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ON THE G-COMPACTIFICATION OF PRODUCTS

JAN DE VRIES

Let βGX denote the maximal equivariant compactiίication (G-com-
pactίfication) of the G-space X (i.e. a topological space X, completely
regular and Hausdorff, on which the topological group G acts as a
continuous transformation group). If G is locally compact and locally
connected, then we show that βG(XX Y) = βGX X βGY if and only if
X X Y is what we call G-pseudocompact, provided X and Y satisfy a
certain non-triviality condition. This result generalizes Glicksberg's
well-known result about Stone-Cech compactifications of products to the
case of topological transformation groups.

1. Introduction. In this paper we prove a generalization to the case
of topological transformation groups of Glicksberg's well-known result
about Stone-Cech compactifications of products. Recall, that a topological
space X is pseudocompact, whenever C( X) = C*( X), i.e. every continuous
real-valued function on X is bounded. A convenient characterization of
pseudocompactness of a completely regular Hausdorff space X is that X
contains no infinite sequence of non-empty open subsets which is locally
finite. Cf. [4] and, for more about pseudocompactness, [5]. Glicksberg's
theorem says that if X and Y are infinite completely regular spaces, then
β(X X Y) = βX X βY if and only if X X Y is pseudocompact. See [6]
and also [4] and [10] for short proofs. Adopting the techniques of [4] and
[10], we were able to prove (terminology will be explained in 1.1 and 2.1
below):

THEOREM. Let G be a locally compact, locally connected topological
Hausdorff group, and let X and Y be two G-infinite, completely regular
Hausdorff G-spaces. Then βG( X X Y) = βGX X βGY if and only ifXXY
is G-psuedocompact.

Before explaining the terminology we wish to point out two shortcom-
ings of our result. First, we did not yet succeed in reducing the case of
infinite products to the case of finite products (cf. [10]). The second
remark concerns the condition that X and Y have to be what we call
G-infinite. It is clear why Glicksberg's theorem has to contain the condi-
tion that X and Y are infinite: if either l o r Y is finite, then always
β(X X Y) = βX X βY without any further condition on X X Y. How-
ever, compared with this situation, our "non-triviality condition" in the
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theorem above is too strong: if either X or Y is not G-infinite, then it is not
true that βG(X X Y) = βGX X βGY without additional conditions. See §5
below.

The organization of the paper is as follows. In the remainder of this
section we present the necessary definitions and preliminary results. In §2
we shall deal with the concept of G-pseudocompactness. In particular, we
give some necessary and some sufficient conditions. In §3 the "if" part of
our theorem is proven, and in §4 the "only i f part. Finally, in §5 we
discuss some open questions and present some additional material. In
particular, we prove that βGX — βX if X is pseudocompact and G is a
topological group such that, as a topological space, G is a &-space. This
slightly generalizes a result by Smirnov [9].

1.1. In this paper, except in 5.5 and 5.7, G will always denote a locally
compact Hausdorff topological group with unit element e. The neighbour-
hood filter of e in G will be denoted by Ύe. (In general, Ύx will denote the
neighbourhood filter of x in a given topological space.) A G-space (or: a
topological transformation group with acting group G) is a pair (X, π)
consisting of a topological space X and an action π. This means π is a
continuous mapping from G X X into (in fact, onto) X such that the
following conditions are fulfilled:

( i ) V i E X: π(e, x) = x;
(ii) V J C E I , V(S, O G G X G : φ, π(t, x)) = φt, x).

Then for every t G G the mapping π': X H> π(t, x): X -> ̂ f is a homeomor-
phism, and for every x E X the mapping 7rx: t\^>π(t, x): G -> X is
continuous. For brevity, we shall write in most cases /JC for π(t, JC), L4 for
π'[A], Ux for πjt/] and, in general, UA for τr[ί/ X A]. Also, we shall
often write "the G-space X" instead of "the G-space (X9π)". The
G-space (X9π) will be called compact, Hausdorff, etc. whenever Xis.

If (X,π) and (Y9o) are G-spaces, then a mapping φ: X-> Y is
called equiυariant whenever <pτr' = σ'φ for all / G G (i.e. φ(ta ) = /φ(x)
for all t E G, Λ: E X). A morphism of G-spaces is a continuous, equivariant
mapping φ: (X9 π) -> (7, σ). A G-compactification of a G-space ( X, 77) is
a morphism of G-spaces φ: (X, π)-> (Y9 σ) such that Y is a compact
Hausdorff space and ψ[X] is dense in Y. If, in addition, φ is an
embedding of X into Y, then φ is called a proper G-compactification. A
necessary condition for the existence of a proper G-compactification of
(X, IT ) is that I is a Tychonov space. Because of the fact that G is
assumed to be locally compact, this condition is also sufficient (cf. [12]).
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Every G-space (X,π) has an essentially unique maximal G-compactifica-
tion, denoted by

For convenience, the underlying topological space of βG(X,π) will be
denoted by βGX. The maximal G-compactification of (X,π) is defined
by the property that for every G-compactification ψ: (X, ir)-» (Y, σ)
there exists a unique morphism of G-spaces ψ: βG(X,π)^>(Y,σ) such

Ψ\

If in, this situation, ψ happens to be a proper G-compactification, then so
is ψG(X^y So from our remarks above, it follows that every Tychonov
G-space (X9iτ) has a proper maximal G-compactification. From now on,
we shall assume that all G-spaces (X,π)9 ( Y, σ), etc. are Tychonov spaces.
Moreover, if (X, π) is such a G-space, then we shall identify X with its
image under φG(Xf7Ty in βGX. Thus, X is an invariant subset of βGX.

1.2. If G = {e}, then every mapping between G-spaces is equivariant,
and the category of all G-spaces and continuous equivariant mappings is
identical with the category of all topological spaces and continuous
mappings. In particular, for every G-space X we have βGX— βX, the
ordinary Stone-Cech compactification of X. For completeness, we men-
tion three other cases where βGX— βX:

(i) G is a discrete group (cf. [11], 7.3.10(ii));
(ii) the action of G on X is trivial, i.e. tx = x for all / G G, x E X;

(iii) G is a Λ -space and X is pseudocompact (cf. §5 below).
In a future paper, we hope to study this problem in more detail.

