
PACIFIC JOURNAL OF MATHEMATICS
Vol. 115, No. 2,1984

A GENERAL VERSION OF BELTRAMΓS THEOREM
IN THE LARGE

H. BUSEMANN AND B. B. PHADKE

Beltrami's Theorem (1865) determines the Riemann spaces whose
geodesies behave locally like affine lines. Its global form (proved much
later) states that a complete simply connected Riemann space with this
property is a euclidean, hyperbolic or spherical space. Here we establish
what we believe to be the most general meaningful version of this
theorem. We define a general class of complete metric spaces, called
chord spaces, which possess distinguished extremals. In our case these
must behave locally like affine lines, but they need not be the only
extremals. This situation occurs in many important spaces.

Our principal result is that such a space (of n dimensions, n > 1)
can be mapped topologically and geodesically either on the entire //-sphere
S" or on an arbitrary open convex subset of an open hemisphere of S",
considered as the affine space A". Examples of such spaces with some
unexpected phenomena and the significance of chord spaces in general
are discussed.

1. Introduction. The classical theorem of Beltrami was published in
1865 in [1]. It states that an ^-dimensional Riemann space (Beltrami
assumes n = 2, but this case implies the result for n > 2. We take n > 1
throughout) in which the geodesies behave locally like projective lines has
constant curvature and is therefore, according to Riemann, locally
euclidean, hyperbolic or spherical.

The corresponding theorem in the large which was proved only in this
century is: // the space R is {in addition) complete and simply connected
then it is a spherical space Sn or is defined in an open hemisphere of Sn, i.e.
the affine space An and either R = An is the euclidean space or, with a
proper choice of the hemisphere R is a hyperbolic space defined in the interior
of an ellipsoid in An.

The proofs use strongly the properties of these three metrics.
The purpose of the present paper is to give a Beltrami's Theorem

(B.T.) in the large the most general form which seems reasonable. Because
the Theorem of Desargues plays a fundamental role we call for brevity a
space locally desarguesian (l.d.)1 when each point has a neighborhood

xOur paper [9] treats special cases of interest and some independent topics. At the time we
were not aware of the monodromy argument. We used it in a very similar form in [11].
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which can be mapped topologically and geodesically on a convex set V in
the projective space Pn, where convex means that there is a hyperplane
H c Pn with V Π H = 0 and V is convex as set in the affine space
Pn - H. Although it proves convenient to use a metric it turns out to be
immaterial which model of Pn or Sn we use and we agree to always take
Pn or Sn with curvature 1.

The usual setting for generalizations of the present type has been
G-spaces, see [3 quoted as G]. But some of the most interesting and
important desarguesian spaces are not G-spaces. [8], which is not readily
accessible, gives axioms for a wider class of spaces where certain shortest
joins, called chords, are distinguished. They comprise the l.d. spaces where
locally the projective lines furnish shortest connections but not necessarily
the only ones. We give here a different, more concise, set of axioms for
these "chordspaces" and discuss in §2 those of their properties which are
needed here.

We split the B.T. in the large into two parts of which the first is of a
topological nature and our main contribution. The types of simply con-
nected spaces become very numerous for large n, so that it is not at all
obvious that the very general metrics admitted in chord spaces do not lead
to other image spaces than Sn. We prove, keeping in mind that chord
spaces are by definition complete:

MAIN THEOREM. A locally desarguesian simply connected chord space R

is either defined in all of Sn or is an arbitrary open convex set of an open

hemisphere of Sn {consideredas An).

That each convex subset R of An can be metrized as a straight G-space
in infinitely many essentially different ways is contained in the proof of
G(18.14). This is one reason why an analogue to the proof in the
Riemannian case is not feasible.

Pogorelov [17] determined all globally desarguesian G-spaces. We will
see that his results can be used to also determine all l.d. chord metrics so
that we have the following

METRIC COMPLEMENT TO THE MAIN THEOREM. All simply connected
locally desarguesian chord spaces are also known metrically.

The general l.d. chord spaces are those covered by the simply con-
nected ones. But they are not all known even in the Riemannian case, in
particular our knowledge on the hyperbolic case is very lacunary.
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This material forms the content of §3. Finally we owe the reader
cogent reasons which force us to go beyond (/-spaces. In §4 we provide
examples showing the importance of admitting chord spaces. In addition
it will become clear that chord spaces are interesting quite independently
of their significance for desarguesian spaces.

