J ey + Jun} + {J ) C{dun + Jen} +0 by (2a); in
(iii") are L(Juy, Juo)Jen + Jwn) =0+ 0 by (2a) and (2¢”), L(J u0,
Ju)J ey + Jun) = 0 by (2a) and (2¢"), L(J wo, J o) s CJ en; and in
(iv") are L(J wy, Jun)( Ty + Jon) 0 + J oy by (2a). Thus (2a-c) suffice
to yield 4.3(i)-(iv), and S, is an automorphism in this case too. []

RECTANGULAR REFLECTION PROPOSITION 4.5. The Peirce reflec-
tion S5 relative to collinear tripotents e, f will be an antomor-
phism of J if either e, f imbeds in a quadrangle le, f, g, h} such that

(1) Jun = J(uu) =0,
or if e, f satisfy

(ii) Jeo = Jun = 0.

Proof. In case (i), from J . = 0 we get by 3.4(i) that
J aoey = Pe)d 200y S 020y = P€) 330015 J 0022y = Ples)Pe,)] (2200)
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also vanish and the quadrangular Peirce decomposition (3.3iv) reduces
to

J = J(zlol) + J(lZlO) + J(IOIZ) + J(Ol?l) + J(lool) + J(Ollo) + J(IIOO)
+ Jouny + J oo -

Relative to e, f this says

J(zz) = J(zo) = J(oz) =0, J(zx) = J(2101) Juz) = J(mo)
J(IO) = J(1012) + J(lOOl)} J(Ol) = J(O]Zl) + J(OllO) ?
Juy = J(uoon J(om = J(oon) + J(oooo) .

Thus P(J y))e CP(Jy(h)J,(h) =0, {J o une} ={J wend wome} +{J ound ame} <
{J {DJo@)e} +{J wund wood eion} S0 + J 4y =0 by hypothesis, and dually
for f. Thus condition (2(a-c)) of (4.4) met, and S, s is an auto-
morphism. ,

In case (ii) J ) = 0 implies J ) = J o = 0 by 3.4(1), and J;,=0
implies J, = 0 by (38.4ii). Since P(J.,)eCJ o, =0 and P(J ) f C
Juy = 0, the conditions 2a-c are met in this case too, and again
Si..r; is an automorphism. O

SYMPLECTIC REFLECTION PROPOSITION 4.6. The Peirce reflection
Sie.ru relative to pairwise collinear tripotents e, f, k will be an
automorphism of J if e, f imbeds in a quadrangle {e, f, g, h} so k
remains collinear with g, h, and

(1) J o CJo(k)

(i) Joun C Jo(k)

(iii) I CJok) + Jo(E).

Proof. These 3 conditions imply the quadrangular Peirce decom-
position (8.8iv) has

( i’ ) J (2200 T J woz2) & Ju(k), J 200y T J (02200 © J. 2(’0)

(ii")  Jwun + Jawn SIok), I ooy + S aoon S Ji(k)

(i) Juuy CI(E) + Jo(k)

AV Jem + Juan + Juoe + J oz S Ji(k)

(V") J oo C Jo(k).
Indeed, from (i) we see J g = P() 200y (bY (3.4(1)) < P(J (k) y(k)
Jy(k) and similarly J gum CJy(k), While J g =P(9)d gun C P(J () Jo(k) <
Jo(k), yielding (i’). Also (3.4ii) shows that (i) implies J 100 ={f9 o1y} <
{Ji () ()T ()} < T oK), J onsr N Jo(k) = {f (T ooy N Ji(E))} = 0 and  simi-
larly Juo N Jo(k) = 0, while J e N Jo(k) = PENS eun N Jo(k)} (using
3.4(1)) = 0 and J 4o N J3(k) = 0 automatically, s0 J o + J ooy < J1(k)
by compatibility, yielding (ii’). By (8.4i) we have Jyo, N Jyk) =
Pe){d on N Jo(k)} and by (3.4ii)) J won N Jo(k) = {f Be(J ooy N Ji(E))} = 0O
by ("), 80 J oy CJi(k) by compatibility, similarly for J.,, while
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using g, h in place of ¢, f yields J o N Jolk) = J ooy N Jo(k) = 0 so0
J oy ©Ji(k) and dually for J..,. Finally (v) follows from (3.3iv),
since by Lemma 3.2 {e, k, g} imbeds in a quadrangle. From these
we immediately obtain the condition (8a), (8b) for {e, f, k}: for (3b)
Sy = {Jam + Jaow} 0 (k) = 0 by (iii), (i), Jan = {Jaom + Jwen}D
Jok) = 0 by (@iv'), (i), dually Jp = 0, and J ey = {Jwe + Jwun +
Jom} N Jik) =0 by (1), (i), (v); for (8a) Juy = J oy N J3(k) = 0
unless 7 =10 by ("), Juj = Jam NJ;(k) =0 unless =1 by (iv),
J ooy = Sy NJi(k) =0 unless j =2 by (i'), dually for J.,, and
J(ooz) =+ J(m) =+ J(om = {J(oooo) =+ J(oou) + J(1001) + Juom + J(ouo) + J(om)} N
(k) =0 by (v), Gi"), @{i"), @v’), (i), (iv’). Thus the hypotheses
(3a-b) of (4.4) are met, and S, is an automorphism. O

ExavmpLE 4.7. If e=FHE,, f= E, in M, (D) then the Peirce
reflection S, s is an automorphism X — (I, — 2E)X(I, — 2F") for
E=E,eM,D), F=EFE, + E,e M(D). If p,q = 2 then e, f imbeds
in a quadrangle {e, f, g, h} = {E,, K, E,, E,} as in (4.5). |

ExavpLE 4.8. If ¢e=F,, f= F; in S,(C) for » = 4, then S,
is not an automorphism if characteristic C == 2: F,, and F,, lie in
J(&), F, in Jy(&), yvet {F, F,,F,} = —F, lies in J,(&¢). Note con-
dition (4.4(2c)) is violated here: {F.,F,F,} = —F, is nonzero in
{JonJ ane}- The trouble is that CF), really acts like part of J,—if
we take &' = {e, f, k} = {F, Fs, Fy} then S, ;. is an automorphism
X -, —-28)X(I, —2E) for E=E, + E, + E,, in M,C). Here
e, f imbeds in the quadrangle f{e, f, g, h} = {F, Fs, Fls, Fp} collinear
with F,, as in (4.6.) O

5. Lifting compatible families. In considering Wedderburn
splittings and the second cohomology group H?*J, M), it is impor-
tant to be able to lift compatible covering families from J to any
null extension J (i.e., lifting from J = J/M to J modulo a null or
trivial ideal M). In this section we consider the general problem
of lifting a compatible family modulo a nil ideal.

