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REPRESENTATIONS ASSOCIATED WITH

ELLIPTIC SURFACES

DAVID A. Cox AND WALTER R. PARRY

An elliptic surface (over Q /: X -» S with a section has two
representations naturally associated to it: the first, the monodromy
representation, is determined by the topology of /, while the second, the
Galois representation, is determined by the arithmetic of the general
fiber of /. The purpose of this paper is to study and compare the
properties of these representations.

We will always assume that /: X -» S is relatively minimal and that
the/-invariant is nonconstant. We let K denote the function field of S and
E the general fiber of/. Then E/K is an elliptic curve with/: X -* S as its
Neron model.

The Galois representation given by the action of Gdλ(K/K) on the
torsion points of E(K) is studied first. Since C contains all roots of unity,
this representation can be regarded as a continuous homomorphism

pE/κ:Gal(K/K)-*SL(2,Z)= Π SL(2,Z,).
p prime

With the above hypothesis on E/K, it is known that the image of pE/κ,
denoted Im(pE/κ), is open in SL(2, Z) (see [5]). This naturally leads to the
notion of level of E/K. In §1 we introduce this and study its basic
properties. Then, in §2, we show how to bound the level in terms of the
behavior of the/-invariant and also in terms of the genus g of K.

The monodromy representation (also called the homological in-
variant) of/: X -> S is studied in §3. If So = {s E S: /is smooth above s]
and Xt is the fiber over t E So, then IΓ^SΌ, 0 a c t s o n H\Xt>Z), giving us
the monodromy representation

Px/s
m-*ι(S<»t)-+SL(29Z).

(The image is in SL(2, Z) because of Poincare duality.) We will show that
the monodromy determines the Galois representation and that in some
respects the monodromy is the more subtle invariant.

1. We will work in a slightly more general context than that of the
introduction. Here, K will be a field of characteristic zero containing all
roots of unity, and E/K will be an elliptic curve such that lm(pE/κ) is
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open in SL(2, Z). This means that for some integer n > 1,

(1.1) t(n)Qlm(pE/κ),

where

f(/i) = { γ 6 S L ( 2 , Z ) : γ Ξ lmod«} .

The level of E/K is the smallest integer n for which (1.1) holds. It can be

shown that the level is actually the greatest common divisor of all such

integers.

The level influences many things associated with E/K, as the next

proposition shows.

PROPOSITION IΛ.Let E/K have level n.

(i) End^(£) = End^(E) = Z.

(ϋ) Let λ: E -» Ef be a K-isogeny.

(a) Ifλ is cyclic, then deg(λ) | n.

(b) E'/Khas level n\ where nr | deg(λ)«. Thus nr \ n2.

(iii) E(K)toτ is n-torsion.

(iv) Let p be prime and let

pE/KrP:Gzl(K/K)->SL(2,Fp)

be the Galois representation on p-torsion points. If p\n, then pE/Kp is

surjective, and, if p > 5, the converse is true.

Proof. Let T{E) = lim£m, where Em = {x e E(K): mx = 0}. Then

T(E) = Π^ Tp{E) s Z 2, where 2^(£) is the usual Tate module over ZpTp{E) s Z , where 2^(£) is the usual Tate module over Zp.

Every iί-isogeny λ: E -* Er induces a map Γ(£) -> Γ(£") which is repre-

sented by a matrix Λ E M(2,Z) such that det(^4) = deg(λ) for some

choice of bases. Also, if a positive integer k divides the entries of A, then

Ek c Ker(λ). Since λ is a ΛΓ-isogeny,

(1.2) A p£ /*(σ) = ρEyκ(
σ) ' A

for every σ ε Gal(X/A:).

To prove (i), take λ ε Endκ(E). Since t(n) C Im(p£/A-), (1.2) im-

plies that ̂ 4 centralizes f («). Thus, ̂ 4 is a homothety, which easily implies

that End^(£) = Z. Since this is true for all finite extensions of K,

Endχ(E) = Z.

We now prove (ii). Since two isogenous elliptic curves are isogenous

via a cyclic isogeny, λ may be taken to be cyclic. This implies that bases of
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T(E) and T{E') can be chosen such that A = ({,£), where N = deg(λ).
Since f(«) C lm(pE/κ), (1.2) implies

AT(n)A-1 Clm(pE,/κ).