2. Chord spaces. Our space R is always a metric space with dis-
tance between x and y denoted simply by xy satisfying the metric space
axioms:

xy is real valued and > 0 ifx Φ y,

xx = 0, xy = yx and xy + yz > xz

for any x9 y9 z in R. Convergence of sets in R is understood in terms of
Hausdorff s closed limit, see G §3. When points a, b, c satisfy ab + be = ac
we say that b lies between a and c and denote this by the symbol (abc)\
here a, b, c are assumed to be distinct. Length of curves in R is defined in
the usual manner and a segment T(a, b), a Φ b, is an isometric map x(t)
of an interval of length ab of the real ί-axis R into R i.e. x(t) is defined in
an interval a < t < β = a + ab, x(a) = α, x(β) = b,

χ(t1)χ(t2)=\tι-t2\.

We note that \ί av-+ a,bv-+ b Φ a and if segments T(av,bv) exist and
converge then the limit is a segment T(a, b).

For a given subset ^ of the set of all segments in R a partial
^-extremal is a class of maps {x(t)9 M}, where M is a closed connected
subset with more than one point of the reals R, / G M, x(/) G ϋ and for
each /in M numbers tf < t < t" exist with

(*) * ( Ί ) * ( ' 2 ) = k i - ' 2 l for ίx, ί2 in [ ί ' , r ] n M

and

(**) x(*)\[t',t"] nλf e V.

In the cases M = R or M = [α, /?] we use the terms ^-extremal or
^-extremal curve respectively. If M = [α, β] and (*) and (**) hold for all
tl912 in [α, β] we speak of a ^-segment from α = x(a) to & = x(j8).

If the class is restricted to maps t -* t + η we obtain an oriented
partial ^-extremal,..., oriented ^-segment.

A ^-extremal {x(t)9K} is a ^-straight line or simply a ^-line if (*)
holds for any tl912. It is a ^-great circle of length β > 0 if

x(u)x(to) = min I/, — /? + pjβl.
* = 0 , ± l , ± 2 , . . .



302 H. BUSEMANN AND B. B. PHADKE

We now state the axioms for a space R to be a chord space.

I. R satisfies the conditions I, II, III of G-spaces which are {see G p.

37):

(i) The space is metric with distance xy.

(ϋ) The space is finitely compact, i.e. a bounded infinite set has at least

one accumulation point.

(iii) Given two distinct points x9 z then a pointy with (xyz) exists.

Before stating the second set II of axioms we note that it follows from

I that any two points can be joined by a segment, this is proved in G(6.8).

The second set of axioms is:

II. There is a set ^ of segments termed chords Q{a, b). Calling

^-extremals and ^-extremal curves geodesies resp. geodesic curves we re-

quire:

(a) Each class 3^of homotopic curves form a to b {for given α, b with

JtifΦ 0 for a = b) contains a shortest curve which is a geodesic curve.

(b) The limit of a converging sequence Q{av, bv) with av -> a, bv -> b Φ

a is a Q{a, b).

(c) // two chords Q{a9 b) and Q{a,bf) with ab > abr have a common

point other than a then Q{a, b') c Q{a, b) or Q{a, b) Π Q{a, bf) = {a9 b).

{Trivially b = b' in the latter case.)

(d) Each point has a neighborhood S{p, σp),0 < σp9 such that for a, b in

S{p, op) a Q{a, c) =*> Q{a, b) exists.

The notations A <s B or B => A mean that A is a proper subset of B.

We note some consequences of the axioms. From (a) alone (I is

always assumed) we have

(1) Q{a9 b) exists for aΦ b. Every subarc ofQ{a, b) is a chord.

From (a) and (c)

(2) When b' is an interior point of Q{a, b) then Q{a, b') is unique and a

subarc of Q{a, b).

(3) // Q{a, ct) s> Q{a, b) and bcx = bc2 {or equivalently ac1 = ac2)

thenQ{a,cι)= Q{a,c2).

If not then (c) would imply Q{a, cλ) Π Q{a, c2) = {a, cλ) but

Q(a9b)cz ρ(α,c f .),/ = l,2.

Let σ{p), σ'{p) be resp. the supremum of the p for which (d) holds

resp. Q{a, b) is unique for a Φ b in S{p, p).