In lifting a family the crucial step is always lifting a single
tripotent.

LIFTING LEMMA 5.1 (1, p. 108). If J5J is a projection of
Jordan algebras whose kernel is nil, then for each idempotent €€ J
and each preimage xe€J (w(x) =€), there is a preimage e = p(x)
which 18 a polynomial in the given x and 1s an idempotent in J.
The same holds if J, J are Jordan pairs. ,

If J and J are Jordan triple systems, then tripotents € can be
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lifted modulo nil ideals to tripotents ¢ = p(x) as long as 1/2€ .

Proof. In the polynomial ring @[t] we have
(5.2)  f(g@®) e U(f()Q[t] for f(t) =t — t*, g(t) = 3" — 2t*.

Thus by induction f(g™(t)) e U(f(¢)*" )®[t] and the iterates g (x),
g9 @), -+, (¥ (@) = g(=), g (x) = g(g"™ (x))) converge to an idem-
potent e = g™ (x): since w(f(x)) =n(x —2*) =¢ — &> =0 we have
f(x)eKer z nil by hypothesis, f(x)*""" = 0 for suitably large =, hence
Fl@™(x)) =0 and e= g™ (x) has e — ¢*= f(¢) = 0. Thus ¢ is an
idempotent. It still covers & since n(g™(x)) = ¢'"”(n(x)) = g™ (e) =&
since g(¢) = 8¢ — 2¢ = €. The Jordan algebra proof can be used to
derive the result for pairs ([2, p. 109]).

In triple systems only odd powers are defined, hence we can
only consider odd polynomials. When 1/2 is available we have

(6.3) f(g®) e P(f(1))Pouclt] for f(t) =¢ — ¢, g(t) = 5/2¢° — 3/21.

As before, after a finite number of steps the iterates g™ (x) con-
verge to a tripotent, ¢, ¢ — & = f(e) = 0.

If we do not wish to wait for a sequence to converge, we can
produce the idempotent lift directly. In the Jordan algebra case,
suppose x — «* is nilpotent of index ». We claim

(5.4)  9(&) — gt e Ut — t*))9[t] for g¢) = {1 — (1 — &))" .

Indeed, ¢ divides g since 1 — (1 — £)* vanishes at ¢ = 0 and hence
is divisible by ¢, similarly 1 —g=1— (1 — u)* (for u = 1 — &)™)
is divisible by w, thus g—g¢*=g(1—g) is divisible by t*u=¢"1—t)"=
{t — t®}**. Therefore ¢ = g(x) has e — e¢’c U((x — #*)")J = 0, where
g(0) =0 and g(1) =1 guarantee g(x) makes sense in (the perhaps
nonunital) J and #(g(z)) = g(é) = g(1)e = e.

The Jordan triple case is more complicated. We have

9(t)—g(t)° € P((t—t*)")Doua[t] for g(t)=t*""'h(s)k(s)" where s=1—
t* and k(s)=1+s+---+s" " and h(s) =1+ 1/2s + 3/8s°+---
+a, s te Z[1/2][s] is the first 2n terms of (1 —s)™* =
k(s)2.

(5.5)

Clearly ¢ is an odd polynomial since s is even. g — ¢* = g(1 — g?
is divisible by {¢(1—¢*} since g is divisible by ¢ and 1 — ¢* =1 —
)™+ h(s)’k(s)™ is divisible by (1 — ¢*)* = s* because modulo s it is
=1 — (1 — 8)2"“]6(8)16(8)2" =1 (1 . 8)2n+1(1 g e sZn—l)Zn-H. =1—
(1 — sy = 0. Once more the specialization @..[t] — J via t** —
2+ yields e = g(x) with e — ¢ = 0, 7(e) = g(¢) = g(1)e = e. O
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EXAMPLE 5.6. It is somewhat surprising that 1/2 is necessary
for lifting in triple systems, but one can give a “generic”’ example
of a non-liftable tripotent. One can calculate that there is no
integral polynomial g(t) € Z..[t] such that g(1) = 1 and g(¢) — g(¢) is
divisible by (¢ — #)®. Thus if B=2Z.,[t]=tZ][s] (s=¢t*), L=(1—8)B=
1 — 8)Z[s] = (t — t)Z[s], K = (t — t*)*’B = s(1 — s)’B then J = B/K—
B/L = J has nil (even trivial) kernel L/K, yet & =T is a tripotent
in J with no covering tripotent ¢ = g(¢) in J. Thus lifting is not
always possible in triple systems. O

REMARK 5.7. The lift ¢ obtained from an arbitrary & may not
be the “correct” one. For example, if e is the “correct” cover of
¢ and we choose a preimage r=¢ — w=-¢ — (w, + w, + w,) for
w, e KN J(e) (for trivial K = Ker n: J — J), then one easily computes

e = e — (w, + w, + n(w, + wy)) (n >0, wS = Ple)w, K*=0).

Therefore p(x) = >, & =(3] a,)(e— (W, +w,)) — AWy — X, 0 (Ws+ W5)
covers ¢ iff > a, = 1. In general f=¢ — (2, + 2, + 2,) is tripotent
for zze KNnJdie) iff 2,=2,+ 2 =0 (P(f) — f= 2 — Ple)z — {eez} =
(%, + 2, + 2) — (&, + 22, + 2¥) by triviality of K), so p(x)= f is a
tripotent cover of ¢ iff

Sia,=1, aw, =0, {1 + 23 na,} (w, + w)=0.
In this case
f=e— (w, + 1/2(w, — wy)) .

