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LIFTINGS OF SUPERCUSPIDAL REPRESENTATIONS
OF Gl,

Jost E. PANTOJA

Let F be a p-field. Let E/F be a tamely ramified cyclic extension of
odd degree. Denote by 7 - and 11 respectively, the lift and the Shintani
lift of an irreducible supercuspidal representation 7 of Gl,(F). The
comparison of these two lifts of 7 is made by breaking up the formula for
the character of a supercuspidal representation into a sum over a certain
set of double cosets. As a result, we show that the liftings 7 - and II are
equivalent.

Let F be a p-field; that is, the completion under the p-adic topology
of either an algebraic number field or an algebraic function field. Let W
be the absolute Weil group of F. Then it is a conjecture of Langlands that
there should exist a “natural” map o — 7 (o) between the set 4,(F) of
the continuous d-dimensional representations of W, and a certain subset
of the set A(Gl,(F)) of admissible irreducible representations of the
general linear group Gl,(F). (For the history and current status of this
problems see for example [J-L], [Sh], [K4]; for generalizations see [B]).

Since the map o — 7(o) should be natural, we may expect, among
other things, that the map which sends a d-dimensional representation o
of W to its restriction o of W should correspond to a map which sends
irreducible admissible representations of Gl ,( F) to irreducible admissible
representations of Gl ,(E). Two candidates for this latter map have been
proposed in different contexts by Shintani and Kutzko when d = 2 (see
[L], [K4]). Shintani’s map comes about from global considerations and is
defined in fact as a map on characters in the case that the extension E/F
is cyclic of prime degree. Kutzko’s map is defined in terms of the
representations and plays a central role in his proof of the correspondence
in the case of d = 2 (see [K4]). However, it is defined only in case the
extension is tamely ramified. In order to better understand the nature of
Langland’s proposed correspondence in dimensions greater than two it is
thus of importance to compare these two maps. This will be our goal in
what follows.

In §1 the requisite definitions and preliminaries are provided to
describe the representation theory of Gl,. In particular, the set of super-
cuspidal representations (those representations which should correspond
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to irreducible representations of W is constructed). In §2 Kutzko’s map
(the tame lift) is defined and several of its properties given. Section 3 is
devoted to discussion of characters and a description of Shintani’s lift. In
§4 the main result of this work appears. Our approach here is to break up
the formula for the character of a supercuspidal representation into a sum
over a certain set of double cosets. We then show that these summands in
the character formula for Kutzko’s lift satisfy the condition to be Shintani’s
lift, at least on the set of elliptic elements. We should note here that we
must use very different arguments depending on whether the double coset
in question is the identity double coset or not. We then apply an
orthogonality result of Langlands to conclude (Theorem 4.11.1) that the
two lifts coincide whenever E/F is a prime cyclic tamely ramified exten-
sion of odd degree.

1.1. Let F be a p-field; that is, the completion under the p-adic
topology of either an algebraic number field or an algebraic function field.
Let O, be its ring of integers, P, the maximal ideal of Oy, U = Uy the
units of O, 7 a generator of Pr, and k the residue class field Og/P;.
For an element x in F, we denote the valuation of x by v (x). Gl,(F)
(respectively Gl,(Oy)) will denote the group of 2 by 2 invertible matrices
with coefficients in F (respectively in Op).

In what follows we will need certain subgroups of Gl,(F) which are
best realized as stability subgroups for certain natural actions of Gl,( F).
Our approach here is as in [K4]. Also for more details and proofs see [Sp].

Let V.= F® F.

DEerINITION 1.1.1. A lattice flag in V. is a sequence L = --- D L_;
DLyD> LD --- of free rank 2 Opmodules of V; such that for all ¢,
P.L,=L, ,wheree=1lore=2anddim, L/L, ;= 1.ewil be called
the ramification degree of the lattice.

DEFINITION 1.1.2. Two lattice flags L and L’ are equivalent if there is
an integer r such that for all 7, L, = L;,,. We denote the equivalence class
of Lby[L].

There is a natural action of Gl,(F) on both the set of lattices and the
set of equivalence classes of lattices. These actions are transitive.