Thus iV|w because ^f(w)^^ 1 c SL(2,Z), and /I'|JWI because t(Nn) C
f

Now (iii) is clear because any element of E(K)toτ defines a cyclic
AΓ-isogeny whose degree is the order of the element.

To prove (iv), note that t(n) = ΰp T(pvp{n))p, where T(pr)p = (γ E
SL(2, Zp): γ = 1 mod pr). Thus the natural map

t ( n ) - ψ )
is suqective when/? {n. The converse follows easily from [10, IV.3, Lemma
5].

If E/K has finite level and L is a finite extension of K, then E/L
clearly also has finite level. It is possible to estimate how much the level
can change as follows.

PROPOSITION 1.2. Let E/K have level n, and let L be a finite extension
ofK. Then E/L has level n\ where W < [L: K]n.

Proof. Let G = lm(ρE/L) Π f(«). Since f(n) C lm(ρE/κ), it follows
that [f (n): G] divides [lm(ρE/κ): lm(ρE/L)] = [L: K]. However:

The map G -* G Π SL(2, Z) gives a bijection between
(Λ OΛ ° P e n subgroups of SL(2,Z) and congruence subgroups

of SL(2, Z). This bijection preserves level, index, normal
subgroups and quotients.

Let Γ = G Π SL(2, Z). Then Γ c T(n) and Γ has level«', hence it suffices
to prove that

(1.4) Λ'

When π = 1, (1.4) is proved in [2, Theorem 4.2], and the proof easily
generalizes to the case when n > 1. D

Sometimes E/L has finite level even when L is an infinite extension
of K. The most interesting example is when L = KΆb, the maximal
Abelian extension of K. In this case, Serre noticed (see [11, Remark, p.
300]) that E/KΆb has finite level. We can estimate the level of E/K& as
follows.
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THEOREM 1.3. Let E/K have level n. Then E/KΆh has level n\ where
ri\\2n2.

Proof. By Serre's result, lm(ρE/Kah) is a normal subgroup of lm(pE/κ)
of finite index and Abelian qotient. Since t(n) C Im(pE/κ), we see that
G = lm(pE/Kab) Π t(n) is normal in t(n), again with finite index and
Abelian quotient. It suffices to prove that f (12n2) C G.

We may assume that G is the closure of the commutator subgroup of
t(n). Using the notation of the proof of Proposition l.l(iv), we have
fχ#i) = Π^ T(pΌ'<"\. Then G is also a product: G = Up Gp.

Let H be the closure of the commutator subgroup of SL(2, Z). One
easily sees that H = HpHp, where

p p

(1.6) H3 has index 3 in SL(2, Z3) and is generated by Γ(3)3, (? ~ι

0) and
(fi) and

(1.7) H2 h a s i n d e x 4 i n S L ( 2 , Z 2 ) a n d i s g e n e r a t e d b y Γ ( 4 ) 2 , (QZ\) a n d
/-I 2x
v o - i λ

Fix a prime /? and let r = vp(n). Then Ĝ  is the closure of the
commutator subgroup of T(pr)p. We will show that

\HpΠT{p2r)p iίp^2oτr = 0

)2 Π TQ(22^2 Π ΓQ(22^Y2

where the subscript "0" has the usual meaning and the superscript " ί "
means transpose. The theorem follows immediately from (1.8), and by
computing indices, one also obtains the inequality

(1.9) [f(/ι): lm(pE/κJ Π f(»)] < 12«3.

This will be useful later.
Before proving (1.8), note that it is closely related to a result of Lang

and Trotter which describes the closure of the commutator subgroup of
{γ e GL(2, Zp): γ = 1 mod pr) (see [8, p. 95 and pp. 163-173]). The only
difference occurs when/? = 2.

Let Gp denote the right hand side of (1.8). The case r = 0 is trivial. To
handle the case r > 0, we start with the following three simple observa-
tions.

(1.10) The commutators of sl(2, Zp) generate the subgroup

= { ( «
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(1.11) If 1 + pΆ is in T(pr)p, then tτ(A) = Omod pr.
(1.12) Ux=l+prA and y = 1 + prB are in T(pr)p, then

λy~ι = 1 +P

2r[A,B]

+p3r[A,B][l(-l)kp^l 2 A'BA).
\k=\ Xi+j = k ')

These facts immediately imply that Gp C Gp. For the opposite inclusion,
e will show that if
< / < 3, such that

we will show that if 1 + pkrA is in Gp, k > 2, then there are xι,yi E Γ(ρ r) p 9

3

(1.13) 1 +pkrA = Π ^ Λ Λ Γ 1 mod/>(*+1)r.