Thus in general we cannot get rid of the components w, and w,, so
no lift fe @[x] is the correct lift e. O

Once we can lift 2 single idempotent, we can without further
ado lift a countable family of orthogonal idempotents. It is not
clear that we can always lift compatible families. We will be able
to lift certain families intermediate between orthogonal and compa-
tible. A linearly-ordered family {e,} of tripotents is hierarchical if
@ > a implies ¢; lies in one of the Peirce spaces Ji(e,). An impor-
tant special case is that of an orthogonal family (e; e Jy(e,)) or a
collinear family (¢; € J\(e,)), or more generally an orthogonal-collinear
family where any two ¢, ¢; are either orthogonal or collinear. It
is easy to see by (1.8(iii)) that any hierarchical family is compatible.

COUNTABLE LIFTING PROPOSITION 5.8. If J-5J is a projection
of Jordan algebras with nil kernel, then any finite or countable
hierarchical family e, &, --- of idempotents in J can be lifted to



90 KEVIN MCCRIMMON

a hierarchical family e, e, --- of idempotents in J. If J and J
are unital and &, ---, &, are supplementary orthogonal idempotents
in J, then e, -, e, are supplementary orthogonal idempotents in
J. The same results hold if J, J are Jordan pairs.

If J 5T is a projection of Jordan tripvle systems with mil
kernel, and if 1/2€ @, tiien any finite or countable hierarchical
family of tripotents in J can be lifted to a hierarchical family
wn J.

Proof. Assume {¢;} is a hierarchical family of tripotents (resp.
idempotents in the Jordan algebra case). By the Lifting Lemma
5.1 we can under our hypotheses lift &, to e, which is by itself
trivially hierarchical. Assume we have lifted {¢, ---, €,} to hier-
archical {e;,, ---, e¢,}. Then these are in particular compatible, and
determine a Peirce decomposition J = @ J,,...;,y as in (2.1), with
T wpesig)) = J1ayeeniyy Telative to &, ---, &,. Now by hierarchy e,,,
lies in some single Peirce space J,,(¢;) relative to each ¢, ---¢,, so
5n+1€=7<e1.-~,s,.>- Then we can choose a preimage z of ¢,,, lying in
J (e As a result the tripotent (resp. idempotent) e,.,=p(x) given
by (5.1) automatically stays inside the sub-triple system J,...., =
N J.(e:), so e,., automatically lies in J,(e;) for each 1 =1,2, ---, n,
and hence {e, e, ---, ¢,, ¢,,,} is again hierarchical.

If &, ---, &, are supplementary in J then in J the idempotent
¢e=e + -+ + e, (using orthogonality!) covers 1, n(e)=¢&, + -+
g,=1. Thus 7(1 —e¢)=0, 1 —e¢cKerx is nil, yet at the same
time 1 — ¢ is idempotent. Thus 1 —e=0and e, + --- +¢,=e=1
are supplementary in J. |

.....

OPEN QUESTION 5.9. Can we lift arbitrary compatible families?
Can strongly compatible families, at least, be lifted to compatible
families? Can orthogonal-collinear families be lifted to orthogonal-
collinear families? (By the above, orthogonal-collinear {¢;} can be
lifted to hierarchical {e}, so orthogonality &, L &, = &,¢cJy(&,) is
inherited by e,, ¢;, but collinearity ¢, T ¢; is transformed only into
es € Ji(e,), which does not quite imply collinearity e,cJ,(e;) as

well). d

We can always lift two collinear tripotents modulo nilpotent
ideals.

. PROPOSITION 5.10. If J-5>J has Penico-solvable kernel, and
1/2€ @, then any two collinear tripotents €, f in J can be lifted to
collinear tripotents e, f in J.
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Proof. Penico solvability means S™(K) =0 for some n, where
S(K) = P(J)P(K)J + P(K)J + L(K, K)J, SY(K) = S(S"(K)). By
induction it suffices to consider the case S(K) = 0 of a trivial ideal.
By 5.8 we can left ¢ to ¢, then feJ(e) to feJy(e). Since f covers
f, P(f)e = L(f, f)e — & = 0 implies P(f)e = z,, L(f, fle — e = z, lie
in K, so the result follows from

LEMMA 5.11. If 1/2€® and e, f are tripotents which are col-
linear modulo a trivial ideal K and have

fedile), P(fle = z, L(f, fle —e =2, (z:€ KN Jye)

then f' = f— 1/22, for z, = {efz} is a tripotent collinear with e and
congruent modulo K to f. If g is a tripotent with ecJ(g), f<cJ;ig)
then f' remains in Ji(g).

Proof. Clearly f’ is congruent modulo z,€ K to f, it remains
in Jy(e) since z,€J,(e), and if ecJ(g), feJ;(g) then by (1.2) 2, =
Lie, f)P(flecJ;(g) so f' remains in J;(g). We must show (i) f’ is
tripotent, (ii) e€ J,(f'), i.e., {f'fe} = e.

By triviality of K we have f* = f°* — 1/2{P(f) + L(f, )}z2.=f—
1/2(P(f) + L(f, )}L(e, )z, = f — 1/22 = f’ since {P(f)+ L(f, )}Lde,
Nz, = {P(P(fle, ) + Lie, HIL(f, f) + L{fe}, ) — Lle, {fffD}z (by
0.2), (0.5)) = {P(20, f) + Lle, /IL(S, f) + Lle + 2, f) — 2L(e, )}z, =
L(e, fY{L(S, f)—1I}z, (by triviality of K)=L(e, f)z, because L(f, f)z,=
L(f, H)P(fle = P(P(f)f, fle (by (0.2)) = 2P(f)e = 22,. Thus [’ is
tripotent.