Since Q{a, c) => Q{a, b) implies by (2) that Q{a, b) is unique we

have first that Q{a, b) is unique in S{p, σp). Then we have using G(7.5)
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that σ\p) > σ(p) > 0. (d) holds in S(p, σ(p)) and
(4) σ(p) = oo or 0 < σ(p) < oo and\σ(p) - o(q)\ < pq.
The proof is similar to G(7.5) and the same proof shows that σ'

satisfies the relations (4) too.

We note, without using it, that in our case o(p) = o\p) because a

l.d. space is a topological manifold, see [7, p. 19].

(5) If pa < o(p), a chord Q(a, b) 3 p with pa = pb exists.

The proof of (5) is given explicitly in G(7.8).

(6) A chord can be extended uniquely to a geodesic. σ(p) = oo char-

acterizes the straight chord spaces, i.e. those where all geodesies are straight

lines.

The proof is a simple combination of the arguments for G(7.9) and

(8.4, 5).

(7) // a geodesic contains with any a Φ b a Q(a, b) then it is either a

straight line or a great circle.

The proof is identical with that of G(9.6). Although we always assume

dim R > 1 we mention for justification the following corollary of (7)

(whose proof is as in G(9.7)).

(8) A 1-dimensional chord space is a straight line or a great circle.

REMARK. Dimension of a chord space is understood as its dimension as a

metric space as defined, for example, in Hurewicz and Wallman [14].

The following Theorem (10) is known for G-spaces but not found in

G or [7] but in [9, (2.8)]. Because it is clearly of prime importance for B.T.

we provide a proof for chord spaces, in particular because it is partly

superior to, and more complete than the argument in [9, (2.8)].

But first we note:

(9) Let xv(t), v = 0,1,2,..., represent geodesies and limz,^oox ϊ /(/) =

xo(t) for t e [α, β]9 a Φ β. Then xy(t) converges to xo(t) uniformly on any

bounded set of R.

The proof is like that of G(8.11,12).

(10) THEOREM. If an open set R Φ 0 of Sn is metrized as a chord space

whose geodesies fall on the great circles in Sn then R is either a convex set in

an open hemisphere (i.e. An) and straight or R = Sn and Sn-antipodes are

R-antipodes.

When a Φ b are points of R and not antipodes in Sn, then the great

circle on S" and hence the Λ-geodesic through a and b is unique. It
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contains all Q(a, b) because each lies on a geodesic. When α, b are
antipodes, choose a Q(a, b) and a sequence bv -» b,bvΦ b, bv e β(α, 6).
Then β and bv are not antipodes hence Q(a, bv) a Q(a, b) a R and (9)
shows that there is a geodesic containing Q(a, b); moreover Q(a, b) is an
S^-semigreat circle. It follows from (7) that each geodesic in R is a great
circle or a straight line.

A chord in R which is a semigreat circle Q(a, b) cannot be prolonged
to a chord Q(a, c) => Q(a, b). For if d is an interior point of the subchord
Q(b,c) then both arcs from a to d of the Sw-great circle containing
Q(a, b) would be a Q(a,d) and unique, one because a and J are not
antipodes, the other because a proper subchord of a chord is unique.

To finish the proof we show: if R contains two antipodes a, b then
R = Sn. We proved that with any other point q of R the entire S"-great
circle through a, b, q lies in R. For an arbitrary p (Φ a, b) in Sn the
S"*-great circle C" through α, b, p contains other points of R because a
neighborhood of a lies in (the open) R. Therefore/? e C c R.

If in our Sn as given chord space we identify antipodes we obtain a
chord metric in Pn

9 see G p. 129.
We will see in §4 that often fundamentally different chord spaces may

be constructed with the same metric. But if for some two points a Φ b the
segment T(a, b) is unique, then it must be a Q(a, b) in any compatible
chord space. This implies that if the given metric defines a G-space then
the only chord space compatible with it is the space with all T(a9 b) as
chords. For (abc) in a G-space the segment T(a, b) is unique, so that the
Q(a, b) are determined locally.

Therefore
(11) A chord space is a G-space iff all segments are chords. In this case

the metric determines the chord space uniquely.
The same argument shows
(12) If a space is metrized such that T(a, b) always exists and is unique,

then the space is either a chord space with the T(a, b) as Q(a, b) or there is
no compatible chord space.