This implies that Gp consists of convergent infinite products of commuta-
tors of elements of T(pr)p, proving (1.8).

To show that (1.13) holds, first note that p{k~1)rA = A mod p{k~l)r for
some A E Λ. By (1.10), A = 2f=1[i4/, Bt]9 where f̂z and ^ are nilpotent
and [Ai9 Bt] = Omod /^(*~2)r. Then A'Z = 1 + prAi and# = 1 + /?r5z lie in

r )^ ? and (1.13) follows from (1.12). D

Since E/K& has finite level, it follows that E{KΆh)iOΐ is finite. This
fact was noticed by Mazur in [9, Proposition 6.12]. Combining Theorem
1.3 and Proposition l.l(iii), we get the following more explicit result.

COROLLARY 1.4. If E/Khas level n, then E(KΆb)toτ is \2n2-torsion.

We next cast our results in field theoretic terms. Let Ktor be the field
obtained from K by adjoining the coordinates of points in E(K)ioτ.

COROLLARY 1.5. If E/K has level n, then

[K,hn Kxor: K]<\2n
p\n

Proof. Let L = Kah n K t o r. Then [L : K] = [Gal(Ktor/K):
Gdλ(Kiot/L)}. It is well-known that Gal(ϋ:tor/is:) s lm(pE/κ) and
Gal(KtoI/L) - lm(pE/κJ. Thus [L:K] = [lm(pE/κ): lm(pE/κJ]. Since
f(«) Clm(p£/K),weget

[L:K] <[lm(p£/JC): f(«)][f(«):Im(p£/J,ab) n t(n)],
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and then (1.9) implies

(1.14) [L: K] <*[lm(pE/κ):t(n)] -(12«3).

But lm(pE/κ) C SL(2, Z) = f(l), so that by (1.3) and (1.4) we have

H<[SL(2,Z) :Im(p £ / j ] .

The index of f («) in SL(2, Z) is known, yielding

p\n

This formula and (1.14) give the desired estimate for [L: K], D

Besides the level, there are other invariants of lm(pE/κ). One of the
most natural is the index of lm(ρE/κ) in SL(2, Z). We have the following
relation between level and index.

PROPOSITION 1.6.

(i) IfE/Khas level n, then

p\n

(ii) The index [SL(2, Z): Im (pE/κ)] is an isogeny invariant ofE/K; the
level is not.

Proof. The proof of Corollary 1.5 gives (i). To prove (ii), suppose that
E and E' axe #-isogenous. By (1.3), Γ = lm(pE/κ) Π SL(2,Z) and Γ =
lm(ρE,/κ) Π SL(2, Z) are congruence subgroups, and we need only show
that they have the same index in SL(2, Z). From (1.2) it follows that Γ and
Γ" are conjugate in SL(2,R). Thus their fundamental domains have the
same volume, therefore ±Γ and ±T' have the same index in SL(2, Z) and
thus Γ and Γ" have the same index in SL(2,Z). In §3, we will give
examples to show that the level is not an isogeny invariant. D

While we are principally concerned with elliptic curves over function
fields, we now comment on the arithmetic case. An elliptic curve E over a
number field K has a Galois representation

and Serre has proved that lm(pE/κ) s GL(2, Z) has finite index when E
has no complex multiplication (see [11]). If Kcyc is K with all roots of unity
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adjoined, it follows that E/Kcyc has finite level, which we may define to
be the level of E/K. The results of this section then provide useful
information about the arithmetic of E/K. (Lang and Trotter have defined
an invariant of lm(ρE/κ) C GL(2,Z) analogous to the level: in the
language of [8, p. 18], one takes the smallest integer which is stable and
splitting for G — lm{ρE/κ).)

2. In this section we return to the situation of the introduction,
where E is an elliptic curve over a function field K in one variable over C,
and they-invariant is nonconstant. The Neron model of E/K is an elliptic
surface /: X -* S. Our goal here is to get effectively computable bounds
for the level of E/K.

We first show how they-invariant influences the level.