Again by triviality, {f'f’e} = {ffe} — 1/2[{fz.e} + {z.fe}] = e+ 2, —
1/2{P(e, f) + Le, f)}L(e, f)z, = e since {P(e, f) + L(e, f)}L(e, f)z =
{L(e, e)P(f) + P(e, P(f)e)+ L(P(e)f, f)+2P(e)P(f)}z (by (0.7), (0.6)) =
{L(e, e)P(f) + P(e, 2;) + 0 + 2P(e)P(f)}2, = {L(e, €) + 2P(e)}P(f)z, (by
triviality of K again) = 2{I + P(e)}P(f)% (as L(e, ¢) = 2I on Jy(e)) =
2{P(f)P(e) + P(e)P(f)le = 2{P({ffe}) + P(P(f)e, e) — L(f, f)P(e)L(f,
e (by (0.8)) = 2{P(e + z,) + 2P(f)* — L(f, f)'le (always P(e){a,be}=
{b.a.e}) = 2{(e + 22,) + 2P(f)’e — L(f, f)e — 2P(f)%} (by triviality and
(0.6)) = 2{(e + 22,) — (e + 2,)} = 22,. Thus eeJ,(f') is collinear with
S Ood

However, it is not clear that this argument can be extended
to show a whole collinear (or orthogonal-collinear) family can be
lifted to one of the same type.

REMARK 5.12. The fact that collinear €, f have been lifted to
tripotents e, f with feJ,(e) does not imply collinearity e e J,(f),
hence the modification f’ in the above proof is really necessary.
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For example, take e = 1[12], f = 1[18] + €6[23] in J = H,(L2[e]) for
2 having nontrivial involution with 6 € 2 having trace £(0) = 1, &=
0, K=¢J. Then fedye) but z, = P(f)e = t(¢0)1[33] = ¢[33], 2, =
{ffe} — e = t(ed™)[11] + t(e0)[22] = €(1[11] + 1[22]). The modification
obtained above is f' = f— 1/2{efz} = f — 1/2¢[23] = 1[13] + en[23]
for =0 —1/2 with ¢() =0. We never recover the “correct”
modification f — €6[23] = 1[13] this way. |

EXAMPLE 5.18. Strongly compatible families cannot in general
be lifted to strongly compatible families. For example, take J =
e, + Re,, + e, + eRe;, + €020, + e,y C M, (2) (the 2X 3 matrices over
2 = O[¢], =0, via P(x)y = xy‘x). Note here J has the form J =
Jolews) + edi(ess) + Jiles) in M, (2), and hence automatically is a sub-
triple system. Then K = eM,,(2) is a trivial ideal, ¢ = ¢, and
F=fPfo=e,P e, are strongly compatible in J/K = {De,,+ De,,} B
{@e,:}, but no covers ¢ = e, + er, f = e, + €, + €8 are strongly com-
patible since P(f)L(e, e)ce,; = ey, L(e, ¢)P(f)ee; = 0. |

6. Wedderburn Splittings and H®. Another case where the
Peirce orthogonality relations (2.5) suffice is in showing that
Wedderburn splittings of direct sums can be reduced to splittings
of the individual factors. Recall [6, p. 286] that H?*J, M) denotes

the equivalence classes of null extensions 0 > M —>J 2 J — 0 of J by
a bimodule M. H?*J, M) =0 iff all extensions split, in the sense
that there exist homomorphisms o: J — J with 7oo = 1,, i.e., there
exists a subsystem B = ¢(J)cJ isomorphic under 7 to J.

ProproOSITION 6.1. If J,, ---, J, are locally unital Jordan triple
systems with the property that all null extensions are split, then
the direct sum J, B --- B J, has the same property. In terms of
cohomology, if H*J,, M;) = 0 for all J,-bimodules M; then H*(J, M)=
0 for all bimodules M for the direct sum J.

Proof. By induction it suffices to prove this for the case of
two summands,Nrecalling by (2.3) that direct sums remain locally
unital. So let J be a null extension of J= K& L by a bimodule

M:0—->M—J5J—0 is exact. Then 0 — M — K5 K—0 is exact
for K = n7(K) > '(0) = M, and by our hypothesis on K this splits:
there is a subsystem Bc K cJ isomorphic under = to K. If & is
a covering family for the locally unital K, we lift it via the given
isomorphism to a covering family for B. Regarded as a compatible
(non-covering) family in J, it determines by (2.2) a Peirce decompo-
sition J = J(&) P J(&) P J(&) with Bc J,(&). Furthermore, since
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J =n(J) =) + n(J) + 7(Jy) = J(&) D J(Z) B J(&) where L is
orthogonal to & c K, we must have =z(J,) = Ju(&¥) = K, n(J,) =
J(E)=L,n(J) = J(Z)=0. Thus 0— M(&)— J(&) 5L—0 is
exact, hence by our hypothesis on L it too splits: there is a sub-
system C < J(%) isomorphic under = to L. Because we have lifted
B into J,(&) and C into J, (%), they are automatically orthogonal
by Peirce orthogonality (2.2) (P1), and the sum B & C cJ is automat-
ically a direct sum of triple systems isomorphic under = to K HE
L=J. Thus J=(B®C)P M is split. O

The argument actually shows it suffices if all but one of the
J; is locally unital, since we never needed a cover for L.

The crucial step in the above proof was lifting a cover & of
K to a compatible family in J, which depended on knowing H* K, M)=
0. To get a relation between H*J, M) and the H*J;,, M,) in general,
we need to be able to lift the tripotents which form the local unit
of J;,. This is why we studied the problem of lifting compatible
families modulo trivial ideals in (5.8.)

Using hierarchical families we can reduce extensions of direct
sums to extensions of the pieces. We recall how the equivalence
classes of extensions of a Jordan triple system by a bimodule M
gains its algebraic structure H?*J, M). If J is projective as @-
module, each extension has the form J = o(J) @ M for some linear
lifting ¢ of J into J, and is associated with a cocycle or factor set
peC¥J, M)

p(a; b) = P(a(a))o(b) — a(P(a)b)

which measures how far ¢ is from being a triple system lift. The
equivalence class of p modulo coboundaries dg € B(J, M)

og(a; b) = p(a)g(d) + Ua, b)g(a) — g(P(a)b)

for a linear map g:J — M is independent of the particular ¢, and
the extensions of J by M are in 1—1 correspondence with H*(J, M)=
C¥J, M)/|B*J, M). Thus H*J, M) becomes a module over @ [6, p.
287-288].