The latter may happen even when for given a Φ b and p > 0 a c with

ba = p and {abc) exists. For example, consider the following metrization

of the (x\ x2)-plane. For x = (x1, x2) andy = (j>\ y1) we define

xy = /(x 1 -yιf+(χ2-y2)2 +1* 1 - yι\ if*2, y2>o

+{x2-y2)2 ifx2,y2<0
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xy = min (JC(*,O) + (t,O)y) if x2 < Qandy2 > 0.

Then the prolongation of, for example, the segment along the x2-axis
from a = (0,1) to z = (0,0) is not unique. None of these many continua-
tions of T(a, z) can be omitted because otherwise no T(a,c) for some
c = (c1, c2) with c2 < 0 would exist.

(For suitable conditions which prevent this nonuniqueness see [12]
where we construct a class of examples of G-spaces).

3. Locally desarguesian spaces. In this paper we call a subset Q of

a chord space R "convex" if the following condition holds: when x and y
lie on Q there is one and only one chord Q(x, y) in R joining x and y and
this chord is contained in Q.

When R is the euclidean space, this concept of convexity coincides
with the usual affine space convexity. We note also that our definition of
convexity above yields the following notion of convexity in the projective
space Pn: a set Q in the real projective space Pn is called convex if Q is
convex in the G-space sense above when Pn is metrized as the elliptic
space. (The elliptic space is a G-space). This notion of convexity, of
course, coincides with the definition in the Introduction. Finally we
mention the case when R is the spherical space Sn. Here our definition
amounts to the following: β c S " is convex if Q lies in an open hemi-
sphere and if for x, y in Q the shorter of the two arcs of the great circle
containing x and y lies in Q.

We now define and explain the notion of a locally desarguesian chord
space. A chord space R is said to be locally desarguesian if each point p of
R is contained in a nonempty open convex set U which can be mapped
homeomorphically onto an open convex set ϋ in the real affine space An

in such a way that the geodesic curves contained in U are mapped onto
affine segments in ϋ. (Such a map is called a geodesic map.) This is
equivalent to saying that each point p of R is contained in an open convex
set which can be mapped homeomorphically and geodesically onto an
open convex set of the sphere S"2, or the projective space Pn.

In the sequel we use throughout a fixed sphere Sn (and neither Pn nor
An) as the "model space" i.e. the space into which we map.

If the open convex set U of R is mapped homeomorphically and
geodesically onto an open convex subset of Sn by means of a map φ we
say that U is a "desarguesian domain" and φ is a "desarguesian chart".
The pair (f/, φ) is called a "desarguesian element".

The connection between our use of the word "desarguesian" and the
theorem of Desargues derives from the "Desargues Property" formulated
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for G-spaces by H. Busemann and the implications of this property for
G-spaces; see [G, Chapter II, §§12,13 and 14].

The arguments in the proof of our Main Theorem are to a great
extent simplified because the following properties hold for our desargue-
sian domains and charts:

(A) Standardization of the size of a domain: There exists a positive
continuous function y(p) such that each closed ball S(p, y(p)) lies in a
desarguesian domain W{p) 3 p.

(B) Uniqueness of charts: If (ί/, φ) and (F, ψ) are two desarguesian
elements and φ = ψ on a nonempty open set Z c U Π V then φ = ψ on the
entire intersection U Π V.

(C) Freedom of transition from one chart to another: If (W,ψ) and
(Z,φ) are desarguesian elements and W D Z then there exists a desargue-
sian element (W,Φ) such that Φ|Z = φ i.e. the restriction of Φ to Z
coincides with φ.

We now establish these properties. First consider (A). The proof of
this uniformity of standardized sizes is based on the frequently used idea
of [G (7.5) p. 33]. In fact, let μ(p) be the supremum of positive numbers a
such that S(p, a) is contained in some desarguesian domain V. Since R is
locally desarguesian, μ(p) is positive. When S(p, a) is contained in F,
S(q, a - pq) is also contained in V if a > pq. Therefore, μ(p) is either
identically equal to oo or else \μ{p) - μ{q)\ < pq for all/?, q in R. Hence
if we put, for example, y(p)= jmin(μ(p), σ(/?)), then each closed
S(p,y(p)) is contained in some desarguesian domain W(p). We note
that since y(p) is continuous and positive, it is bounded away from zero
on any compact set.