DEFINITION 1.1.3. Denote by Z(L) the ring of endomorphisms g in
End (V) for which for all ¢t we have gL, C L,. Denote for any integer r,
by £.(L), the £( L)-module (two-sided #( L) ideal if r > 0) consisting of all
g for which for all rtwe have gL, C L,_,.
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For this section we assume that e = 2, i.e., the flags are ramified.
We may choose an element I1, in #,( L) such that £(L) = II74(L) =
4(L)IT7.

DErFINITION 1.1.4. We denote by K([L]) the stabilizer in Gl,(F) of
[L] and by B( L) the stabilizer in Gl,(F) of L.

Then B( L) is the group of units of the ring £(L).

We obtain a natural filtration for B(L) by setting B,(L) = B(L) and
B(L)=1+¢(L)forr>1.

PROPOSITION 1.1.5. £(L) depends only on the class [L] to which L
belongs. K([L]) is the normalizer of B(L) in Gl,(F); in fact K([L])
= (TI)B(L).

DEFINITION 1.1.6. If ¢ is a non-trivial (complex, continuous) character
of F*, the conductor of ¢ is the largest ideal P/ contained in the kernel of
y. In this case we write n = f({).

DerFINITION 1.1.7. If x is a (complex, continuous, not necessarily

dtary) character of F* then we say that the conductor of x is P7 if

U/ =1 + P} is the largest of the subgroups Uy contained in the kernel of
X. Again, we set n = f(x).

A computation shows that (x, y) — trxy gives a non-degenerate
pairing of 4,(L)/4,,(L)*¢,_,,(L)/¢,_,(L) into F/Pg. Also, x = x — 1
induces an isomorphism between B,(L)/B,,(L) and the additive group
of £,(L)/%,,(L).

DEFINITION 1.1.8. Let ¢ be a character of F* of conductor P, and let
b be an element of £, _,,(L)/¢,_,(L). Then we define the character i, on
B,(L)/B,,(L) by ¥,(x) = ¢(tr b(x — 1)).

We note that the map b — ¢, induces an isomorphism of the additive
group of ¢,_,,(L)/¢,_,(L) with the complex dual B,(L)/B,, (L) of
B,(L)/B,,(L) and that this isomorphism commutes with the natural
action of K([L]) on both groups; i.e., ¢, -1 = ¢ for x in K(L) where {;
is defined by ¥3(y) = ¥,(x 'yx).

1.2. In this section we discuss the notion of generic elements. Our
approach follows that of [KS]. The set of generic elements is introduced
for two main reasons. First, as we will see, every irreducible supercuspidal
representation will contain a subrepresentation ¢, for generic b. Second,
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the set of generic elements will be a convenient set on which to compute
characters.
Throughout this section we consider ramified lattices.

DErINITION 1.2.1. An element x of £(L) is £( L)-generic of level r if
F[x]/F is a totally ramified extension of degree 2, vy, (x) = r is odd,
and O, = F[x]N4(L).

An element x of B(L) is B(L)-generic of level r if x — 1 is £(L)-
generic of level r.

An element x of K([L]) is K([ L])-generic of level r if for some d in
F*, dx is B( L)-generic of level r. x is K([ L])-generic of level — oo if x lies
in K([L]) — F*B(L).

We denote by £’(L), B’(L), K'([L]), respectively, the sets of £( L),
B(L) and K([L])-generic elements. Also, we denote by £/(L), B/(L),
K,([L})), respectively, the sets of £(L), B(L) and K ([ L])-generic elements
of level r.

DEFINITION 1.2.2. A subset S of a group G is a trivial intersection set
in G or a T.1. set if it does not contain 1 and

(a) S € Ng(S), the normalizer of Sin G,

(b) if g is an element of G that does not lie in N;(S) then g7'Sg N S
= .

Given an element x in M,(F) such that F[x]/F is totally ramified
and vg,,(x) is odd there is a natural class of flags £} associated to the
field E = F[x], this class having the property that if L is in .#, then x is
#( L)-generic. To construct this class we proceed as follows:

Given v # 0 in V, we map E into V by g — gv. This map is an
F-isomorphism of vector spaces.

Define L, = Pjv; the fact that E/F is ramified implies that P.P} =
P;*?, and we obtain in this way a lattice flag L on V.