PROPOSITION 2.1. Let E/K have level n. Then
(i)/ι<2deg(y),

(ϋ) n 12LCM{6: j has a pole of order b).

Proof. Let H be the image of Im(pE/κ) in SL(2,Z/nZ). Then E/K
has a level //-structure in the sense of [3, §3.1]. Since Γ = Im(ρE/κ) Π
SL(2, Z) is the inverse image of H in SL(2, Z), [3, §5] gives us a commuta-
tive diagram

(2.1) S U ,

j\

P 1

where X(T) = Γ\φ*, and/ is the natural map induced by Γ C SL(2, Z).
From (2.1), we see that deg(/)|deg(y). Since deg(/) = [SL(2,Z):

±Γ], it follows from (1.4) that

m < [ S L ( 2 , Z ) : ± Γ ] < d e g ( 7 ) ,

where m is the level of ±Γ.
By [15, Theorem 2], we have

m = LCM{widths of cusps of ±T)

= LCM{b: J has a pole of order b).

Then (2.1) implies that m | LCM{b:j has a pole of order b).
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It remains to relate m, the level of ±Γ, to n, the level of Γ. Since
[ ± Γ : Γ] < 2, it follows that [T(m): Γ Π T(m)] < 2, and since Γ Π Γ(w)
has level n, (1.4) gives that

« <[Γ(m): Γ Π Γ(m)] m < 2 m .

Hence n = moτ n = 2m, and the proposition follows. D

In §3, we will give examples to show that the factor of 2 is necessary
in both parts of Proposition 2.1.

A more striking result is that the level of E/K is bounded by a
constant depending only on the genus of the base field K. Recall that K is
the function field of the Riemann surface S.

THEOREM 2.2. Let E/K have level n, and let S have genus g.

(in) If p is a prime dividing n, then p < 12g + 13.

Proof. By (1.3), Γ = Im(ρE/κ) Π SL(2, Z) is a congruence subgroup
of level n. Since j is nonconstant, the map π: S -* X(T) of (2.1) is
surjective. Thus, letting g denote the genus of X(T), we have

(2.2) g<g.

Let Γ be the image of Γ in PSL(2, Z), and let its level be ή. Then g is also
the genus of X(T), and we can use the following results of [2] to relate g
and n.

THEOREM 2.3. Let Γ C PSL(2, Z) be a congruence subgroup of level n,
and let g be the genus of X(T).

(i)Ifg = O,thenή= O(l).
(ϋ) Ifg > 1, then ή = \2g +_O(g^2).

(iii) If p is a prime dividing n, then p < 12g + 13.

Proof. See Corollary 4.7 (when g = 0), Corollary 4.8 and Proposition
4.9 in [2]. D

Since n is also the level of ±Γ, it — n or n — n/2, and the theorem
follows immediately from (2.2) and Theorem 2.3. D

More precise versions of (i) and (ϋ) in Theorem 2.2 may be stated as
follows.

(i)' If g = 0, then n < 64.
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( i i )Ίfg> l,then

n < 24g + 13(48g + 121)1/2 + 145.

These statements follow from a more precise version of Theorem 2.3
which appears in the preprint version of [2]. (Specifically, see Corollary
4.11 and Table 5.1 in the preprint, and note that the group of level 36,
resp. 48, in PSL(2, Z) in Table 5.1 is not the image of a group of level 72,
resp. 96, in SL(2, Z).)

Here is a corollary of Theorem 2.2(iii) and Proposition 1.1 (iv).

COROLLARY 2.4. With the above notation, the Galois representation on
p-torsion points

is surjective for all primes p > 12g + 13. D

Another corollary of Theorem 2.2 is the following finiteness result.

COROLLARY 2.5. For a fixed function field K over C, there are only
finitely many possibilities for the image of the Galois representation ρE/κ. •

Since there are only finitely many congruence subgroups Γ of SL(2, Z)
such that A^Γ) has a given genus (proved by Thompson in [14]), this
corollary was already known.

Given the strength of these theorems, one might hope for similar
results in the number field case. Here, recall that E is an elliptic curve
without complex multiplication over a number field K. Little is known
about the size of lm(pE/κ) C GL(2,Z), although some examples have
been computed (see [8] and [11]). In analogy with Proposition 2.1, Serre
(see [11, §5]) has shown, when K ~ Q, how to bound the primes dividing
the level in terms of the reduction data of E/Q. It should be possible to
bound the level itself using the reduction data. The analog of Theorem 2.2
is quite a different matter. Given the present state of knowledge, one
cannot even reasonably conjecture such a result. The number field case is
much deeper than the function field case.