We now consider properties (B) and (C). The proof of these properties
is, in turn, based on the following facts about geodesic maps of the sphere
Sn onto itself. (Such bijective homeomorphisms of Sn onto Sn sending
great circles to great circles are also called spherical collineations.)

I. A spherical collineation sends a convex set onto a convex set.
II. /// and g are spherical collineations and if f = g on a nonempty

open set U then f' = gon the whole of Sn.

III. Let f be a bijection of a nonempty open convex set Q c Sn onto a
nonempty open convex set Qf c Sn such that f sends arcs of great circles in
Q onto arcs of great circles in Q'. Then f can be extended to a collineation f
of Sn. The extension f of f is unique.

The proofs of these three properties are fairly standard and can be
obtained by using information about projective collineations and the
standard covering of Pn by Sn.
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We now derive the properties (B) and (C).
For (B) we simply have to observe that if If = φ(U) and V = ψ(F)

and Z = Φ(Z) = ψ(Z) then φ ° ψ" 1 sends Z to Z and is the identity on Z
and hence its unique extension to Sn is the identity. Hence φ ° ψ" 1 is the
identity on ψ(ί/ Π F) also. Hence ψ(ί/ Π F) = φ(ί/ Π F) and φ = ψ on

unv.
Finally we consider (C). Here the map g = ψ °Φ~ι from φ(Z) to

ψ(Z) satisfies the hypothesis in III above and hence has an extension g to
S". We now define Φ = g~ι ° ψ so that Φ|Z = φ.

From now on we assume that all our desarguesian domains have the
property that if U is a desarguesian domain then there exists at least one
p e U such that S(p,y(p)) is contained in U.

When desarguesian elements ([/, ψ) and (F, φ) satisfy the condition
that ψ = φ on [/ Π F and U Π V is nonempty we say that (£/, ψ) and
(F, φ) are immediate continuations of each other.

Let (£/, φ) be a desarguesian element and let C be a continuous curve
parametrized by a(t), a < t < b, with a{a) G ίΛ We say that (ί/, φ) is
continued along C to (V, ψ) if there exists a partition Δ: 0 = t0 < tλ < t2

< t3 < — < tk = b and a family (Ui9 φ,-), / = 0,1,2,... ,&, of desargue-
sian elements such that:

(i) a([tι9 ti+1]) c S(ai9 γα/2) c S(ai9 γα/2) c ί̂  where α,. = α(/f)
and γα = inf{γ(α(/)), α < / < 6 } > 0 . ( γ α > 0 since γ is continuous and
the trace of, i.e. the actual pointset occupied by, a(t) is a compact set).

(ii) (Ui9φj) and (Ui+V φ / + 1) are immediate continuations of each
other,/ = 0,1,...,λ: - 1.

(iii) U c [/0, φ0 = φ on U9 V c ί/̂  and ψ = φ^ on F.
If a curve C joins p io q and lies completely in a single desarguesian

domain W then from properties (B) and (C) we conclude that continua-
tion of any element (C/, φ), /? e £/ along C to (F, ψ) exists; in fact we can
take F = PFand φ = ψ on JF Π ίΛ

Since any general continuous curve a(t), a < t <b, has a compact
trace which can be covered by the union of a finite number of desargue-
sian domains of appropriate sizes satisfying condition (i) above we con-
clude that continuations of desarguesian elements along all curves exist.

We now show that continuation is "unique". First consider the case
when Cx and C2 are two curves both joining p to q (Cλ = C2 is not
excluded) and both lying in a single desarguesian domain W. Then if
{U^ φt) are continuations of (t/, φ) along Cz, / = 1,2, then the properties
(B) and (C) above show that φx = φ2 on Uλ Π ί/2. Thus, in single
desarguesian domains continuation is independent of the path. In other
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words a single desarguesian domain W is always a "neutral" neighbor-
hood for continuation. (Compare arguments on p. 43 of [11].)

We remember now that our chord space R is simply connected and
consider the case when Cλ and C2 are any two curves both joining p to q.
(Cx = C2 is not excluded.) Then since Cλ and C2 are homotopic we can
subdivide the deformation square of the deformation homotopy into a
finite number of small subsquares in such a way that the image of each
subsquare lies in a "neutral" neighborhood. A familiar argument (similar
to those occurring in some proofs of the monodromy theorem, for
example, in complex analysis) then shows that if (U9φ) is continued to
(Ui9 φ, ) along Ci9 i = 1,2, then φι = φ2 on Uλ Π f/2. (Again compare [11,
pp. 43, 44].)