1.3. Let (X,π) and (F, σ) be two G-spaces, and let r denote the
action of G on 1 X 7 defined by r'(x, y) : = (7Γ'JC, σ'y) (or briefly:
t(x9 y) - {tx, ty) for t G G and (JC, 7 ) e l X Y). Then we have the
following commutative diagram:

φG(XXY, τ>

1 X 7 -> iM*X Γ)



450 JAN DE VRIES

If in this diagram ψ: βG(XX Y) -» βGXX βGY is a homeomorphism,
then we shall say that βG(XX Y) = βGX X βGy. Notice that it follows
from 1.2 (ϋ) above that Glicksberg's theorem gives a necessary and
sufficient condition for the equality βG(XX Y)-βGXX βGY to occur
for the special case that the actions TΓ and σ (hence r) are both trivial.
Taking into account that "G-infinite" means in this special situation just
"infinite" (see below), it is clear that our theorem above contains Glicks-
berg's result as a special case.

1.4. Let (X,π) be a G-space. A real-valued function / on X will be
called π-uniformly continuous (cf. [9], [12]) whenever the following condi-
tions are fulfilled:

1°./is continuous.
2°. The set {/° irx}xGX is equicontinuous at e.

The second condition can also be formulated as follows:

Vε > 0 3 Ue%:\f{ tx) -f(x)\<ε for all (t9x) GUXX.

The set of all 7r-uniformly continuous functions on X will be denoted by
UC{X, TΓ), and the set of all bounded 7r-uniformly continuous functions
by UC*(X9 τr> (in [12], the notation πUC(X) was used). In [12] it was
shown that UC*(X,π) is a closed subalgebra of C*(X) (the bounded
real-valued continuous function on X), containing the constant functions,
and that for every G-compactification φ: ( X, TΓ) -> ( Y, σ) we have {g ° φ:
g E C(Y)} C UC*(X9 TΓ). In particular, the maximal G-compactification
φ^x^y X-* βGX is, up to isomorphism of G-spaces, completely char-
acterized by the formula

The following remark is included in order to clarify the relationship
between UC*(X,π) and ordinary uniform continuity. If (X, Gll) is a
uniform space, then UC*(X, %) will denote the set of all ^-uniform
continuous, bounded real-valued functions on X, and %* will denote the
weakest uniformity on X such that UC*( X9 %*) = UC*( X, % ) . If (X, <?L)
is a uniform space and, in addition, TΓ is a continuous action of G on X
(the topology on X, of course, being induced by 6ll) then TΓ is called
Abounded (cf. [11], [12]; in the literature on topological dynamics one
also calls TΓ motion-equicontinuous) whenever { T Γ ^ ^ is equicontinuous
w.r.t. % at e, that is,

Vα eqL3UG%:(x9tx) E α for all (t,x) (ΞUXX.
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Now it is easy to show that the following two statements are equivalent
for an arbitrary G-space (X,π) and a uniformity %, compatible with the
topology of X:

(i) the action m is %*-bounded;
(ϋ) UC*(X, %) c UC*(X, ττ>.

1.5. Next we wish to point out the relationship between UC*(X9 IT)
and the algebra E(X, C?(G)) of [1]. Let C*(G) denote the space of all
bounded real-valued functions on G endowed with the compact-open
topology. Then (C*(G), p) is a G-space, where fff{s) : = f(st) for all
/ G CC*(G), ί G G a n d / e G (cf. [11], 2.1.3). Let Moτ^(X, Q*(G)) denote
the set of all morphisms of G-spaces from a given G-space (X,π) to
(C?(G), p), endowed with the uniform structure and the corresponding
topology of uniform convergence on X. If / G C*( X), then the mapping

is continuous and equivariant (cf. [11], 8.1.12), i.e. Tf G Mor^X, C*(G)).
Conversely, if g G M o r ^ * , C*(G))9 then

Sg:x»g(x)(e):X^R

is an element of C*(X). It is easily verified that T: C*(X) ->
Mor^( JT, C*(G)) and S: Mor^(X, C*(G)) -* C*(X) are mutually inverse
isomorphisms of algebras. Moreover, if we endow C*( X) with the topol-
ogy of uniform convergence on X, then it is standard to show that T and
S are both continuous. So C*(X) and M o r ^ X C*(G)) are isomorphic as
topological algebras (consequently, the latter algebra is metrizable, though
G is not supposed to be compact or even sigma-compact!). Under this
correspondence, E(X, C*(G)) '•= T[UC*(X, τr>] is easily seen to be the
set of all those elements g G Moτ£(X, C*(G)) for which g[X] is equicon-
tinuous in C*(G\ that is, for which g[X] has compact closure in C*(G).
Using this relationship between UC*(X, π) and E(X, C?(G))> the corre-
spondence between βGX and UC*( X,π) can be reformulated as follows:
for every element g G E(X, C*(G)) there exists a unique morphism of
G-spaces g: βGX-> C*(G) such that g = go VG(x^y moreover, the em-
bedding of X into βGX is completely characterized by this property (up to
isomorphism of G-spaces).

2. (j-pseudocompactness and G-infiniteness.

2.1. A collection % of subsets in a G-space (X,π) will be called
internally linked whenever there exists U GΎe and there are points xB G B
(B G $ ) such that UxB C B for every δ e l
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A finite (infinite) sequence of mutually disjoint, non-empty open sets
which is internally linked will be called & finite (infinite) G-dispersion; if
the sequence of sets is locally finite, then the G-dispersion will be called
locally finite. Modifying the characterizations of infiniteness and pseudo-
compactness of ordinary Tychonov spaces, we obtain the following crucial
(at least, for this paper) definitions. The G-space < X, π) will be called
- G-infinite, whenever it contains an infinite G-dispersion;
- G-pseudocompact, whenever every locally finite G-dispersion in X is

finite.
Clearly, if ( X, π ) is not G-infinite or if X is pseudocompact (in the usual
sense) then X is G-pseudocompact. As to the converse, cf. §5 below.

2.2. REMARKS. 1°. If G is a discrete group, then every family of
non-empty subsets of X is internally linked, because {e} E Ύe. It follows
that in this case X is G-infinite if and only if X is infinite. Similarly, X is
G-pseudocompact if and only if X is pseudocompact. (These statements
are also valid if the action of G on X is trivial.)

2°. Suppose that the orbit space X/G (== space of equivalence classes
of the form Gx, x E X, having the quotient topology) contains an infinite
sequence of mutually disjoint, non-empty open subsets (e.g. because the
Hausdorff modification of X/G is infinite; in particular, this happens if
X/G is itself an infinite Hausdorff space: recall that X/G is usually not
Hausdorff, but it is if G is compact, or if the action of G on X is proper).
Taking inverse images under the canonical projection X -> X/G one
obtains an infinite G-dispersion (the elements of which are even invariant
under all of G). Hence X is G-infinite. Similarly, if X/G is not pseudo-
compact, then X/G contains an infinite sequence of non-empty open sets
which is locally finite (for this statement, complete regularity of X/G is
not required, nor its being Hausdorff), hence X contains an infinite
G-dispersion which is locally finite, i.e. X is not G-pseudocompact. Thus,
if X is G-pseudocompαct, then X/G is pseudocompact.