3. Let E/K be as in §2, and let /: X -> S be its Neron model. We
now study the monodromy representation
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defined in the introduction. The image Γ of ρx/s in SL(2, Z) is called the
global monodromy group of /: X -> S. Both ρx/s and Γ are topological
invariants in the sense that they are uniquely determined up to SL(2, Z)-
conjugacy by the topology off.X^S and the orientation induced on the
smooth fibers of/. Stiller has studied the basic properties of Γ:

PROPOSITION 3.1. Let Γ be the global monodromy group off: X -» S.
(i) Γ has finite index in SL(2, Z).

(ii) There is a commutative diagram

X(Γ)

S ΪJ

j\

P 1

where J is the natural map induced by Γ C SL(2, Z).
(iii)[SL(2,Z):±Γ]|deg(y).
(iv) [SL(2,Z): ±T] is an isogeny invariant of E/K.

Proof. See [13, §§1 and 2]. ϋ

Stiller also shows that other interesting invariants of E/K are isogeny
invariants. Propositions 1.6(ii) and 2.1(i) were inspired by parts (iii) and
(iv) of Proposition 3.1.

Results such as the above lead one to expect a close relation between
the Galois and monodromy representations. To state the relation pre-
cisely, we need to recall some facts.

(3.1) There is a continuous homomorphism

(where denotes profinite completion) such that the diagram

ir,(S0,t) -» SL(2,Z)

n| n|
(Px/s)

πλ(S09t) -> SL(2,Z)

commutes.
(3.2) πx(S0, t) is isomorphic to the etale fundamental group πιx(S0, t).
(3.3) There is a continuous suqection



REPRESENTATIONS OF ELLIPTIC SURFACES 319

Our basic result is that ρx/s determines ρE/κ as follows.

THEOREM 3.2. The diagram

Gaλ(K/K) -» S1(2,Z)

gi UPX/SΪ

is commutative.

Proof. Let Xt be the fiber of/: X -» S over ί, and let £„ = {x E
«Λ: = 0}. Then it suffices to find isomoφhisms

φn:En^Hι(Xt,Z/nZ),

compatible with the natural inclusions Z/nZ C Z/mZ and En C Em

(when n \ m), such that the diagrams

GeΛ(K/K) ^

(3.4) i UAut(φn)

^(S09ty * Aut{Hι(XnZ/nZ))

commute for all n, where pλ and p2 are determined by ρE/κ and px/s

respectively.
The map sending 1 to e2tπi/n induces compatible isomoφhisms Z/nZ

= μn. Thus, in (3.4), we can replace Z/nZ by μn.
The map p2, restricted to ^(SΌ, 0> describes the locally constant sheaf

Rιfφn on 50. Working in the etale topology, there is a locally constant
sheaf R[tf^μn which is described by a map

The comparison theorem of [1, XVI 4.1] gives us compatible commutative
diagrams

(3.5) U U

^(S0,tf
 P-i Aut(H\Xnμn)).

Next, let the map ξ: Spec(A") -» So be induced by the inclusion
K C K. Then the geometric point t G 5 0 gives us a specialization | -»t.
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The specialization morphisms

( Hι

tt{Xvμn)

are isomoφhisms by [1, XVI 2.2 and 2.3], and we can replace t by ξ in the
bottom row of (3.5).

Finally, note that π^(SpGc(K\ ξ) = GsΛ(K/K)9 and that the isomor-
phism

(3-7) Hlt(Xί>μn)^En

of [1, IX 4.7] is compatible with the Galois action (and also with the usual
maps μn C μm and En C Em). This imphes that px can be identified in a
natural way with ρ3 ° 8, where

is induced by the map Spec(^) -> So. Then (3.5)—(3.7) give us the desired
maps φn, and the theorem follows. D

This theorem also proves the well-known fact that the Galois repre-
sentation is unramified over So (i.e., where E/K has good reduction).

Here are some simple corollaries of Theorem 3.2.