We note here that [ L] is independent of v, for if w is in ¥, then by
the previous isomorphism we know that there is an element y in E such
that w = yv and then Piw = P/yv = yPjv. Thus, the lattices are equiva-
lent. This class is the class % to which we alluded above.

The content of the next proposition is that, with x, E as above, % is
the only class of lattices for which x is generic (cf. Corollary 1.2.4 below).

PROPOSITION 1.2.3. Let L be a lattice flag in Vi; then £(L) N E = O
if and only if L lies in &y,
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Proof. Suppose first that L is in %,. Then L, = P;v and so O, L, =
OgPgv C Ppv = L, This says that O, is a subring of (L) N E. However,
O, 1s a maximal proper subring of E and so O, = 4(L) N E.

Conversely we assume that £ C M,(F), 4(LYNE = Og. If v # 0 is
an element of V. then V.= Ev. The action of E on V. is given by
a(Bv) = (af)v. Consider the isomorphism ¢: E — V. such that ¢(8) =
Bv and define ¢: M,(F) — End.(E) given by ¢(g) = ¢ 'g¢; then ¢
leaves E fixed. One checks that ¢ "}(L) is a lattice flag in £ and we have
6" YW4(L) N E) = ¢ Y(0y). Thus £(¢ (L)) N E = O, so that
0.9 '(Ly) € ¢ Y(Ly) and ¢ (L) is a fractional ideal of E. So ¢ "*(L,)
= P; for some s. By the same reasoning we have ¢ !(L,) = P} for some
t; since dim, _L,/L, = 1 we have that 7 = s + 1. This implies that the
lattice L in V. is given by { PZv}, so that L lies in %;.

COROLLARY 1.2.4. If F[x]/F is quadratic ramified and vy (x) is odd
then &, is the unique equivalence class of lattice flags for which x is
generic.

The next proposition gives a very useful and important property of
generic elements.

PROPOSITION 1.2.5.

(a) If g is an element of K([L)) then g lies in the normalizer
New, (L)) of £'(L) in GlLy(F).

(b) If gis out of K({L]) then g ¢’ (L)g N ¢' (L) = @.

Proof. Let x be an element of £’(L) and take any lattice flag L
belonging to £ ;. It follows that gxg ! is generic with respect to the
class &g, ., 1) to which gL belongs. Now, if g does not lie in K([L]) it
follows that gL is not equivalent to L and so Zp,.,-1) # Lp(,;- Thus,
according to Corollary 1.2.4 gxg~! is not generic with respect to [L]. On
the other hand, if g is an element of K([L]), then gL is equivalent to L and
then Ly, . -1} = FLp(y)- Thus gxg ! is generic with respect to [ L]. We have

proved (a) and (b).

COROLLARY 1.2.6. B’(L) is a T.1. set. Specifically:

(a) If g is an element of K([L)]) then g lies in the normalizer
Nai,(r)(B'(L)), of B'(L) in Gl,(F).

(b) If g is out of K([L]) then g 'B’'(L)g N B'(L) = &.
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We note that in fact, K’([L]) is also a T.I. set. This will be proved in
Proposition 1.2.13 below.

Since Gl,(F) acts transitively on the set of lattices flags, it is only
necessary, for most applications, to work with one such flag. We may
select a convenient lattice flag as follows.

DEFINITION 1.2.7. Let L° = L°(F) be the lattice flag in V;. defined by
L%F)y= 0;® O, L°(F), = O, ® P,.

Write [ 4, ] for the set of matrices [a, ] with a,;in 4, . As usual, if r is
a real number, let [r] denote the integer part of r.

We may take

and a computation shows that

[0, ©
£ 0y — F F
(L ) _PF OF]’
-

P[(n+1)/2] P[n/2]
f"(LO) = F[n/2]+1 [(:+1)/2] ;
i PF PF

[U. o
0y — F F
B(L°) P, UF]'

The following proposition provides additional characterizations of
£( L°)-generic elements.

PROPOSITION 1.2.8. Let x be an element of 6(L°); let v.(det x) = r be
an odd number. Then the following are equivalent:

(a) x lies in £,(L°);

(b) x lies in 11} B( L°);

(c) x is generic of level r.

Proof. The equivalence of (a) and (b) is clear.