3°. Suppose X/G consists of one point and for some (hence for every)
point x in X the mapping πx: t -» tx: G -> X is open (thus, X ^ G/H,
where H : = [t E G: tx = x}). In this case X is G-infinite if and only if X is
not compact. (Suppose X is not compact. Let U E Ύe be compact. Con-
struct by induction a sequence { ^ J ^ N in X such that, for every « G N ,
xn+λ £ U;= 1 Uxr Let V E Ύe be open, V~Ψ C U; then Vxi is open in X,
hence {Vx^^^ is an infinite G-dispersion. Conversely, suppose that Xis
compact and that {Bn}n(ΞN is an infinite G-dispersion in X. We may
assume that, for every n E N, Bn = Uyn with yn E X and U E Ύe, U open
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and U~λ = U. The sequence {yn}nξ=n has an accumulation point z G X.
Then yn G £/z for infinitely many values of w, contradicting the disjoint-
ness of the sequence {Uyn}n(ΞN.) Similarly, in this case X is G-pseudocom-
pact if and only if X is compact. (In the above proof, replace V by open
W<Ξ% such that Wλ = Wand W2 C V.)

Observe that this example shows that the converse of the final remark
in 2° above is not generally true (X/G is pseudocόmpact, but one can
have X not compact).

4°. According to the definition, a G-space (X,π) is G-pseudocom-
pact whenever every sequence of mutually disjoint open sets which is
internally linked and locally finite is finite. In this definition, disjointness
can be omitted.

Indeed, let {Bn}n(ΞN be an infinite sequence of non-empty open sets,
internally linked and locally finite. Then there exists U EΎe, U compact,
and for every n £ N there is xn G Bn such that Uxn Q Bn. As Uxn is
compact and {Bi}iBN is locally finite, there exists an open neighbourhood
B'n of Uxn such that B'n C Bn, and B'n meets only finitely many of the sets
JS . Selecting from the sequence {^}nGN a disjoint subsequence, one
obtains an infinite, locally finite (j-dispersion. Thus, (X,π) is G-pseudo-
compact if and only if every sequence of open sets which is internally linked
and locally finite is finite.

2.3. Before stating a (simple, yet crucial) result about the connection
between ττ-uniformly continuous functions on a G-space (X,π) and
G-pseudocompactness of (X,π), we recall from [12] a method of trans-
forming elements of C*(X) into elements of UC*(X, τr>. Let/ G C*(X),
f> 0, and let | |/ | | := sup{/(x): x G X). Let U G Ύe be compact and
select a left-uniformly continuous function φ: G-»[0,||/||] such that
φ(e) = 0 and φ(ί) = | |/ | | for all t G G\U. If we put

' = inf{φ(0

then it turns out that/*7 G UC*(X, π). Moreover, 0<fυ <fonX and,
in addition, we have for all x G X,

In particular, if x E X is such that f(tx) — f(x) for every t E U, then
clearly fυ(x) = f(x).



454 JAN ΌΈ VRIES

2.4. PROPOSITION. Let {2*Π}Λ(EN be an infinite, locally finite G-dispersion
in X, and let {an}n&N be a sequence of real numbers in the interval [0,1].
Then there exists f E UC*(X,π) such that / > 0 , f[Bn] C [0, an]
and f~ [an] Π BnΦ 0 for every n E N, whereas f(x) — 0 for all x E

Proof. There exist U E °\ζ, U compact, and xn G Bn (n GN) such
that Uxn C Bn. For every « 6 N , ί/xw is a compact subset of the Tychonov
space X, so there exists gn E C*(^ί) such that gn[X] C [0, an], gn(x) = απ

for all JC E ί/xn and gn(x) = 0 for all x E -Y\-Bπ. As { 5 w } w e N is locally
finite, g: = Σ^=, gw is a bounded, continuous funcction. Choosing φ
according to the specification of 2.3 above, we can form the function gu,

which belongs to UC*(X, π). Using the properties of this construction,
mentioned in 2.3, it is easy to verify that gu satisfies the conditions
specified in our Proposition. D

In our next Proposition we relate the property of being G-pseudocom-
pact with boundedness properties of τr-uniformly continuous functions on
a G-space (X,π). For the problem, whether of (ϋ) =» (i) or not, we refer
to §5.

2.5. PROPOSITION. Consider the following properties for a G-space

(i) Every f E UC*( X,π) has a maximum and a minimum on X, i.e.

supf[X] Gf[X]andinff[X] ef[X];

(ϋ) X is G-pseudocompact;

(iii) X is totally bounded ( = precompact) in every uniformity % which

has the property that the action π is %-bounded;

(iv) UC(X,π)= UC*{X,π), that is, every π-uniformly continuous

function on X is bounded.

Then (i) => (ii) <=> (iii) =» (iv) and (iv) ^> (iii).

Proof, (i) =» (ii): Suppose X is not G-pseudocompact. Then we can
apply Proposition 2.4 with an = 1 — \/n in order to obtain / E
ί/C*( X, 7r) which has no maximum on X.

(ii) =» (iii): Suppose % is a uniformity for X such that the action π is
Abounded, but X is not totally bounded w.r.t. %. So there exists a E %
and a sequence {xn}nS^ in X such that, for all n E N, JCΠ+1 & U"= 1 α[xj.
Let β E %, βΛ c α and β" 1 = β, and let ί/ E % be such, that (JC, tx) E β
for all (r, x ) 6 ί / X I , i.e. t/x c β[x] for all JC E X. Then {JSIJCJ},,^ is
a locally finite G-dispersion, and therefore, Xis not G-pseudocompact.
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(iii) => (ii): Suppose X is not G-pseudocompact, and let {5n}π e N be a
locally finite G-dispersion. Let U G % be such that for every n G N there
exists xn G Bn with Uxn Q Bn. Let F 6 % and WGΎe be such that
V2 CU9W

2C F, W^1 = W, and JF compact, put Z> : = X\ U™=ιWxn

and α : = U™=ι(Bn X £„) U (D X Z>). Local finiteness of {Wxn}n(ΞN im-
plies that D is open in X Hence, if % is a uniformity for X, then the
uniformity %', generated by % U {α} is also a uniformity for X Also, if π
is Abounded, then π is also %'-bounded (indeed, if x G Kxrt, then
Wx c K2jcn c ί/jcn C #„, hence WOc C α[x]; if x £ U*s=ι KJCΛ, then fFx
Π Wxw = 0 for all «, i.e. Wx C Z), hence Ŵ c C a[x]). Since 5rt = α[xj,
X is not totally bounded w.r.t. %'. Thus, starting with a uniformity % for
X such that TΓ is %-bounded, we end up with a uniformity %/ for X such
that TT is ^'-bounded, but X is not totally bounded w.r.t. %'.

