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INJECTIVE BANACH LATTICES WITH
STRONG ORDER UNITS

GERHARD GIERZ

In this note it is shown that a Banach lattice with a strong order unit
is injective (i.e. has the Hahn-Banach extension property for positive
linear operators) if and only if £ is a finite m-sum of spaces of the form
C( X, /"), where X is compact and extremally disconnected and where I"
denotes R" with the L-norm.

0. Introduction. In 1950-1952, a certain type of Banach space,
called a P, -space, appeared in the literature. A Px -space is a Banach space
G having the following extension property for linear maps:

Every bounded linear map φ: F -> G defined on a linear subspace
FQE allows an extension ψ: E -> G such that | |φ| | = ||ψ||.

The classical Hahn-Banach theorem says that the one-dimensional
space R is a Prsρace. From 1950-1952, D. B. Goodner [Go 50], L. A.
Nachbin [Na 50] and J. L. Kelley [Ke 52] showed that a Banach space G is
a Pλ -space if and only if G is isometrically isomorphic to a space of the
form C(X), where X is an extremally disconnected compact topological
space. One may say that P,-spaces are obtained by "spreading the real
line continuously across a compact space."

If one applies these ideas to Banach lattices, then of course one would
wish to consider only positive linear maps φ and only linear sublattices
FQE.

DEFINITION. A Banach lattice G is called injective provided that for
every Banach lattice E, for every linear sublattice FQE and for every
bounded positive linear map <p: F -> G there is a positive linear extension
ψ : £ - ^ G such that | |φ| | = ||ψ||.

In 1975 H. P. Lotz [Lo 75] proved that all Banach lattices of the form
C(X), X extremally disconnected and compact, are injective. But the class
of injective Banach lattices exceeds the class of Pj-spaces: Lotz also
showed that y4L-spaces, i.e., spaces of the form £,(μ), are injective. Also in
1975, D. I. Cartwright [Ca 75] gave, among other results, a characteriza-
tion of finite-dimensional injective Banach lattices: They are exactly the
m-sums of finite-dimensional y4L-spaces. As it turned out, injective Banach
lattices in general are obtained by "spreading yίL-spaces continuously
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across an extremally disconnected compact space," i.e., by sections in

certain bundles (see [Ha 77] and [Gi 77]). As bundle representations are

sometimes viewed as "complicated," this representation may not seem to

be satisfactory. However, in this note we shall see that the bundle

representation may be reduced to a much nicer description of injective

Banach lattices if we require in addition a strong order unit. We shall

prove the following main result.

THEOREM. Let G be a Banach lattice. Then the following statements are

equivalent:

(i) G is injective and has a strong order unit.

(ii) G is isometrically isomorphic to C(XX, /"') θ Θ C ( I W , l"m) where

m E N and:

(a) Xi is an extremally disconnected compact space, 1 < i < m.

(b) /f' - (R-s || ||); |K* l f . . . ,*„)!!, = 1 * . I + +\xH \.
(c) For M. e C(Xi9 /"') we have

For notations and results concerning Banach spaces and Banach

lattices, we refer to [Sch 71 and 74]; fundamental results and definitions

concerning bundles of Banach spaces and bundles of Banach lattices may

be found in [Ho 75] and [Gi 77 and 81]. We shall only consider real

Banach lattices. The word "compact" as used in this note contains

Hausdorff separation. The symbol T(p) always denotes the set of all

continuous sections in a bundle/?: & -> X.

1. The bundle representation. The starting point of our investiga-

tion is the following theorem.