Now we assume (a) and consider the element y = 7! ~"7/%x of £,( L°).
Let us denote by s the trace of y and by A the determinant of y; then y
satisfies the Eisenstein equation y? — sy + A = 0. Thus, F[x] = F[y]is a
quadratic and ramified extension of F. Since vy (y) = vp(Ngp,y/r( 1))
(Ng(,) r being the norm of the extension), it follows that y is a prime
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element for F[x] and thus O ,; = O[y]. This gives O, € 4(L°) N F[x]
and the maximality of the proper subring Oy, yields the desired equality
so that (c) holds.

Conversely, assume (c) and define y as above. Since v.(det y) =1, y
is a prime element in F[x] = F[y]. Thus, the equation y? — sy + A = 0 is
Eisenstein. Write y = [y;,]. It follows that v.(y11), Pe(¥2) = 1, vp( Y2 )1,)
= 1. From the fact that y belongs to #(L°) we conclude that y lies in
4,(L%) and so x is in £,(L°). We have then that (c) implies (a) and the
proof is complete.

Next we state some lemmas which are going to be useful in proving
that K'([L]) is a T.I. set

LEMMA 1.2.9. If c is in F and A is in M,(F) then det(c + A) = ¢* +
ctr A + det A.

Proof. Straightforward.

LEMMA 1.2.10. If x lies in K([L°]), then x is K([L°])-generic of level
— o0 if and only if v(det x) is odd.

Proof. K([L°]) is the disjoint union of the sets F*B(L°) and
F*TI,0B(L°). The first of these sets consists of the elements x of K([L°])
such that ».(det x) is even, and the second consists of elements such that
v.(det x) is odd. Thus the lemma follows from the fact that if x is in
K([L°)) then x lies in FXB(L°) if and only if ».(det x) is even.

LEMMA 1.2.11. Let x be an element of F*B, (L") with n odd. Then
sup vp(det(cx — 1)) = n.
cin F*

We have equality if and only if x is K([ L°])-generic of level n.

Proof. x is of the form dk where d lies in F* and k lies in B,(L°).
Then d!'x — 1 belongs to £,(L°). So sup, ;, px ¥r(det(cx — 1)) > n.
Furthermore if we write d~'x — 1 = [a,,] we observe that v.(a,;a5,) > n
+ 1 and »x(a,,a,,) = n. Suppose now that sup,_;, px vp(det(cx — 1)) = n;
then, by the above, it must be that ».(a,,a,,) = n and one checks that
d 'x — 1 belongs to 117 B(L°). So x is K ([ L°])-generic. Conversely, if x
is K ([ L°])-generic then

du, dufrtb/ 2y,

x =
dofr~Y2y, du,



314 JOSE E. PANTOJA

where u; is in U (1 < i < 4) and dis in F*. Thus, if ¢ lies in F* then
det(ex — 1) = (cdu, — 1)(cdu, — 1) — wfcd?

and we observe that the highest possible valuation is n.

LeMMA 1.2.12. If g does not lie in K([L°]) then
g 'K, ([L])g n K, ([L°]) = @.

Proof. We consider first the case n = — oo. In this case we have that
K’ =T,0F*B(L") = F*II,sB(L®) = F*¢/(L°).

Thus, if g7'K” ([L°])g intersects K’ ([ L°]) then F*g~'¢;(L%)g inter-
sects £/(L°) and so v = cg~'wg for some ¢ in F* and v and w in £;( L°).
From this »,(det v) = ».(c?) + v(det w), so »-(c*) = 0 and c is a unit.
But then cw lies in £/(L°). The element v = g~ 'cwg lies in both £;( L)
and g~ '¢4/( L°)g, which contradicts Proposition 1.2.5.

For the case n > 0, K.([L°]) = F*B,(L°). Assume that
g 'F*B,(L%g intersects F*B/(L"). 1t follows that t = cg~'kg where ¢
and k lie in B/(L°) and c is an element of F*. Thus, v(det ¢) = v.(c?) +
vr(det k). But both det ¢ and det k are units of F and so ¢ lies in Ug. The
element t — 1 = cg”'kg — 1 lies in £/( L°), so that v.(det(cg kg — 1)) =
n. Write cg"'kg — 1= (¢ — 1) + ¢(g 'kg — 1). By Lemma 1.2.9 we have

n =v.(det(cg kg — 1))
= VF((C — 1%+ c(c — Vtr(g kg — 1) + > det(g~ kg — 1))

This last expression is less than n if vo(c — 1) < [n/2]. So vp(c — 1) >
[n/2] and then c is in UL"/2*1, Thus ck lies in B,( L°). We have then that
t = g ckg lies in the intersection of B/(L°) with g~ 'B/(L°%)g, which
contradicts Corollary 1.2.6. This finishes the proof of the Lemma.