(iii) => (iv): If % is the weakest uniformity in X making every member
of UC (X,π) uniformly continuous, then % generates the topology of X
(UC(X, IT) separates points and closed subsets of X because UC*( X,π)
does: cf. 1.4). Moreover, it is easily checked that π is %-bounded. Since
every uniformly continuous function on a precompact uniform space is
bounded, the result follows.

(iv) *> (iii): Consider the following example. Let X be the orbit of a
given point in the irrational flow on the torus. Then X is dense in the
torus, but not pseudocompact. We show that X is not R-pseudocompact
(R is the acting group!). In the following way one can construct an
infinite, locally finite R-dispersion in X. Representing the torus by (R/Z)2,
construct a disjoint sequence of rectangular open sets in the torus, each
with one side of a given length (say, JQ) parallel to the direction of the
chosen orbit X in the torus, and converging to a segment in the torus
which does not belong to X. Since X is dense in the torus, the trace of this
sequence in X is an infinite sequence of non-empty open sets in X which is
clearly a locally finite R-dispersion in X. So ( X, π) is not R-pseudocom-
pact.

However, let/ G UC( X, TΓ). We show that/is bounded. Let x0 G X.
Since (X,π) is almost periodic, there exists a relatively dense subset P in
R such that

(i) l/(*o + O-/U>)l<i

for all t G P. (Here we view X as the set R with a topology which differs
from the usual one, the action of R on X being given by ττ(/, x) : = x + t
for x G X, t G R.) That P is relatively dense in R means there exists a
number / > 0 such that R = P + [0, /]. Since feUC(X,iτ)9 there is
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δ > 0 such that

(2) \f(χ + s)-f(x)\<l for all x G X, s G R, | s |< 8.

For every u G [0, /] there is a sequence 0 = u0 < uλ < < uk = u,

where * < [2//δ] + 1 =:fc0, and |w / + 1 - w z | < δ for / = 0,1,. ..,k - 1.

Consequently, (2) implies that

k-\

(3) |/(* + a ) - / ( * ) | < 2 l/(* + K/+i)-/(* + H/)l<*^*o
/ = 0

for every x G X and w G [0, /]. However, for every s G R there are ί G P
and w G [0, /] with 5 = t + u, hence by (1) and (3):

l/(*o + s)-f(xo) \^\f(xo + t + u) -f(χ0 + t) I

This implies that/is bounded on X = {x0 + s: s G R). D

2.6. PROPOSITION. // φ: (-Y, π ) - > ( y , σ ) w Λ morphism of G-spaces

and X is G-pseudocompact, then so is Y.

Proof. Obvious. D

2.7. PROPOSITION. If (X,π) and (Y9σ) are G-spaces, Xis G-pseudo-

compact and Y is compact, then (XX Y9r) is G-pseudocompact (r as in

1.3).

Proof. Using 2.5 (i) => (ii) and the lemma below, the proof can easily

be given along the lines of [4], 3.4. D

2.8. LEMMA. Let (X9π) be an arbitrary G-space and let ( Y, σ) be a

compact G-space. Define Jorf G UC*( X X 7, τ>,

F(x):= wϊf(x,y), x G X.

ThenF<Ξ UC*(X, ττ>.

Proof. It is standard to show that i 7 G C*(-3Γ) (cf. for instance Lemma

1.1 in [4]), and it is straightforward to verify that F G UC*( X,π). D

3. Proof of necessity in the main theorem. In this section we

suppose G to be a locally connected locally compact Hausdorff topological

group. In addition, (X,π) and (Y,σ) are G-spaces, and ( I X Y, T) is
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their product. We shall prove in this section:

3.1. THEOREM. // βG(XX Y) = βGXX βGY then either one of the

G-spaces X or Y is not G-infinite, or XX Y is G-pseudocompact.

The proof is basically the same as the proof of necessity in Glicks-

berg's theorem as given by Frolίk in [4], additional complications being

caused by the fact that we need sequences of open sets which are internally

linked, whereas in [4] the open sets are only required to be non-empty. We

start with the following lemma.

3.2. LEMMA. Suppose

βG(XX Y)=βGXXβGY.

Iff G UC*( XX Y, τ> then for every ε > 0 there exists VE% such that

\f(tx,sy)-f(x,y)\<e forall(x,y) G I X Yand(t,s) EVXV.

REMARK. The definition of τ-uniform continuity includes only the

above inequality with s — t.

Proof. According to 1.4 the assumption implies t h a t / h a s a continu-

ous extension/to βGX X βGY. Then each point (x, y) G βGX X βGYhas

a neighbourhood WλXW2 such that \f(x\ y') - f(x, y)\< ε/4 for

(x\ y') e Wj X W2. Moreover, there are V G % and neighbourhoods W[

of x and W^ oίy such that VW[ C W{ and VWτ C W2. In particular,

\f(tx\sy')-f(x'9y')\

<|/(ίx', sy') - f(x, y) \ +\f(χ', y') - f(χ, y) \ < e/2

for {x\yf)^W[XW2 and (ί, s) G VX V. Now a compactness argu-

ment completes the proof. D

3.3. LEMMA. Suppose βG(XX Y) = βGX X βGY, and let {Wn}nGN be a

G-dispersion in XX Y which is locally finite. Then there exists U E:Ύe, U

compact, and for every n G N there exist a point (an,bn) G Wn and open

sets An in X, Bn in Y such that

U(aH9 bn) C Uan X Ubn CAnXBnQ Wn.
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Proof. It is sufficient to find compact U EΎe and points (an, bn) G Wn

( « G N ) such that Uan X Ubn C Wn\ compactness then guarantees the

existence of open sets An and Bn such that Uan X Ubn QAnXBnQ Wn.