1.1. THEOREM. Let G be a Banach lattice. Then G is injective if and only

if it is isometrically isomorphic to the Banach lattice T(p) of all sections in a

bundlep: & -> X of ALspaces such that:

(a) X is extremally disconnected and compact;

(b) if σ E Γ(p) then x ι-» ||σ(jc)||: X -* R is continuous (i.e., p: S -> X

has continuous norm);

(c) if σ: U -> & is a bounded continuous section defined on an open set

U C X, then σ may be extended to a global continuous section σ: X -> S.
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Maybe a few words concerning bundles are in order. The space of all
sections in a bundle in our case alternatively can be described as follows:

Let A" be a compact space. For every x E X let Ex be a Banach lattice.
Then spaces of sections T(p) may be characterized by:

(i) T(p) is a closed linear sublattice of ΣχξΞXEx = {o E XχGχEx:
sup{||σ(jc)||; x E X) < oo}, equipped with the sup-norm;

(ii) if x E X and a E Ex are given, then there is a σ E T(p) such that
σ(x) - a;

(iii) the mapping x h-> ||σ(x)||: ^ - > R is upper semicontinuous for
every x E X;

(iv) given / E C(X) and σ E Γ(/?), then /o σ defined by (/<> σ)(;c)
— f{x) ° σ(x) belongs to Γ(/?), too (i.e., Γ(/?) is a C( X)-module).
Hence, spaces of sections in bundles are nothing but upper semicontinu-
ous function modules in the sense of F. Cunningham and N. M. Roy (see
[CR74]).

Of course, being a bundle of y4L-spaces means that the Banach
lattices Ex, x E X, are all yίL-spaces. It should be clear how the condi-
tions (a) and (b) translate to upper semicontinuous function modules. The
translation of (1.1.(c)) is less obvious.

Let f / C l b e open. Let us call an element σ E XχζΞuEx a bounded
continuous section provided that for every continuous function / E C( X)
with support in U (i.e., for which/(JC) = 0 for all x E X\U) the element
σ 7E XX&XEX defined by

0, x & U,

belongs to T(p). For compact spaces X, this definition coincides with the
definition of local sections normally given by bundles.

Now condition (l.l.(c)) translates as expected. Thus, instead of talk-
ing about bundles of Banach lattices, the reader may wish to consider
upper semicontinuous function modules, which should be possible without
major problems.

2 Some results on bundles of Banach lattices. In order to prove the
theorem stated in the Introduction, we need four partial results, which
maybe are interesting in themselves.

2.1. PROPOSITION. Let p: & -> X be a bundle of Banach lattices, X
compact, and assume that & is Hausdorff. (This is especially the case if
x h* ||σ(jc)||: X -> R is continuous for every σ E T(p).) If x E X and if
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0 < a,,...,«„ G Ex are mutually orthogonal, then there is a neighborhood U
of x and continuous sections σ,,... ,σn G T(p) such that ot{x) = ai9 o^y) φ
0 and at{y) Λ σy(y) — 0 for ally G ί/ 0/M/ α// / φj.

Proof. Pick any sequence of sections τ , , . . . , τ n £ Γ ( ; ) such that
τt(x) = α, for all i. We then define the sections σ, by

αf = τ. - τ. Λ (η. V - - - Vτ;.H V ^ V - VrJ.

Then, for / φj we have

σ | Λ σy = (τy - τy Λ (η V - VT/_ , V τ ί + I V . . . Vrn))

On the other hand, 0 < σf as τf. > τ . Λ ( τ , V Vτ)_! V T / + 1 V V T J
and therefore the σ, are all positive and pairwise orthogonal. Moreover,
σ^x) — ar As the α, are mutually orthogonal, we have

σ,(x) = φ) - φ) Λ (φ) V . . . Vτ,_x(x) V τ/+1(x) V - Vφ))

= at - α. Λ(α, V - - V α / H V α l + I V • V α J

Finally, as S is T2 and as σ; and 0 are continuous sections which do not
agree at x9 we can find a neighborhood U of x such that ot(y) Φ 0 for all
y G C/, 1 < i < π.

2.2. PROPOSITION. Ler /?: & -* X be a bundle of Banach lattices over a
compact base space X. Assume that

(b) the mappings xv->\\o(x)\\: X-+ΈLare continuous for all o G Γ(/?);
(c) if σ: U -» S, U Q X open, is a bounded continuous section, then σ

way 6e extended to a global continuous section σ: A" -» S.
ΓΛe« ίAe mapping dim: I ^ R U {°o}; ^i-^ dim Ex is continuous, where
Ex — p~ \x) is the stalk over x G X.