PrROPOSITION 1.2.13. K'([L]) is a T.1. set. Specifically:

(a) If g lies in K([L]) then g lies in the normalizer Ng, r(K'([L])) of
K'([L)) in G1,(F).

(b) If g lies out of K([L]) then g ' K'(IL)g N K'([L]) = 2.

Proof. Since Gl,(F) acts transitively on the set of lattice flags,
without loss of generality we may assume L = L°,

Assume first that g lies in K([L°]). We observe that K’([L°]) is the
union of the sets K’ _([L°]) = F*¢](L°) and K/([L°]) = F*B.(L") where
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n ranges over the set of the odd positive integers. Now, (a) follows using
Proposition 1.2.5 and Corollary 1.2.6.

On the other hand if g lies out of K([L°]), since the determinant is
invariant under conjugation, it follows from Lemmas 1.2.10 and 1.2.11
that if x is a K([ L°])-generic element of level n then g~ 'xg lies in K[ L°] if
and only if g7 'xg is in K/([L°]). Now by Lemma 1.2.12, (b) holds, and
the proof is complete.

1.3. The set of unramified generic elements will be another convenient
set on which to compute characters. Most of the definitions and proposi-
tions that follow are analogous to the ones in §§1.1-1.2. Thus, we will
often omit details.

Throughout this section we consider unramified lattices flags, i.e.,
lattices such that e = 1 (see Definition 1.1.1).

DEFINITION 1.3.1. Denote by £“*"( L) the ring of endomorphisms g in
End (V}) for which for all # we have gL, C L,. For any integer r, denote
by £*""(L) the £“*"(L)-module (two-sided ideal £*""(L) ideal if r > 0)
consisting of all g for which all t we have gL, C L, ,.

DEFINITION 1.3.2. Denote by K “*"( L) the stabilizer in Gl,(F) of [L]
and by K}/""(L) the stabilizer in G1,(F) of L. Then K}""(L) = £“""(L)™.

We obtain a filtration for K§""( L) by setting K" (L) =1 + £*""(L),
r>0.

PropPosITION 1.3.3. K*"([L]) = F*K}"(L). Also K}*""(L) is a nor-
mal subgroup of K*""(L).

Now we select a convenient lattice.

DEFINITION 1.3.4. Let L° = LY F) be the lattice in ¥, defined by
8= 0,0 O;.
It follows that
gunr(LO) = M2(OF)’

£/ (L°) = PpM,(Oy),
Kémr(LO) = Glz(op)-

DEFINITION 1.3.5. An element x of £“*"(L) is £“""( L)-generic if
F[x]/F is an unramified extension of degree two such that
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An element x of K§"'(L) is K§"'(L)-generic if x — 1 is £*""(L)-
unramified generic.

An element x of K“""([L]) is K “""([ L])-generic if for some d in F*, dx
1s K§""(L)-generic.

We denote by £“*""(L), K“"" (L), K*"*""([L]), respectively, the sets of
&4 (L), K§" (L), K*“""([ L])-unramified generic elements.

Given an element x in M, (F) such that F[x]/F is quadratic unrami-
fied there is a natural class of lattices %, associated to the field E = F[x],
such that if L is in %, then x is £“"(L)-unramified generic. The
construction of % is similar to the one made in the ramified case. As a
consequence we have:

PROPOSITION 1.3.6. If F([x]/F is quadratic unramified then Ly, , is the
unique equivalence class of lattices for which x is unramified generic.

The set of unramified generic elements shares with the set of generic
ones the T.I. property. Namely:

ProposITION 1.3.7.

(a) If g is an element of K“"'([L]) then q lies in the normalizer
Ny, (r(£“"(L)) of ¢*""(L) in Gl,(F); if g is out of K*"'([L]) then
g i (Lyg N £ (L) = &.

(b) K{"""(L) is a T.I. set with normalizer K *""([ L)).