According to Proposition 2.4 there exists/G UC*(XX Y,τ) such

that/(z) = 0 for all z G X X 7 \ U* = 1 WM and such that for every « G N

there is a point (an, bn) G Ŵ  with f(an, bn) = 1. In view of Lemma 3.2

there is U G ̂ , £/ compact and connected, such that f(tan, sbn) > \ for

all n G N and (/, s) G ί/ X £Λ This implies that for every n G N,

UaΛXUbmC U ^

However, the sets Ŵ  are mutually disjoint and open, Uan X £/&„ Π Wn Φ

0 , and ί/, hence Uan X t/&Λ, is connected. Therefore, Uan X [/&„ C Wn

for every w G N. D

3.4. LEMMA (C/. [4]; 1.2). Suppose βG(XX Y) = j 8 c * X i8cr, X X Y

is not G-pseudocompact, and, in addition, the spaces X and Y are both

G-infinite. Then there exists a locally finite G-dispersion {PnX Qn}n^N *n

XX Y such that the sequences {?n}w e N and {Qn}n(ΞN are disjoint (hence

G-dispersions in X and Y, respectively).

Proof. We consider two cases. First, assume one of the G-spaces, say

{X,π), is not G-pseudocompact. Then in X there exists a locally finite

G-dispersion ( P J π G N . By assumption, Y is G-infinite, so in Y there exists

a G-dispersion {β«}«eN Then {Pn X βM}n(ΞN is easily seen to be a

G-dispersion in I X Γ which is locally finite. Next, suppose that both X

and Y are G-pseudocompact. Since X X Y is not G-pseudocompact, there

exists a locally finite G-dispersion {Wn}n(ΞN in XX Y. Choose U G Ύe,

(an,bn) G Wn andAn C X, Bn C Y according to Lemma 3.3. In particular,

we have for every « G N :

(1) U{αn,bn)QAnXBnQWn.

The sequence {An X Bn}nGN is locally finite as well, hence every compact

subset K of X X Y has an open neighbourhood O such that

(2) O Π ( ^ X 5 j = 0 for almost all n G N.

Now we claim the following: for every sequence {Λ, }, e N in N and for

every x G X there exists a neighbourhood W of Ux in X such that

W Π Ant = 0 for infinitely many values of i G N. For assume the con-

trary. Then there are a sequence {n^^^ in N and a point x G X such that

every neighbourhood of Ux meets ^ for almost all i G N. By (1) the
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sequence {Bnι}iGS is internally linked. Hence by 2.2(4°), as Y is G-pseudo-

compact, there exists y S Y such that every neighbourhood of y meets

infinitely many of the sets Bn . Consequently, every neighbourhood of the

compact set Ux X {y} in I X 7 meets infinitely many of the sets

An X Bn9 contradicting (2). This proves our claim.

By induction one can now show, using our claim, that there exists a

sequence {«,} iGN in N and mutually disjoint open sets Pt such that

Uan C P , QAHι (/ G N ) .

Similar reasoning shows the existence of a subsequence {kj}j(ΞN of { « J / G N

such that there are mutually disjoint open sets Qj with

Ubk C Q: C Bk (j G N).

Now it is clear that the sequence [Pk X Qj}JGS meets the requirements of

our lemma. D

3.5. Proof of Theorem 3.1. This proof can now be given completely

similar to the proof of the implication (3) => (1) in Theorem 2.1 of [4]. For

completeness, we repeat it here, adapted to the present situation. Suppose

βG(XX Y) = βGX X βGY and X X Y is not pseudocompact. Then one of

the spaces X or Y is not G-infinite. For if they are both G-infinite, then

there exists a locally finite G-dispersion {Pn X Qn}n(ΞN according to Lemma

3.4. By Proposition 2.4 there exists/ G UC*(XX Y, τ> such that/(x, y)

= 0 for (x, y) <ΞXX Y\ L Γ = ι PΛ X Qn, and for every « E N there is

(pn,qn)E:PnXQn with/(/>„, qn) = 1. Then/has a continuous extension

/ to βGX X βGY, and for ε = \ there is a finite covering of βGX X βGY

with open rectangles, on each of which / varies less than ε. Hence there is

such an open rectangle, say A X B, which contains infinitely many of the

points (pn, qn). However, if (pn, qn) G A X B and (pk, qk) G A X B with

n ¥= k, then also (pn, qk) G A X B9 hence

However, since the sets { P J GN are mutually disjoint, as are the sets

{β/}/eN> we have (/>„, qk) <2 U * , Pz X β,, which impUes f(pn, qk) = 0.

This contradiction concludes the proof. D

3.6. The following examples show that some additional condition (e.g.

that X and Y are both G-infinite) is needed in order to be sure that

βG(XX Y) = βGX X βGYimplies X X 7 i s G-pseudocompact.



460 JAN DE VRIES

1°. If G is discrete, then βGZ = βZ for all Tychonov G-spaces Z. If X
is not G-infinite, then X is finite, and then for every Tychonov G-space Y
we have

βG(XX Y) = β(XX Y) = βXXβY=βGXXβGY.

In particular, if Y is not pseudocompact, then X X Y is not pseudocom-
pact, hence not G-pseudocompact.

2°. Let G be compact, Y an arbitrary Tychonov space which is not
pseudocompact, and consider the G-spaces (G, μ) and (Y,σ), where
ju's : = te and o'y : = j for ί E G, 5 E G and j> E 7. Then it can be shown
that βG(GX Y) = G X βY (cf. [11], 4.4.13 (iv)), and consequently, that
βG(G X Y) = /?CG X )SG7. However, G X 7 is not pseudocompact and
since the action of G on Y is trivial, it follows that G X Y is not
G-pseudocompact. This is in accordance with the fact that (G, μ) is in
this case not G-infinite (cf. 2.2(3°) with X = G).

More about this additional condition can be found in §5 below.

4. Proof of sufficiency in the main theorem. In this section G is a

locally compact Hausdorff topological group, not necessarily locally con-
nected. Again, (X,π) and (Y, σ) are G-spaces and (XX Y,τ) is their
product. In this section we shall prove:

4.1. THEOREM. IfXXYis G-pseudocompact, then βG(XX Y) - βGX
XβGY

Again, the proof was inspired by [4] and [10]. However, a serious
obstruction to a straightforward application of the methods used there
was caused by the fact that in general for / E £/C*( XX Y9r) it is not
true that for every y E Y the function x h*f(x, y) belongs to UC*( X,π)
(for an example, cf. 5.2 below); compare this with Lemma 3.2 above. We
avoid this difficulty, or rather, we prove it (in an implicit way) for the case
that X X Y is G-pseudocompact, by means of the trick, introduced in 4.3
below.