COROLLARY 3.3. Given E/K, let Γ be the global monodromy group of its
Neron model

(i) lm(pE/κ) is the closure ofT in SL(2, Z).
(ϋ) lm(pE/κ) Π SL(2, Z) is the smallest congruence subgroup o/SL(2, Z)

containing Γ. D

COROLLARY 3.4. Im(ρE/κ) and the level of E/K are topological in-
variants of the Neron model of E/K. D

We can now give the example promised in Proposition 1.6(ii). In [13,
§3], Stiller constructs isogenous elliptic curves E and E over C(t) such that
their Neron models have global monodromy groups Γ(2) and Γ0(4)
respectively. It follows from Corollary 3.3 that E/C(t) has level 2, while
E/C(t) has level 4. Note that this is the maximum change of level allowed
by Proposition l.l(ii).

Since the global monodromy group Γ determines lm(pE/κ), it is
natural to ask if the converse is true. If Γ were always a congruence
subgroup of SL(2, Z), then the converse would follow immediately from
Corollary 3.3. However, the following shows that Γ can be any subgroup
of SL(2, Z) of finite index.
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PROPOSITION 3.5. Let Γ be a subgroup of finite index in SL(2, Z). Then
there is an elliptic curve E/K, where K is the function field of X(T), whose
Neron model has Γ as its global monodromy group.

Proof. Let Γ be the image of Γ in PSL(2, Z), and let & be the set of
elliptic points of SL(2,Z) acting on φ. Then Γ acts freely on φ-S with
quotient, say, 50, giving us a surjective homomorphism

p:irx(S0) -»Γ.

Suppose there is a commutative diagram

Γ
P/1

(3.8) πx(SQ) i

P\

f
Let /: X(T) -* P 1 be the natural map. Then p belongs to / in the sense of
[7, §8], so we can let/: X -> X(T) be the basic member of ^(p, /) (again,
see [7, §8]). One easily checks that Im(p) is the global monodromy group.
Thus, the generic fiber of/will give the desired example, provided we can
find a surjective map p satisfying (3.8).

If — 1 $ Γ, then Γ -> Γ is an isomorphism, so that p exists and is
clearly suqective. (It is clear from [12, §4] that this gives us the elliptic
modular surface of Γ.)

Suppose that — 1 E Γ. Our above construction gives us a commuta-
tive diagram

TΓ^P1 - {0,l,oo}) * PSL(2,Z).

where p} is surjective. Since ^ ( P 1 — {0, l,oc}) is free, pι lifts to a
homomorphism

P l : τ r 1 (P 1 -{0, l ,oo})-SL(2,Z)

which is easily seen to be surjective. Then p = Pi^,^) gives the desired
suqective lift of p. D

We can now give the examples promised in the remarks following the
proof of Proposition 2.1. Let Γ be the commutator subgroup of SL(2, Z).
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Then (1.3) and (1.5)-(1.7) show that - 1 £ Γ, [SL(2,Z): Γ] = 12 and,
contrary to the claim of [12, Ex. 5.9], Γ has level 12. The proof of
Proposition 3.5 shows that the elliptic modular surface of Γ has Γ as its
global monodromy group. Then the corresponding elliptic curve E/K has
level 12 by Corollary 3.3. They-invariant of E/K has only one pole, which
is of order 6 (see [12, Ex. 5.9]), so that 6 = deg(y) = LCM{b: j has a pole
of order b). Thus, the factors of 2 in Proposition 2.1 are necessary.

A final question to ask is if the analog of Corollary 2.5 holds for the
global monodromy group Γ: for elliptic surfaces over a fixed Riemann
surface 5, are there only finitely many possibilities for Γ? The answer is
no. To see this, note that by [6], there are infinitely many subgroups
ΓcSL(2,Z) of finite index such that X(T)szPι. Given such a Γ,
Proposition 3.5 gives us an elliptic surface /: X -» P 1 with monodromy
representation

where So C P 1 and ρx/P\ is surjective. If S is any Riemann surface, we can
find a map π: S -» P 1 which is unramified above P 1 — So. Then the
pullback of /: X -* P1 via m gives us an elliptic surface over S with Γ as
global monodromy group. This gives us infinitely many global mono-
dromy groups Γ. Combining this with Corollary 2.5, we get infinitely
many elliptic surfaces over S with distinct Γ's and the same Im(pE/κ).
Thus, we see that the global monodromy group is a much more subtle
invariant than the image of the Galois representation.
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