Thus we have:

LEMMA. Let R be a simply connected locally desarguesian chord space

and let (U9φ) be a desarguesian element. Then (U9φ) can be continued

along all curves beginning in U. If Cλ and C2 are two curves starting at p and

ending at q and if (Vi9 φ, ), i = 1,2, are continuations of (U9 φ) along Cz,

/ = 1,2, respectively, then φλ = φ2 in the nonempty neighborhood V1 Π V2 of

Choose now a fixed point z of R and a fixed desarguesian element
(£/, φ) with z e U. For an arbitrary point x e R let C be a curve from z
to x and (UC9φc) be a desarguesian element obtained by continuing
(£/, φ) along C. Then from the lemma above we see that xf = φcx is
independent of the choice of the curve C and the partition used during
continuation. Hence the association of xf with x yields a desarguesian
chart in the neighborhood W(x) of x. We denote by Δ the map which
sends x e R to x' e Sn as above.

Since Δ is a desarguesian chart on each W(x)9 the image under Δ of
any geodesic in R lies on (i.e. is contained in) a great circle in Sn. Using
this and the local injectivity of Δ we show that Δ is actually globally
injective i.e. if a Φ b then La Φ Δ6.

For an indirect proof assume that La = Δ& and a Φ b. Let Q be any
chord joining a to b. Then Δ maps Q onto a great circle Γ, say, in
R' = Δi? c Sn. Hence on Q there exist points /?, # such that /?' = Δ/?,
#' = Δ#; p, q are distinct from α, 6 and /?', #' are antipodal on Γ. Since
R' = Δi? is an open subset of Sn we can find another great circle Σ Φ Γ,
Σ c R\ p'9 qf e Σ. Choose now sequences/?^, q'n on Σ such that/^ is not
antipodal to q'n9p'n -> /?', q'n -> q' asn -> oo. As Δ is injective in neighbor-
hoods of /?, # we can find sequences /?„, ^rt in R such that/?„ ~* p, qn ~* q
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Pn

FIGURE 1

and Δpn = p'n9 Δqn = q'n. Let Qn be any chord joining pn and qn. See
Figure 1.

Q(p, q) is unique since p9q ^ Q — {a9b}9 hence there is a subse-
quence, which we may again denote by Qn such that Qn -> Qo = Q(p9q)
c Q as n -> oo. Now p'n9 qf

n are not antipodal, hence the great circle
joining/?^, q'n is unique, namely Σ. Hence ΔQn c Σ for all Λ. Therefore
Δ(?o = Δlim Qn = lim ΔQn c Σ. Thus Δβ 0 c Γ Π Σ. This is a contradic-
tion to Γ Φ Σ and hence if a Φ b then Δα =£ Δ6 i.e. Δ is globally injective.

We have thus proved that Δ maps R homeomorphically onto an open
subset Rf of Sn in such a way that Δ sends the geodesies of R onto
portions of great circles of Sn. We may thus identify R with R' and regard
the latter as a chord space. Hence we can apply Theorem (10) of §2 to
conclude that either R' lies in an open hemisphere of Sn (i.e. An) and is a
straight desarguesian chord space or else R' is the entire Sn and antipodes
in Λ' and Sn coincide. This completes the proof of the Main Theorem as
stated in the Introduction.

Pogorelov [17] determined all globally desarguesian (g.d.) G-spaces (in
Pn). This allows us to construct all chord metrics in the sets occurring in
the Main Theorem. In the case R c An our spaces are g.d. If xy metrizes R
as a g.d. chord space and ε(x, y) is a Euclidean metric in An (invariant
under translations), then R is with xy + (l/k)ε(x, y) a (/-space. Because
of Theorem (10) chords in R and segments on Sn coincide (as point sets)
so that if σ(x, y) is the spherical metric xy + (l/k)σ(x, y) is a (/-metric
on Sn with the great circles as geodesies.
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Pogorelov's procedure is the same in both cases, so let R c An. He
proves that each g.d. metric in R can be approximated by explicitly given
g.d. metrics pv{x, y) of class C00, uniformly on any compact set. Applying
this to xy + (l/k)ε(x, y) we find that any g.d. chord metric can be
approximated uniformly on compact sets by definite pv(x, y) of class C00.
Evidently the limit of such pv is the given xy, thus all chord metrics can be
constructed.