First, we need a modification of Lemma 1.3 of [4]; cf. also Lemma in
[6]. Due to a possibly weaker hypothesis (cf. §5 below) we have to
consider τ-uniformly continuous functions instead of functions which are
just continuous. The proof is basically the same as in [4], but we have to
be careful in connection with internal connectedness of sequences of open
sets.
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4.2. LEMMA. Let X X Y be G-pseudocompact and let f G
UC*{ XX Y,r). Then the family of all functions x H>/(JC, y): X -» R with

y G Y is equicontinuous on X, that is,

V ^ £ l V e > 0 3 ί f G \ : \f(x, y) - f(x0, y) \< ε

for all (x,y)G WXY.

Proof. Suppose the contrary. Then there exists x o € l such that for
some ε > 0 we have

VW(=ΎXo3(x,y)GWX Y: \f(x, y) - f(x0, y) |> 5β.

Now by induction it follows that there exist points (xn, yn) G X X Y and
open neighbourhoods Wn X Vn of (xn, yn), W'n X Vn of (x0, yn) in X X Y

such that:

( 1 ) ί\f(χ', y') - / K . Λ)l<ie for (*'> /) e »; x K;

(2) WnQW^λ and ^ ' C ^ _ , ;

(3) l/U,,.Λ)-/Uo.Λ)l>5ε

(compare with the proof of Lemma 1.3 in [4]). Since/ e UC*(XX Y,τ)

there exists Uo GΎe such that Uo is compact, UQ ' = ί/0 and

iε f o r a U / e ί / 0 , ( j c , ^ ) e Z X 7.

This implies, together with (1), that for every n G N:

m * Π/(*'' ^') ~ / ί ^ ' Λ ) I < ε f o Γ ( χ / ' y')E

The sequence {ί/0(W^ X Vn)}nGN is clearly internally linked and consists
of non-empty open sets, so in view of 2.2(4°) it is not locally finite. Hence
there exists a point (jc, y) in X X 7 such that

(4) v o ε % ^ : o n uo(wn xvn)φ0

for infinitely many values of n E N.

As the mapping / is continuous, there exists an open neighbourhood of
(3c, y) of the form A X B,A open in X and B open in 7, such that

(5) \f(x,y)-f(x,y)\<e for (x, y) G A X B.

Since U0(x9 y) is compact, it can be covered by finitely many sets of the
form t(A X B) with t G Uo. Their union contains a neighbourhood of
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U0(x, y) of the form U0O with O G Ύ^^y By (4) and the pigeon-hole

principle, there exists t0 G U such that

(A X B) Π to(Wn X F j 7̂  0 for infinitely many values of n G N.

Let / and y be two of the values of n in N, j > i, for which this is valid.

Then

3xG ^ j G V^x.t^y) ΪΞAXB,

However, Wj C W ^ C W[, becausey — 1 > /. It follows that xr G W[, so

that (x', y') <ΞW; X Vr This implies that

to(x\ y) G U0(W; X VjΠiAXB).

We infer from this, that the neighbourhood O * = 4̂ X B of (x, j ) has the

property, that

(6) onu0(w;x vt)^0.

Observe that (6) holds for those values / of n in N for which (4) holds with

O — A X B. Suppose / is such a value. Then for some point (x\ yr) G

(AXB)Π U0(JVι X VJ9 we have by (5), (1)* and (3):

l/(*o> y,) -f(*> 9) l^l/(^o, y>) ~f(χn y.) I

-\f(χ. yt) ~ f(*', y') I -\f(χ', y') ~ f(χ, y) I

>3ε.

On the other hand, we have by (6) and (1)* for some point (x", y") G O

n uo(w; x v,):

|/(x, y) - f(x09 yt) | < | / ( ί , y) ~ f(x"9 y") \

This contradiction proves our lemma. D

4.3. In order to prove that ^ ( I X Y) = βGXX βGY it is, by 1.5,

sufficient (and necessary) to prove that every g G E(X X Y, C*(G)) can

be extended to a continuous equivariant mapping g: βGX X βGY -> C*(G).

The idea is first to extend the mapping x h+ g(x, —)( — ): X -^ C*(Y X G)

to a mapping g: βGX -> C*( Y X G ) , and then to extend in a similar way

the mapping y h-» f(-)(.y, - ) : Y -> Q{βGX X G) to /?CY. In order to do

so, we have to define a continuous action of G on C*(Y X G ) .
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4.4. Define ζ:GX CC*(Y X G ) - » C*(Y X G) by the rule

ξ(t,f)(y,s):=f{Γ*y,st)

for (/, /) e G X C*(r X G) and (^, ί) E 7 X <J. It is easily seen that

{'/ = / and ξψf = {"/ for all s, t E G and / G Cc*( 7 X G). In addition,

using the inequality

!!'/(>>, *) - «'%(* *)l=l/(rV, *') -/o(ίV, st0) I

<l/(rV, 5/) - fo(rιy9 st) i +|/0(rV, *0 - / 0 ( Λ , *Ό) I

and a straightforward compactness argument, one may show that ξ is

continuous (in fact, the proof is very similar to the proof of the conti-

nuity of the action p of G on C*(G); cf. [11], 2.1.3). Consequently,

(C*(Y X G), ξ) is a G-space.

4.5. Proof of Theorem 4.1. In the following lemmas let g: XX Y ^>

C*{G) be a continuous, equivariant mapping such that g[XX Y] is

relatively compact in C*{G), or what amounts to the same because G is

locally compact, such that g[X X Y] is an equicontinuous set of functions

on G. For JC G X and (y, t) G Y X G we set

g(x)(y9t):= g(x,y)(t).

4.6. LEMMA. For every x G X, g(x) is a continuous, bounded real-val-

ued function on Y X G, and g: X-+ C*(Y X G) is continuous and equi-

variant w.r.t. the action £ of G on C*(Y X G).

Proof. Of course, boundedness of g(x) on Y X G is trivial. In addi-

tion, once one has shown that g(x) G C*(YX G), a straightforward

calculation shows that g: X -> C*(7 X G) is equivariant. So it remains to

prove the continuity statements. (At first glance one might be tempted to

apply [3], Theorem 5.3: our lemma would be an immediate consequence

of the homeomorphism of CC(XX Y, CC(G,R)) with CC(XX YX G,R)

and of CC(X X Y X G,R) with CC(X, CC(Y X G,R)). However, the latter

homeomorphism requires either that Y X G is locally compact or that

X X Y X G is a Λ>space, and therefore we cannot apply this theorem. We

shall indicate a direct proof using equicontinuity of g[ X X Y].)