Proof. We already know from (2.1) or [Gi 81] that the mapping dim is
lower semicontinuous. Hence the sets of the form [x: dim Ex>ή) are
open and we have to show that they are closed, too. Thus, let

l/ n ={x: dim £ , > * } .
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Then for every x0 G Un there are 0 < α,,... ,an G EXQ which are pairwise
orthogonal with norm 1. We therefore can find a closed neighborhood
V C Un of x0 and continuous sections σ, G Γ(/?) with σ, Λ σy = 0 for / φj
and σy(jc0) = α, . A S I H ||σ,.(jc)|| is continuous and llσ̂ XoJH = \\at\\ = 1,
we may assume Hσ^x)!! > \ for all x G F. Therefore the mapping x H>
Ilσ/( *)IΓ I : v -+ R i s w e U defined and continuous. Extend this mapping to
a continuous function / : X -> R. Then /(JC 0 ) = 1 and hence (/• ° α , ) ^ )
= αf . We now define new sections τ, by

τ/ : ~ fi ° °i> 1 < l <Λ.

Clearly ||τ, ( j ) | | = 1 for all>> G F. Hence we have proved:

Every xQ G Un has a neighborhood F such that there
, v exist positive pairwise orthogonal continuous sections
W τ l 9 . . .,τw G Γ(/7) satisfying ||T /(;0|| = 1 for all y G V

and all 1 < i < π.

We now let

9Γ= {(K, σ,,... ,σM): V C Un9 Kopen, σ,: V -» S is a continuous section,

σ, Λ σy = 0 for i φj and ||σf.(^)|| = 1 forj; G F}.

We order Φ by

( F , σ 1 , . . . , σ J < ( f F , τ 1 , . . . , τ J iff F C PFand % = σr

Apply Zorn's lemma to find a maximal element (£/, σ,,... ,σrt) of ^ We
claim

(1) ί/n C ί7, as otherwise we would have Un\U Φ 0 . Pick x0 G ί/w\ί7
and apply (*) to obtain an open set W C Un\U and continuous sections
p,: W -* & which are positive, pairwise orthogonal and satisfy IIP^JOH = 1
for y G W. Let U' = U U W and define

,/ x f σf (jc), x G [/,

We obtain (ί/, σ,,... ,σw) < (f/', σ[9... ,σ^), contradicting the maximality
of(C/,σ l i :..,σJ.

(2) ί7 C Un. By property (c) we can find extensions σ7: t/ -* S of σ7.
Now (b) implies σ^^) Λσ.(y) = 0 and ||σ;(j;)|| = 1 for all / φj\ y G U.
Especially, for every y G U the elements σ,(j>),... ,σΛ(>/) G Eγ are linearly
independent, showing dim E^n, i.e., U C Un.

Now (1) and (2) mean [/ = Un9 i.e., ί/M is closed.
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2.3. PROPOSITION. Let p: & -> X be a bundle of finite-dimensional

Banach lattices over a compact base space X and assume (b) and (c) hold.

Then there are finitely many {possibly empty) open and closed subsets

ί/,,... ,Un C X which cover X and have the property that Ey is k-dimen-

sional for every y E Uk, where Ey — p~ι(y) is the stalk over y. Moreover,

the Banach lattice T(p) of all continuous sections of p is, up to an equivalent

norm, isomorphic to the Banach lattice C{UX, R) θ C(U2,R
2)

® θ C(Un9 R"). In addition, if all stalks are AL-spaces and if we equip

Rk with the norm || ||, given by \\(xl9... 9xk)\\ — \X\ | + * * * + 1** I > t^ιen ^ s

isomorphism is in fact an isometry.

Proof. Firstly, note that for every open and closed subset U Q X the

Banach lattice T(p) is isometrically isomorphic with Γ(/?^) θ T(plχ u)9

where Γ(/?,^) denotes the Banach lattice of all continuous sections σ:

U -» S. Hence it is enough to consider the case where X — Un and

[/, = = Un__λ = 0. In this case let (U, σ,,... , σ j be a maximal ele-

ment of 5', where ®$ is defined as in the proof of (2.2). Then actually

U — X, as we saw in the proof of (2.2). Thus we can find continuous

sections σ1 ?.. .,on E Γ(/?) which are mutually orthogonal and satisfy

||σ,( JOH ~ 1 f°Γ all J' ^ X- Define a map

where the f are the coordinate functions of /. Then T is linear. Moreover,

an easy calculation shows

as the σ, are mutually orthogonal,

) I o σ,(x) + +\fn(x) I ° σ«(x), as σ,(x) > 0,

Thus T is a lattice homomorphism.