6.2. DIRECT DECOMPOSITION THEOREM FOR H*. IfJ=J @---BJ,
18 projective as module over @ (containing 1/2), and as triple system
18 a direct sum of locally unital Jordan trivle systems J, possessing
hierarchical covers &, them for any J-bimodule M

HJ, M) = D H*(J,, M)
Jor M; = M,; + M, + My, = ;s M(&;). The same holds for Jordan
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pairs over arbitrary .

Proof. We begin by imbedding @ H*(J;,, M) in H*J, M). We
have a linear map @C*J;, M,) — C*J, M) sending Pp; to p = Pp:
defined as p(a; b) = 3 oi(a;; b;). This induces PC*(J;, M;) — H*(J, M).
To characterize the kernel of this map, assume p = dg € B*(J, M)
for some linear g:J — M. Using the Peirce decomposition M=@PM;,
of (2.10) relative to the &;, we can write the restriction of g to
J; as g = @Pg;, for g;: J,— M;,. Applying the Peirce projection
E;,+ E,+ E, of M on M, to the relation p(a;;b;) = dg(a;;b,) for
a;, b, ed, = J,, we get by the Peirce relations p,a;; b)) = p(a:)(g: +
9:0)(0:) + Uas, b:)(gis + 9:0):) — (9is + Gio + Go)(P(ai)bs), so that o, =dg;
for ¢. = gu + 9w + 9ot J; — M,. Conversely, if each p, = dg; is a
coboundary of g;:J;,— M, then p = @p, is the coboundary p = dg
of g = Pgs:J — M. Indeed, d9(a; b)=p(a)g(d)+Ua, b)g(a)—g(P(a)dh)=
{32 p(a:) + p(ay, a)} 3 950;) + X Uay, bi)gj(bj) — 3. 9{(P(a;)b;) (by or-
thogonality and local unitality of J;, J; in J) = 3, {p(a.)g:(b;) + Ua,,
b.)gi(a;)—g(P(a:)b,)} (since g,(b;) € M; C M(&), a;,b,ed;CJ(&,) for
1 # J) = >,00{a; b) = > piai; b)) = p(a; b). Thus the kernel of the
natural map PC*J, M;) — H*J, M) is precisely PB*(J;, M;), so we
have an induced imbedding of @H*(J,;, M;)={BC*J,, M)}/{PB*J;, M,)}
in H*J, M).

To see this map is surjective, i.e., that each cocycle p is equi-
valent to one @Pp; supported on the distinet J; with no “mixed
terms”, we need to choose a linear lift ¢ taking J; into orthogonal
pieces. So consider an arbitrary extension J of J by M; since the

kernel M of J-5J is trivial, we can by (5.8) lift the family & =
& U---u gn(gi the given hierarchical covers of J,) to a hierar-
chical famlly #= U---UZ, In the associated Peirce decom-
position (2.5) of J we have J, T D Joe ® Jw=;xi Jo(?/f) a subtriple
system, projecting onto zn(J;) = N J(Z;) = J; with kernel M;, and
at the same time J; projects onto zn(J,) = J, = J, with kernel M,
(but J.; is merely a subspace, not a subsystem), while J, = M,
Jo = M, since T(Jw) = I =0, 7(Jy) = Jp = 0. Since J is projective
over @, so are its direct summands J;, hence the exact sequence
0— M, — J,; — J,— 0 splits as @-module: J,; = g,(J;) P M,, for some
linear lift o,. Then ja; = jzi & jto © joo ={04(J,) D M} D M, D My, =
:(J) ® M,, and we have a linear lift ¢ = @o, so that J = o(J)PM
with the crucial property that o¢(J;) cJ,; is automatically orthogonal
to o(J;)CJ;;. (To obtain this it is not enough to split 0 — M, —
J, — J. —0; we must work with the linear space J, instead of the
subsystem J;.) The cocycle p associated to J via this lift ¢ is of
the desired form @p, since p(a;b) = P(o(a))o(d) — o(P(a)h) =
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P(50(a)) 3 0,(b) ~ 5 0P(ap) (by J; L J; in J)=3{P(a(a)ai(b)—
o(Pla)b)} (by JuLJj; in J)= 3 0(a;b) for o;J;,— M; (note
o.(J)cJ,, but J, is not in general a subsystem so the products
P(o(a,))o(b;) fall in the enveloping subsystem J; = Ji + Ji + Joo
hence o; falls in J, N M = M,). This shows @HJ,, M,) — H*(J, M)
is surjective, hence a linear isomorphism. ]

Note that the theorem does not depend on the hierarchical
nature of the covers &;, merely on the fact that they can be lifted
to compatible covers &,. The same result will apply to any class
of liftable compatible covers.

Since the semisimple finite-dimensional Jordan triples over an
algebraically closed field of characteristic 2, or semisimple Jordan
pairs with d.c.c. over an arbitrary ring of scalars, are direct sums
of simple locally unital systems with hierarchical covers (even
orthogonal-collinear covers, by (3.16)) we have as an immediate
corollary

6.3. DIRECT DECOMPOSITION THEOREM FOR H: IfJ=JH---BJ,
ts the decomposition into simple ideals of a semisimple Jordan pair
with d.c.c. (or a semisimple Jordan triple system finite-dimensional
over an algebraically closed field of characteristic #2), then for any
J-bimodule M we have

H*J, M) = ©H*J;, M,)
for M; = M, + M, + My = .« My(&;) for compatible covers &; of
J;. O

This reduces the cohomology of semisimple systems to that of
simple systems. Next we turn to a similar program for H(J, M).