Consider x0 G X, y0 G Y and t0 G G. Then for all JC G X and (y, t)

G Y X G we have

(7) \g(χ)(y, t) - g(χo)(y<» Ό ) I = I S ( * > y)(*) ~ g(χo> JΌ)('O)I

<|g(x, y)(t) - g(x, y)(t0) I +\g(x, y)(t0) - g(x0, yo)(to) | .
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Let ε > 0. By equicontinuity of g[X X Y]9 there exists a neighbourhood

W of t0 in G such that

(8) |g(*

ΐoτ all (x9 y) G X X Y and all t ELW. Moreover, continuity of g implies

there are neighbourhoods ί/of x0 and Voΐy0 such that

for all (JC, y ) G ί / X K Hence

(9) \g(χ)(y,t)-g(χo)(yo>Ό)\<*

for all Λ: E t/ and all (7, /) E K X ϊΓ. In particular, putting x = JC0 in (9)

yields continuity of g(x0) on Y X G for arbitrary x0 E G. Now in order

to prove that g: X ^> C*(Y X G) is continuous, use (9) and a standard

compactness argument to show that for given compact sets Kλ in Y and

K2 in G one has

\g(x)(y9t)-g(x0)(y9t)\<2ε

for all (j>, ί) G ί , X K2 and for all x in a suitable neighbourhood of x0.

Hence g is continuous. D

4.7. LEMMA. The set g[X] is pointwise bounded and equicontinuous on

Y X (7, hence it has compact closure in C*(Y X G),

Proof. Putting x0 = x in (7) we obtain

% 0 - s(*)U> *o)ttg(χ> y)(*) ~ g(χ> y)(*o) I

Taking into account equicontinuity of g[X X Y] as expressed by (8), it is

sufficient to prove that there exists a neighbourhood Voiy0 such that

(10) \g(χ,y)(to)-g(χ>yo)(to)\<*/2

for all x E X and all y E V. To this end, consider the continuous mapping

F:(x,y)»g(x,y)(to):XX 7^R.

Then for all (x, y) E X X Y and / E G w e have, in view of equivariance

of g:

\F(tx, ty) - F(x, y) \ = \g(tx9 ty)(t0) - g(x, y)(t0) \

=\g(χ,y)(*o*) - g(χ>y)(Ό)\
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Thus, equicontinuity of g[X X Y] implies that for every 8 > 0 we have
\F(tx, ty) - F(x, y) |< δ for all (x, y) E X X Y and all t in a suitable
neighbourhood of e in G. Stated otherwise, F E UC*( XX Y, τ>, and we
may apply Lemma 4.2 to i7. Hence there exists a neighbourhood K of y0

such that

for all JC E X, j ; E K But this is exactly what we need in (10). Hence g[ X]
is equicontinuous. As g[X] is also pointwise bounded (this follows from
the fact that g[X X Y] is pointwise bounded on G), Ascoli's theorem
implies that g[ X] is relatively compact in C*( 7 X G). D

4.8. Proof of Theorem 4.1 (continued). Note that g[X] is an invariant
subset of C*(YX G) because g: X^ C*(YX G) is equivariant. Hence
the closure Z of g[X] is invariant as well. Thus, Z is a compact (by 4.7)
G-space, and g: X -> Z is a continuous morphism of G-spaces.
This implies that there exists a morphism of G-spaces g: βGX -> Z C
C*(y X G) which extends g. Putting

for (x, y) E: βGX X Y and / E G, it is clear that we obtain for every
(x, y) E βGX X Y an element g(x, .y) of C*(G). Thus, we have a func-
tion g: βGXX Y -+ C*(G) which obviously extends the original function
g: XX r-^

4.9. LEMMA. ΓAe mapping g: βGXX Y -* C?(G) is continuous, equi-
variant, and g[βGX X Y] has a compact closure in C*(G).

Proof. Consider (JC0, y0) G βGX X F, ε > 0 and a compact subset K
of G. We have to prove that there exist neighbourhoods U of x0 and V of
j 0 such that

\g(χ,y)(t)-g(χQ,y0)(t)\<ε

for all (x, ^) E £/X F and / E # . First, observe that by the triangle
inequality we have for all (x, y) E βG X X 7 and / E G :

0 - I(^)(jo? 01

Consider the first term of the right-hand side of (11). Observe that
§[βGX] is equal to the closure of jj[X] in C*(7 X G), and as f[JJΓ] is
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equicontinuous, g[βGX] is equicontinuous on 7 X G (cf. 4.7) (note that
equicontinuity of g[βGX] does not follow from its compactness a s Γ X G
is not locally compact). Hence for every t' E K there exists a neighbour-
hood £/' of tf in G and a neighbourhood F' of y0 in 7 such that

for all Λ E ] 8 C I J 6 F and / E IΛ Using compactness of K this implies
that there exists V E Ύyo such that

for all x G βGX and j G F. As to the second term of the right-hand side
of (11), due to continuity of g: βGX ^> CC(Y X G) there exists a
neighbourhood U of x0 in βGX such that this term is at most ε/2 for all
x G ί / and t E AT (notice that {y0] X K is a compact subset of 7 X G).
This concludes the proof that g: βGXX Y -> C*(G) is continuous.

Now continuity of g implies that g[βGXX Y] is included in the
closure of g[XX Y] = g[XX Y] in C*(G), which is compact. Hence
g[βGXX Y] has compact closure in C*(G). Finally, for all / E G and
(x, y) E XX Y we have

&(*(*, y)) = *( '(*, *)) = pfe(*, y) = rt(χ, y)

Stated otherwise, the continuous mappings (x, y) H» g(/(x, j)) and (x, j )
h^ prg(x, j;) from βGX X Y into C*(G) are equal to each other on the
dense subset XX Y of βGX X Y. Hence they are equal on all of βGX X Y.
Thus, g is equivariant. D

4.10. Proof of Theorem 4.1 (continued). We have shown in 4.5 through
4.9 that an arbitrary element g of E(XX 7, C*(G)) has a (unique,
as 1 X 7 is dense in βGX X 7) extension to an element g of
E{βGXX 7, C*(G)), provided XX 7 is G-pseudocompact. However, in
that case 7 is G-pseudocompact by Proposition 2.6, hence βGX X 7 is G-
pseudocompact by 2.7. Consequently, we may apply a similar pro-
cedure to g, obtaining an equivariant continuous mapping g: βGX X
βGY -» C*(G) which extends g, hence g also. D

5. Some open problems. There are two major open problems, the
solutions of which are required for a completely satisfying answer to the
question of when βG(X X 7) equals βGXX βGY.