(c) K*""([L)) is a T.I. set with normalizer K *""([ L}).

The following propositions provide additional characterizations of
£"""( LY)-generic elements.

DEFINITION 1.3.8. Denote by £**"(L°) the set of unramified generic
elements of £*""( L°) that do not lie on P} + £*1(L").

LeMMA 1.3.9. N, FXK“""(L%) = F*,

Proof. We need only prove that if x lies in F* K "'( L°) (for all j) then
x lies in F*. Let y be an element of K “""([L°]) = F* Gl,(O;). It follows
from Proposition 1.3.3 that for all j, the commutator yxy 'x~! lies in
K *""(L°). Thus yxy~'x~' lies in the intersection of the K"(L°), an
intersection which reduces to the identity since the K!*'( L% form a
fundamental system of neighborhoods of the identity. We get that x
commutes with each element of K“"([L°]), i.e., x lies in the center
Z(K""([L°]) = F*,
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PrROPOSITION 1.3.10. Let x be an unramified generic element of Gl,( F).
Then either

(a) there is an element c in F* such that cx lies in Gl,(Or) but not in
U K" (L°), or

(b) there is an element ¢ in F* and a unique r such that cx — 1 lies in
grunr/( LO)

Proof. Since x is unramified generic, there is an element ¢ in > such
that cx lies in G1,(Op). If cx is in UpK{*"", then, by Lemma 1.3.9, there is
a number r such that cx lies in FXK**"(L°) but not in F*K"i(L°)
(observe that then for all d in F, dx is out of F*K*"/(L%)). Finally by
modifying c if necessary one may assume that cx lies in K *""( L°) but not
in F*K*"7(L°). this completes the proof of (a) and (b).

DEFINITION 1.3.11. The unramified generic element x has level 0 if
part (a) of Proposition 1.3.10 holds. Otherwise x has level r.

PROPOSITION 1.3.12. Let x be an element of PiM,(Oy.) that does not lie
in P} + PL"'M,(Oy). Then x is not unramified generic if and only if there is
an element y in Gl,(0y) such that y~'xy is upper triangular modulo
PIYIM,(F).

Proof. Without loss of generality we may assume r = 0, so that x lies
in M,(Oy) but not in Op + PrM,(O;). This means that x = [?5] where
one of b, c or a — d is a unit.

Let us denote by f, the characteristic polynomial of x, i.e., f, = X? —
(a+d)X + ad — bc.

We claim that Og[x] = F[x] N M,(Oy). For it is clear that Og[x] is
included in F[x] N M,(Og). On the other hand if & + Bx lies in F[x] N
M,(Og), then by observing the conditions on the entries of x we conclude
that B lies in O and so « lies in Oy.

Next we observe that x is unramified generic if and only if f, is
irreducible modulo P. In fact, if x is unramified generic then f, is
irreducible and F[x]/F is quadratic unramified. Thus kg /k is a
quadratic extension. From the above we get O[x] = Og(,,. It follows that
k gz = kp(x) # krand so f, is irreducible modulo Pr.

Conversely, if f, is irreducible modulo P then by [Se], F[x]/F is
unramified and Op,;= Og[x] so that x is unramified generic since
O[x] = F[x] N M,(F) by the above.

Finally, since f, is quadratic, f_ is reducible modulo P if and only if f,,
viewed over O/ Py, has eigenvalues in O/Py if and only if, modulo P, x
is similar to an upper triangular matrix. Our result now follows.
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1.4. We recall now the definition of a supercuspidal representation.
An admissible representation (p, V') of Gl,(F) is supercuspidal if when
restricted to M, the subgroup [} {1, it has no identity quotient, i.e., there is
no proper M-subspace W of V such that the representation of M induced
on V /W is the identity representation.

In constructing supercuspidal representations of Gl,(F) we use the
following fundamental fact: Let o be an irreducible representation of
K([L]) and suppose there is an »n such that 6 /B, (L) decomposes in orbits
of y,, where b is generic. Then o induces an irreducible supercuspidal
representation of Gl,(F). Furthermore, every irreducible supercuspidal
representation of Gl,( F) is either equivalent to (Ind ¢) ® x °det, where x
is a character of F*, or it may be induced irreducibly from a finite
dimensional representation of F* Gl,(O;). The former representations
are called ramified; the latter, unramified. (For details and proofs see
[K2].)