Next, equip R" with the /rnorm || ||,. Then T is a contraction. Let

/ E C(X, R"). Then we have

ll/ll = sup l/^x) I + - - - +|/n(x) I
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and

= sup|||/1(x)|σ1(x)H- +|/π(x)|σn(x
x&X

x<ΞX

= s u p | / , ( x ) \\\σλ(x)\\ + ••• +\fn(χ) \\\σn(x)\\
xBX

ι(x)\ + - + \ f n ( x ) \ .

Note that the only inequality occurring in the computation becomes
equality, providing that every stalk Ex is an ΛL-space. Moreover, for every
/ e C(X,R")wehave

/ = sup| | |/,(x)K(x) + ••• + |/ Λ (x)K(x) | |
x<ΞX

> sup|||/(jc) |σ,(x)|| (as 0 < a < b implies ||β|| < \\b\\
xGX

in every Banach lattice)

x<ΞX

x<ΞX

showing that

\\T(f)\\ > maxfll/,11,... ,||/J|} ^ (l/n)\\f\\.

This last inequality yields the injectivity of T and shows that the norm on
C(X,Rn) and the norm on T(p) restricted to the image of T are equiva-
lent. Especially C(X, R") being a Banach space, the image of Γis closed in
T(p). It remains to show that the image of T is also dense in T(p).
Clearly, T is a C( X)-module homomorphism and therefore the image of T
is a C(Λr)-submodule of T(p). Moreover, as the σx{x),.. .,on(x) form a
base of Ex, we have Ex = {T(f)(x): / E C(X9R

n)}. Hence, the Stone-
Weierstrass theorem for bundles (see [Ho 75]) shows that the image of T is
dense in T(p).

3. The proof of the theorem. In this last section we shall give a
proof of the theorem stated in the Introduction. Let us begin with an
injective Banach lattice G having a strong order unit u. Then every
quotient of G has strong order unit, too. Represent G as the space of all
sections in a bundle of yίL-spaces. As the stalks of a bundle with compact
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base space are always quotients of the space of all sections, we obtain that

all the stalks of the bundle used in (1.1) are y4L-spaces with strong order

units. Now an y4L-space with strong order unit (in fact, every Banach

lattice with strong order unit) is, up to an equivalent norm, isomorphic to

a Banach lattice of the form C(7), Y compact. For an ^4L-space this can

only be true if it is finite dimensional. Hence all the stalks of the bundle

used in (1.1) have to be finite dimensional. Now an application of (2.3)

provides us with a proof of (i) => (ii).

To verify "(ii) => (i)" we first recall from Cartwright's paper [Ca 75]

that a sum of injective Banach lattices is again injective. Since a finite sum

of Banach lattices with a strong order unit also has a strong order unit, it

is enough to consider C(X, I"), where X is extremely disconnected.

Clearly, the function 1: X -> R"; x H> ( 1 , . . . , 1) is a strong order unit for

C(X, I"). It remains to show that C(X, I") is injective. We shall apply

(1.1) to do so. Let & — X X I" and let p: & -> X be the first projection.

Then p is a bundle and T(p) = C(X, I"). Moreover, if U C X is open,

then σ: U -> S is a bounded continuous section if and only if there are

bounded continuous functions / , , . . . , fn: U-* I" such that σ(x) —

(/j(x),... ,/„(*)) for every x E U. As X is extremely disconnected, each of

t h e / has a continuous extension gt: X -> I". Clearly σ E T(p) defined by

ό(χ) = (g\(x)>—">gn(
x)) e χ t e n d s σ. Now (1.1) tells us that T(p) =

C(X, /;?) is injective.
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