The result can be formulated in a more satisfactory way, because the
ρp(x, y) can evidently be varied. If KM is the set of all hyperplanes
intersecting the point set M, then pv(x, y) can be written in the form

f,{H)dH
KT{x,y)

where fv is smooth and dH is the euclidean density of hyperplanes. For
v -> oo we obtain a set function μ with the property that

xy = μ(KT{xy)).

Pogorelov determines for G-metrics precisely the μ with this property
(he considers only n = 2,3, but his method for n = 3, where μ taking
negative values must be admitted, works for n > 3). We call these set
functions briefly P-functions. If WR is the totality of all P-functions for R
and WR the subset of WR corresponding to the G-metrics of the form
xy + δε(x9 y)9 0 < δ < l//i, then W£ 3 W£+1 and ΓiWn = W contains
all g.d. G-metrics in R and in addition precisely the g.d. chord metrics.

That a metric analogue to the B.T. singling out three basic geometries
cannot exist without additional conditions is evident from our preceding
considerations. All that can be expected is a condition weaker than
constant curvature and meaningful in G-spaces. The following version
may be of interest.

THEOREM. A simply connected locally desarguesian and locally symmet-
ric G-space is Minkowskian, hyperbolic or spherical

We indicate the proof briefly. Locally symmetric G-spaces which
generalize locally symmetric Riemann and Finsler spaces are defined, see
[11], as G-spaces in which a positive continuous β(p) exists such that each
S(p, β(p)) is symmetric in p. In [10, (4.2), (4.4)] we proved that a locally
symmetric globally desarguesian G-space is Minkowskian or hyperbolic
and that a locally symmetric spherelike G-space is spherical. These results
when combined with the Main Theorem give the theorem stated above.
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4. The significance of chord spaces. Taking axioms I to IV of
G-spaces we obtain extremals, but they may behave so pathologically that
no theory of truly geometric interest can be built on these axioms alone.
(We note here that the axioms I, II and III of G-spaces were stated in §2
above. The axiom IV, see G p. 37, states: To every point p of the space
there corresponds a positive ρp9 such that for any two distinct points x9 y
in S(p, pp) (i.e. xp < pp9 yp < ρp) a point z with (xyz) exists. The axiom
Πd of chord spaces is an analogue to this axiom).

It is shown in [7, p. 7] that there are metrics in the plane where each
segment can be continued to a straight line and which permit nevertheless
closed extremals and also x(t) defined in ( — oo, α), α finite, satisfying (1)
locally, but which cannot be continued to extremals. In [6] one finds for
any plane Minkowski metric whose circles are polygons extremals which
are transitive in a very strong sense.

All this holds for one of the most important Minkowski planes,
namely those whose circles are parallelograms (which are all isometric by
G(17.10)). We denote this metric by mp. In addition to mp there is another
very important plane Minkowski metric mh whose circles are affine images
of euclidean regular hexagons.

These metrics occur as solutions of various extremum problems of
which we will discuss a few. They are all found in Petty [16]. The very
simplest problem is: which are the plane Minkowski geometries yielding
the longest or the shortest unit circle? The answer is that mp (and only
mp) yields the maximum 8, similarly only mh yields the minimum 6.

Let A, B be affine lines in A2 intersecting at /?, A'9 Br subrays of A9 B
with origin p and A", B" the opposite rays. A Minkowski metric is
invariant under translations and the theory of Haar measure tells us that
up to a factor only one measure invariant under translation exists which
we normalize for each Minkowski metric such that the unit disk has
measure π. If a' e A' — p,b' e Bf — p we define the Minkowski sine of
the angle formed by A' and B' by

4', B') =
ipar pb'

where Δ is the area of the triangle pa'V. This is independent of the choice
of a\ bf and trivially sm(A"9 B") = sm(^4', B'). But corresponding to
sin a = sin(7r — a) we also have

sm{A'9 B") = sm(,4", B') = sm(A\ B').
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Thus sm depends only on A, B and we write sm(^4, B). This can, in
general, not be interpreted as a function of a number, but is evidently
invariant under translation of A or B, which we can therefore assume to
pass through a fixed/?.