7. Derivations and structure algebras. Recall that the struc-
tural transformations Strl (J, M) of a Jordan triple system in a
bimodule M consist of all pairs (S, S*) of linear transformations
J — M such that

(7.1) S(P(x)y) + P@)S*(y) = L(z, ¥)S(x)

and similarly for S* with S** = S. The derivations Der (J, M) of
J in M are those (D, D*) e Strl (J, M) with D*= —D, i.e., those linear
transformations D satisfying

(7.2) D(P(x)y) = {D(x)yx} + P(x)D(y) .

(If S* is uniquely determined by S, e.g., if J has unit, then it is
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usual to simply refer to S itself as a structural transformation.)
The inner structural S are those in the subspace Instrl (J, M) =
L(M, J) + L(J, M) (note by (0.4)L(z, m)* = L(m, x)), the inner deri-
vations are Inder (J, M) = Instrl (J, M) N Der (J, M). This includes
all sums of standard imner derivations D(x, m) = L(x, m) — L(m, x),
and coincides with these if 1/2€®.

Even for unital Jordan algebras, the derivations from a direct
sum are not simply the sums of derivations defined on the individual
pieces: the derivations on the pieces can be glued together to form
a global derivation only if they are suitably orthogonal.

PROPOSITION 7.8. A linear transformation S:J — M of a Jordan
triple J =J,B---BJ, into a bimodule M is structural iff it has
the form S=8,P---P S, for Si:J;— M satisfying the following
relations (for x;, ¥, 2, €J; with 1, j, k=#):

(i) each S; 1s structural: S;eStrl(J;, M)

(ii) P:)S5(y;) = {x.y,;S:(x:)}

(i) {2S}(ynz = {wy;Su(=e)} + {#:y:S:(2.)}

(iv) {xS*(yaed = {24:8:(z)} + {2:9:5:(x,)}-

S s o derivation iff each S; is a derivation, S = —S8S,.

Proof. The linear maps S:J — M are precisely the S = PS;
for S;:J; — M. The structural condition (7.1) for all z, y € J reduces
to the following conditions on the spanning elements x;, ¥, 2, € J;:

(7.1a) S:(P(x)y;) + P(@)SF(y;) = {wy:Si(w:)}
(7.1b)  S({ww;z)) + (€57 Wz} = (w982} + {29:8:(2)}

for all 4, j, k with ¢ = k. Condition (7.1a) for j = ¢ is the condition
(i) that S; be structural on J;; for j 4, by orthogonality J; L J;
the condition (7.1a) reduces to (ii). Similarly, by orthogonality (7.1b)
reduces to (iii) if 7 % 4, k and to (iv) if 5 = 3. O

To see that the requisite orthogonality is not automatic, consider
the following

EXAMPLE 7.4. Let J= 0z @B 0w be a trivial Jordan triple
system and M= ®m@ On the bimodule determined by p(z) =
oz, w) = U(z, 2) = Ww, w) = l(w, 2) =0, Iz wym=mn, Iz wn=20.
Here the split null extension J = J@ M may be imbedded in M, (®@)*
via 2 — ey, W — ey, M — ey, W — ¢,. Then {zwM}=0n + 0, so {J.J,;M}
is not necessarily 0 in a direct sum J=J, B---@ J,.

Thus orthogonality of J,, J; in J does not imply orthogonality
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in all extensions: the orthogonality may be “fortuitous”. However,
there is an important case when orthogonality is “intrinsiec”, persist-
ing in all extensions:

{JiJ,-f} =0 if J, J; are orthogonal and one is locally unital
since for example if J; has cover &, then J, = J,(&;) and by or-
thogonality J;  J(&,), so that {J.J,J} c{J.J,J} = 0 by (2.2) (P1).

Thus if all J; are locally unital, (7.3ii-iv) reduce to (ii) P(x;)S¥(y;)=
0, (iii) {2.S}(y;)z:} = 0, plus

(7.5) {:S¥ (W2} = {2y:Su(=0)}

Now in Lemma 7.7 we will see S¥(y;)e M(&;) + M,(%;), while
x;, 2, €J(&;), so (ii), (iii) follow automatically from Peirce ortho-
gonality P(J,)M, = P(J,)M, = 0, and (7.8ii-iv) reduce to (7.5). How-
ever, (7.5) is not vacuous (both sides identically zero).

ExXAMPLE 7.6. Let J = Q¢, B @¢, be the locally unital Jordan
triple system (even unital Jordan algebra) with cover & = {e, e,},
and let M = @m be the bimodule determined by n(e;) = l(e;, ¢;) = 0,
(e, €;) = Ues, €) = I. Here J = J@ M imbeds in Hy(®) via e, — e,
m — e, + ey, and M = M,(e,) = M,(e,). Then the map S(ae, + Be,) =
(e + B)m is structural with S* = S, and D(ae, + Be,) = (@ — B)m is
a derivation, but S(J))=S(J,)=D(J,)=D(J,)=®m so that {J,J,S(J,)} =
{J:,S*(J)J;} = d@m +# 0, and condition (7.5) is not vacuous. Note that
S = L(m, e, + e,) and D = L(m, e,) — L(e,, m) are inner. ]

This example suggests that the troublesome nonorthogonality
of the pieces S, ---, S, in (7.3) is due to an inner multiplication.
This is in fact the case: once we remove a suitable inner multipli-
cation, the remaining pieces S; map J; into M,(Z,) and hence are
automatically orthogonal. We need to investigate in more detail
the interaction of a structural S with a family of tripotents. First
we consider a single tripotent.

STRAIGHTENING LEMMA 7.7. If SeStrl(J, M) and ecdJ is tri-
potent, then

(1) S(e) = my, + m;, S*(e) = m& + mf for mF = m, =P(e)m,,

mq, mi € M(e)

(ii) S(Jx(e)) € Mye) + M(e) with E.S(w,) = {mex.}

(iil) S(J(e)) © Mye) + M,(e) with E,S(x,) = {em}x,}

(iv) S(Ji(e)) C My(e)+ M,(e)+ Mye) with E,S(x,)={em}x,}, E,S(x,)=

{m.ex.}.