5.1. The first problem concerns the additional condition which is
needed in order to prove that βG( X X 7) = βGX X βGY implies G-pseu-
docompactness of X X 7. In the classical case this condition (X and 7
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both infinite) is required because for X (or Y) finite one has always

β(XX Y) = βX X βY. In the case of a non-trivial, non-discrete group G

the situation is different. Although some additional condition is required

(cf. 3.6 above), the situation would be more satisfying when the condition

of (j-infiniteness which we employed would be sufficiently weak in order

to prove the following result: // one of the spaces X or Y is not G-infinite,

then βG(XX Y) = βGX X βcY. The following example shows that this

statement is not generally true.

5.2. EXAMPLE. Let G'= R. We give an example of two R-spaces

(X,π) and (Y, σ) such that X is not R-infinite, X is compact, and

nevertheless βR(XX Y) Φ βRX X βRY. Let X=:S\ Y : = R and con~

sider the following actions of R on X and Y, respectively:

π(t,x) : = x + t (modi) for* G R , J C G [ 0 , 1),

σ{t,r) : = r + t for t G R, r G Y = R,

where S1 is represented as R/Z or, which amounts to the same, as the

interval [0,1] with the endpoints identified. If βR(XX Y) were equal to

βRX X βRY, then for every f G UC*( X X 7, τ> and every ε > 0 there

would exist (cf. Lemma 3.2) δ > 0 such that

(1) \f(t + x ( m o d 1), s + r)- f(x, r) | < ε

for all x G [0,1), r G R and 5 , ί E R with 151< δ and \t | < δ. Consider /:

J T X y ^ R defined by

f(x,r):= arctan(rsin2ττ(r- x)), x G [ θ , l ) , r G R .

Then by uniform continuity of arctan on R, for every ε > 0 there exists

δ > 0 such that for all t G R and (x, r) G [0,1) X R we have

= |arctan((r + t)sin2π(r — x)) — arctan(rsin2τr(r — x)) |< ε,

provided) / sin 2π(r - x) |< δ. Hence/ G UC*( XXY,r).
On the other hand, putting x : = 0, r : = « G N , ί - 0 and 5 : = 1/Λ

in (1) we obtain for all n G N:

( 1 \ Iff n-*oo

— h w I s i n — -> arctan 2ττ 7̂  0.
n I n

From this it follows that (1) cannot hold for all suitably small s and t and

allr GR and x G[0,1).
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5.3. Problem. Is there a "non-triviality condition" (C) for G-spaces,
expressible in topological properties of the space and the actions, such
that the following is true for all G-spaces X and Y:

(i) If βG(X XY) = βGX X βGY and X and Y have (C), then 1 X 7
is G-pseudocompact.

(ii) If one of the G-spaces X or Y does not have (C) then βG(XX Y)
= βGXXβGY

5.4. Another way to fill the gap, indicated in 5.1, is to replace the
condition of G-pseudocompactness by a stronger property and try to
prove that βG( X X Y) = βGX X βGY implies this stronger property for
1 X 7 under the additional hypothesis that X and Y are both infinite. A
natural candidate for this "stronger property" would be ordinary pseudo-
compactness. In that case, §4 above could be replaced by the following
sequence of statements:

5.5. LEMMA. Assume G is a topological group which is, as a topological
space, merely a k-space, and let (X,π) be a G-space (Xa Tychonoυ space).
If X is pseudocompact, then βGX— βX, the ordinary Stone-Cech compacti-
fication of X.

Proof. For every t E G the mapping TΓ': X -> X extends to a continu-
ous mapping π': βX -» βX. In this way we obtain a mapping π: G X βX
-* βX which is easily seen to have the properties of an action, except
possibly continuity. We show that π is continuous if X is pseudocompact.

Let K be a compact subset of G and mκ : = TΓ \KXX. Then irK\ K X X ->
XΊs continuous, hence it has a continuous extension πκ: β(K X X) -* βX.
However, K X X is pseudocompact, hence by Glicksberg's theorem,
β(K X X) = βK X βX = K X βX. Thus, πκ has a continuous extension
πκ: K X βX -> βX. Since for every t E K the continuous mappings %ι

κ and
Ψ are equal on X, they are equal on βX, that is, πκ = π\κxβx. Conse-
quently, π\κxβx is continuous for every compact subset K of G. It follows
that the restriction of π to an arbitrary compact subset G X βX is
continuous. As G X βX is a fc-space, this implies m is continuous.

This shows (βX, π) is a G-space. Now it is easily seen that this is the
maximal G-compactification of X. This proves our lemma. D

5.6. REMARK. The result of Lemma 5.5 is stated without proof for
locally compact groups G in [9].
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5.7. COROLLARY. Let G be as in 5.5 and let (X9π) and (Y9σ) be

Tychonov G-spaces such that XX Y is pseudocompact. Then βG( X X Y) =

βGXXβGY.

Proof. For Z = X, Z = Y or Z = X X 7, we have βGZ = /?Z by

Lemma 5.5. Now apply Glicksberg's theorem. D

The observations above lead to the following

5.8. Problem. Let G be a locally compact group, G not discrete. Is it

true that every G-pseudocompact G-space X is pseudocompact? I believe

the answer is no, even if G is locally connected and compact, but I was not

able to find a counterexample.

5.9. The answer to the previous problem would be "yes" if the

following version of Lemma 5.5 were true: if G is locally compact

Hausdorff and (X,ir) is G-pseudocompact, then βGX— βX (use 4.1

above and necessity of Glicksberg's result for a G-space of the form

X X Z, X being G-pseudocompact and Z infinite, compact, having trivial

action). Observe that βGX = βX if and only if UC*( X,π)= C*(X), i.e.

every bounded continuous function on X is ττ-uniformly continuous. Thus,

our next problem reduces to a question, studied among others in [2], if one

considers the G-space (G, μ) (μ's = ts).

5.10. Problem. Find necessary and sufficient conditions for a G-space

(X,π) in order that βGX = βX. In particular, is G-pseudocompactness

sufficient?

5.11. REMARK. Necessity in the preceding problem is related to the

implication (ii) => (i) in 2.5. Indeed, suppose there exists a G-space (X9π)

such that JΠs G-pseudocompact, Xis not pseudocompact, but βGX — βX.

Then there exists / E C*( X) which has not a maximum or a minimum on

X. Since C*(X) = UC*(X,π), such an example would show that (ii) *> (i)

in Proposition 2.5.

Note added in proof. Recently the answer to Problem 5.8 turned out to

be "yes". This solves a number of other problems in this section (not

5.3!). It also follows, that our main theorem holds for infinite products as

well.
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