If B is kept fixed and parallel to the direction ω at p then A is
perpendicular to B or B transversal to A iff

sm(Λ', B) < sm{A,B)

for any A' ^ p. We set a(B) = sm(A9 B) = a(ω) = a(ω + π). The func-
tion a plays an important role, for example in the solution of the
isoperimetric problem, but that does not interest us here.

All metrics satisfy

π/4 < a(ω) < π/2\

in this case both bounds are attained only by mp. Also always

max α(ω) > 1,

with equality only for the ellipse, i.e. the euclidean geometry. But min a <
π/3 with the equality only for mh.

The geometries for which perpendicularity is symmetric are those
whose circles are Radon curves and they are characterized by «(ω) =
constant. The minimum and maximum for constants a are 1 and τr/3
because both in the euclidean metric and mh perpendicularity is symmet-
ric.

As an example of a different type we consider the Hubert geometries
(see G §18 and Hubert [13, Appendix 1]). Let S be a closed convex
hypersurface in An and / i t s interior. In / w e define distance just as in
hyperbolic geometry. If the affine line through a Φ b in J intersects S in u
and v, the distance

h(a,b) = | l o g ρ ( α , b, u9υ)\

where p is cross ratio. Hubert shows that the triangle inequality holds and
that the intersections of/with affine lines are straight extermals and the
only ones (so that J becomes a G-space) iff no 2-plane intersecting J
intersects S in a curve containing two non-collinear affine segments.
Taking affine segments in J as chords yields therefore a desarguesian
chord space.

The most degenerate case is where S U / i s a simplex. For n = 2 this
geometry and the hyperbolic (where S is an ellipse) are the only ones with
symmetric perpendicularity [15].
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The case of general n is most interesting. The (unique) Hubert
geometry possessing a transitive abelian group of motions where the affine
segments are the chords (motion means that both distance and chords are
preserved) is given by a simplex S, see [5, p. 35]. If we realize Jas the first
quadrant xt > 0 of an affine coordinate system, the group is given by

χ',=βιχi,βi>o.
Denoting by φ the map yt = log xf oί<fonAn the group becomes the

group of translations of An and putting m(y\ y") = m(φx\ φx") =
h(x\ x") we get a chord-metric in An invariant under the translations,
whose chords are the images of the affine segments in J. The geodesies
are straight and satisfy the hyperbolic parallel axiom, moreover the
Theorem of Desargues. m is a Minkowski metric because it is invariant
under the translations and we can take the affine segments as chords.
Transforming this into,/we obtain in Janother chord metric (based on h)
which satisfies both the parallel axiom and Theorem of Desargues.

From a general point of view we arrive at the very interesting
question: If R is a metric space satisfying axioms I, II, III and &(R) is the
set of all chord spaces compatible with the given metric, how different can
the elements of ^(R) be? For example ^(mp) contains straight chord
spaces whose geodesies (but not the metric) are invariant under the
translations where the theory of parallels (into which we do not want to
enter here) has none of the usual properties of euclidean or hyperbolic
geometry. The examples given in G p. 140 confirm this.

This leads to the further question whether special metrics like the
Minkowski metrics in An can be characterized by intrinsic properties
instead of defining the chords. In general this is clearly impossible owing
to the arbitrariness in defining chords, but easy in the case mentioned.

A theorem of Pontrjagin [18, p. 170] states that a simply connected
topological manifold which is the group space of a transitive abelian
group of motions is equivalent to An with the translations as group. The
affine lines are the orbits of the one-parameter subgroups. This contains
as special case that among the chord metrics in An with the translations as
motions the Minkowskian are those whose geodesies are the orbits of An

considered as group space. Applied to our example it determines in the
Hubert simplex at once the geodesies of the desarguesian chord metric
with the parallel axiom as the orbits of x = fitxi91 < / < n.

We hope to have convinced the reader that a generalization of
G-sρaces is necessary and possible to obtain a complete analogy to the
topological aspect of B.T. i.e. our Main Theorem, and that chord spaces
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are one possibility which leads in addition to many interesting new
problems and often to unexpected phenomena.

Surprisingly, one can clearly deduce from a paragraph (which is too
long to be produced here in toto) in Beltrami's paper [2] that he would
have welcomed our generalization of his theorem. He says that a theorem
which holds under weaker hypotheses than stated has not been fully
understood and that the proper generalization may involve the disap-
pearance of some of the original concepts (in our case the Riemannian
metric).
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