If J 1is locally unital with cover & then

S(J) C M(&) + M(&) .
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S and S* preserve Peirce spaces relative to e, S(J(e)) + S*(Ji(e)) C
Me) for k=2,1,0, if S and S* preserve e in the sense that S(e),
S*(e) e Mye). Always S’ = S — {L(m,, e) + L(e, m,)} has S'(e), S"*(e) €
Mye) so we can modify S by an inner multiplication to obtain S’
preserving Peirce spaces. If S= D is a derivation then L(m,, e)+
L(e, m,) = D(m,, e) 18 a standard inner derivation.

Proof. If S(e) = m= > m;, S*E)=m*=3m! for m,; mfe
M(e) then by (7.1) S(P(e)e) + P(e)S*(e) = {S(e)ee} implies (m, + m,+
m,) + mF = 2m, + m,, hence m, =0 and mF = m,. Dually m& =10
and m, = m¥. This establishes (i).

For z;eJ,(e) the linearized varsion of (7.1) yields S({eex.}) +
{eS*(e)x;} = {x.eS(e)} + {eeS(x,)}, hence S(x;) + {emiz;} + {emlz} =
{meex} + {mex} + Le, e)S(x.). But L(e, m}) = L(m, e)=L(ms,, ) by
(i) and (1.4) so

{L(e, e) — iI}S(x;) = {emx;} — {mex;} .

For 4 =1 taking components in M, M, yields (iv). For =0 we
get the expression (iii) for E,S(x,), where S(x,) € M, + M, since by
(7.1) P(e)S(x,) = —S*(P(e)x,) + {S*(e)xe} = 0. For 72 =2 we get the
expression (ii) for E.S(x,), where S(z,) € M,+ M, since by (7.1) S(x,)=
S(P(e)%,) = — P(e)S*(%,) + {S(e)%.e} € P(e)M + {eJM}.

If J is locally unital then S(J)=SC. Ji(e;)) C S My(e;)+ M (e;)=
M(Z) + M(Z) by (ii).

The expressions (ii)-(iv) show that once m, = m* = 0, i.e., S(e),
S*(e) lie in M,y(e), we will have S(J,(e)) © M,(e) and dually for S*.

If m, m® are not zero we must modify S. S’ has S'(e)=S(e)—
{L(m,, e) + L(e, mf)}e = (m, + m;) — (m, + 0) = m,, S*(e) = S*(e) —
{L(e, m,) + L(m}, e)}e = (m3 + m¥) — (0 + m}) = my lying in M,, so
S’ preserves Peirce spaces. If S= D was a derivation to begin
with, S* = — 8, then m* = —m,, so L(m, e) + L(e, m¥) = L(m,, ¢) —
L(e, m,) = D(m,, e) is a standard inner derivation. O

If we have a compatible family of tripotents, we can repeatedly
straighten out S to respect the whole family.

COMPATIBLE STRAIGHTENING LEMMA 7.8. If SeStrl(J, M) is a
structural transformation (resp. derivation) and & ={e, -+, e} a
compatible family of tripotents im J, then there exists an inner
multiplication (resp. standard imner derivation) S, such that S’ =
S — 8, has S'(e), S*(e;) € My(e;) for all 1=1,---,m, and hence
respects Peirce spaces relative to the family: S'(J.(e)) + S™*(J(e))
MJe) for i=1,---,m and k=2,1,0, so S and S map Jg,...,
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nto M.,

Proof. For a single tripotent » = 1 this is just (7.7.) Assume
the result for n — 1 tripotents, so we can modify S by something
inner and assume from the start that S(e;), S*(e,) lie in M,(e;) for
1=1,2 ---,m—1. We must modify S to obtain S'(e,), S"*(e.) €
M,y(e,) without unduly disturbing the previous action on e, -, e,_,.
So consider S’ =8 — S, for S, = L(m, e) + L(e, m¥) as in (7.7) for
S(e) = m, + m,, S*(e) = mF + m* where we set ¢=¢,. We know
S, is inner (resp. standard inner derivation) and S’'(e), S'*(e) € My(e).
We must show that we haven’t disturbed the previous actions,

(*) Sye;) = {mxeet} + {emfei} e Mye;)) (1= 1, --,m—1)

and dually for S¢.

By the induction hypothesis, S preserves Peirce spaces relative
to ¢;. By compatibility, the same is true of L(e, ¢) and P(e)*. Now
(7.1) yields the general identities

[S, L(zx, )] = L(Sz, y) — L(z, S*y)
[S, P(x)P(y)] = P(Sx, )P(y) — P(x)P(S*y, y)

for structural S, so for = y = ¢ we see

wrn  Llm, &) — Lle, m*) = L(m,, ¢) — L(e, my)
" P(m, e)P(e) — P(e)P(m*, e) = P(m,, e)P(e) — P(e)P(m¥, e)
preserve Peirce spaces (using my = i, by (7.7i) and (1.4) to get rid
of m,). But then P(m,, e)P(e)— P(e)P(m}, e)—{L(m,, ¢)— L(e, m¥)}L(e, e)
also preserves Peirce spaces, and by (0.6) this equals {L(e, e¢)L(m,, ¢)—
L(e, P(e)ym,)} — {L(e, m{)L(e, e) — L(P(e)my, e)} — L(m,, e)L(e, e) + Lfe,
m})L(e, ) = L(e, e)L(m,, e) — L(m,, e)L(e, e) = L({eem,}, e)— L(m,, {eee})
(by (0.5)) = —L(m, e). Once this preserves Peirce spaces, so does
L(e, m¥) by (**):

(***) L(m,, e), L(e, m) preserve Peirce spaces J,(e;) .

Thus e; € Jy(e;) implies {m,ee;}, {emie;} € My(e;), yielding (*). Therefore
the modification S' =S — S, preserves Peirce spaces relative to
e, -+, e,, and e = ¢, as well. This completes the induction. O

We say a struectural S:J — M is locally unital with respect to
a given cover & = {e, -+, e,} of J if it preserves the Peirce spaces

relative to &

(7.9) S(J(i1,~-~,iﬂ)) + S*(J(il""’in)) C M(il,...’i%) .
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By (7.8) this is equivalent to S preserving the individual Peirce
spaces

(7.9" S(Jx(er)) + S*(Ju(e)) < Mye;)
or even just to preserving the tripotents,
(7.9 S(e.), S*(e;) € Mye;) .

Notice that if J is unital (& = {e}) then J = J,(¢) and unitality just
means S(J) C M,(e) or S(e) € My(e) (and dually for S*).

PROPOSITION 7.10. A linear transformation S from a direct
sum J=J,B---BJ, of locally unital Jordan triple systems into
a bimodule M is structural (resp. a derivation) iff it has the form
S=S& S, P---PS, where S, is inner (resp. standard inner
derivation) and S;:J;— M are locally unital and structural (resp.
derivations). In particular, any S is the sum of an inner S, and
a locally unital S'.

Proof. Sufficiency is easy: S is structural or a derivation iff
S'=8-—1S, is, and the condition (7.5) on S’ =S, H---B S, is
automatic (both sides vanish by orthogonality because S}(y;) € My( &),
S.(z,) € My(%,) by local unitality).

For necessity we apply the Straightening Proposition 7.8 to
the compatible family & = &, U---U &, (recalling (2.3)). O

We can use these results straightening structural transforma-
tions to prove additivity of the cohomology groups H*, just as we
used liftings of tripotents to straighten linear lifts and thereby
prove additivity of H2. Recall that there are two slightly different
first cohomology groups

H'(J, M) = Der (J, M)/Inder (J, M)
H(J, M) = Strl (J, M)/Instrl (J, M) .

7.11. DIRECT DECOMPOSITION THEOREM FOR H'. IfJ, ---,J, are
locally unital Jordanm triple systems relative to covers &, -+ &,
and M is a bimodule for the direct sum J =J, B---H J,, then

H(J, M) = H\(J,, M) ®---® H'(J,, M,)
B, M) = B, M) - --® B, M)

where M, = M;, + M,y + My = Njrs M(ZE;).

Proof. As in (6.2) we begin by imbedding @HJ, M, in
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HYJ, M). We have a natural imbedding @S, — S of @ Strl(J;, M,)
in Strl(J, M) (the orthogonality condition (7.5) being automatically
satisfied thanks to S;(J), S}(J)C M; = Ni; M(&,) and J; = J(&)
by hypothesis on S;). This induces a linear map @ Strl(J;,, M;) —
H'(J, M).

To characterize the kernel of this map, we need to know when
S = @S, is inner on J = BJ,, i.e., a sum of L(x,, m), L%y, Vi)
for various elements x,;, Y., CJ = Ju, My, Wy, € My, the Peirce spaces
(2.5) relative to the given orthogonal covers &, ---, &, for J.
(Remember by (2.6) L(ay, b;;) =0 unless the indices are linked,
{k, 1} N {t, j} # @, so we need only consider im,; with at least one
index k). We wish to show innerness on J implies innerness on
each J;. Restricting the identity S = 3, L(z,., mu) + L(nu, Yiu,) €X-
pressing innerness of S on J to elements z;; in the ideal J;, and
then applying the Peirce projection operator K, + E,, + E, of M
on M,, yields

(%) Si(zi) = 2 {L(2s, mi) + L(@i, M) + L, Yi) + Lo, Yir)}2u

since by (2.6) {x,,m,%2,.} vanishes when k=1 unless [ =14 or O,
whence {x;m;z;} falls in J;; + J;,, by (2.8) (P1), (Ul), and vanishes
when k # ¢ unless | = ¢, whence {x,m,2;}€ M, by (2.8) (P4), so
only &k =14, l = 4, 0 effectively produce elements of M, + M, + M,,
while {n,,¥.%:;} vanishes unless k¥ = 17 by (2.6) and then falls in M,
if 1+#1,0 by (2.8) (P5) or M,, + M, if [ = 14,0 by (2.8)(P5), (P1), so
only k=1, | = 1,0 are effective. But such m,;, m,, 1y, 7, all lie in
M;, so (*) shows S, elInstrl (J,, M;) is inner on J,.

Conversely, if each S; is inner as in (*) then their sum S is
inner on J (note the L(x;; m;;), L(®s, mjo), L(n, ¥, L, ¥is)
annihilate J;; for 5 = ¢ by (2.6) and hence do not contribute to the
action of S on J;).

Thus @Strl (J;, M)—>H YJ, M) has kernel precisely PlInstrl(J;,
M) and thus induces an imbedding of @H(J,, M,) = {PStrl (J,, M,)}/
{PInstrl (J,, M)} in HYJ, M).

By (7.10) this imbedding is surjective: if SeStrl(J, M) then S
is congruent modulo Instrl(J, M) to a sum S, P---P S, of locally
unital S;, where by local unitality of S, with respect to &; we
have S;, S} mapping J;, = J(&;) into M(&,) = M, c M, so S;e
Strl (J;, M;). Thus we have a natural isomorphism BHJ, M) =
HYJ, M).

The same argument, mutatis mutandis, shows @HYJ, M,) =
HY(J, M). O

Just as in (6.8), we can apply this to semisimple Jordan pairs
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and triple systems.

7.12. DIRECT DECOMPOSITION THEOREM FOR H'. IfJ=J,8:.--@8dJ,
18 the decomposition into simple ideals of a semisimple Jordan pair
with d.c.c. (or a semisimple Jordan trivle system finite-dimensional
over an algebraically closed field of characteristic #2), then for any
J-bimodule M we have

H'(J, M) = ®H'(J,, M), H'(J, M) = @H'J,, M)

for M, = My, + M, + My, = Nyzc M(( ;) for compatible covers &; of
J;. O

Our results have reduced the study of the cohomology H, A,
H? of semisimple J to that of the simple J,. We will investigate
the cohomology of simple systems in a separate paper [5].

It should be noted that Kiihn and Rosendahl [1] have proved
directly that H'(J, M) = H*J, M) = 0 for all finite-dimensional semi-
simple Jordan pairs and triple systems J of characteristic 0, using
the trivial cohomology of the Tits-Koecher Lie algebra K(J) to
deduce triviality of the cohomology of J.
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