Properties of the unramified representations are well known. For
more details see [Ge]. Therefore, we restrict our attention to the ramified
supercuspidal representations.

Now we describe how to construct the ramified supercuspidal repre-
sentations of Gl,(F). We follow [K4].

We consider the character ¢, of B,(L) as defined in 1.1.7 with b a
generic element. Let H(y,) = (F[b])*B,(L). Then H(4y,) is the stabilizer
in K([L]) of the character y,. Denote by 8 a character of (F[b]) such that
0 coincides with y, on F[b]*N B,(L). We can now define a character p

on H(y,) by p(tx) = 8(2)¢,(x).

DErFINITION 1.4.1. Let L, L’ be lattice flags in V, letn > 1, and let ¢,
(resp. ¥,.), H(Y,) (resp. H(y,.)) and p (resp. p’) be as above. Then we call
the triples (L, ¥, p) and (L', ¥, p’) equivalent if for some g in Gl,(F)
we have gL = L', ¢,(x)=¢,(g 'xg) for x in B,(L’), and p'(x) =
p(g~'xg) for x in H(Yy).

For a triple (L; ¢,, p) as above, let w(L; y,, p) be the representation
of Gl,(F) which is c-induced [K3] by p.

The following is Proposition 3.1.1 of [K4] (for more details see also
[K3], [C1)).

PROPOSITION 1.4.2. w(L, Y, p) is an irreducible admissible ramified
supercuspidal representation of Gl,(F). w(L’,y,, p") is equivalent to
a(L, Yy, p) if and only if (L', ,, p’) is equivalent to (L, {y,, p). Every
irreducible admissible ramified supercuspidal representation of Gl,(F) is
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equivalent to some w(L, {,, p) ® X, where X is a character of F* which is
either trivial or for which f(x) > n.

2.1. We are going to define a lifting of lattice flags of V. to V' where
E/F is a tamely ramified extension whose ramification degree e( E/F) is
odd. Using those liftings of flags we later define a tame lift for super-
cuspidal representations. This last notion is due to Kutzko and plays an
important role in proving the Langlands conjecture for Gl,( F).

DEFINITION 2.1.1. Let E/F be a tamely ramified extension whose
ramification degree e( E/F) is odd. We define the lattice L9 - (Of ramifi-
cation degree 2) in V; by

0 — 1—e(E/F))/2 _ _
(LE/F)O - Plg «(EEV2 @ Ok, (L%/F)l = PS «(E/F)/2 g Py.

DerFINITION 2.1.2. If L is any lattice flag in V}, then there is an
element g of Gl,(F) such that L = gL,. We define the lift of L to V' to
be the V,-lattice flag L, » = gL} .

By Lemma 2.2.1 of [K4], L - is well defined.

The following is Corollary 2.2.3 of [K4]. It is a two-dimensional
analog of the properties of the trace (see [Se]).

PrOPOSITION 2.1.3. K([ L ¢]) N Gl,(F) = K([L]),
gn(LE/F) N EndF(VF) = TrE/FJn(LE/F) = Jr(LE/F)

withr =1+ [(n — 1)/e(E/F)].
We notice here that

(—e(E/F)/2 ]
g(L%/F) = (1+35/F))/2 PE >
_P EE Og i
(1~e(E/F))/2 |
B(Lo ) - UE PE
E/F p+e(E/F)/2 U ’
| YE E ]
plin+1/2] Pln/20+1-e(E/F)/2
£ (L() ) - E E
m\"E/F Pln/2+(1e(E/F))/2 plin+1/2]
| TE E

We observe furthermore that

0 7= e/
K(LY/r) =
7 A—e(E/F)/2 0
E

>B(Lg Jr)
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and

(1—e(E/F))/2 (e(E/F)—1)/2
Y ] T

In order to introduce the notion of tame lifting of a supercuspidal
representation we will need the following. Let ¢, 8, p be as in 1.4.

DEFINITION 2.14. Set n(E/F)=e(E/F)n — 3(e(E/F) — 1) and
define y, z ron B, r,r(Lg,r) by
‘Pb,E/F(g) = l[’(trbTrE/F(g - 1))

COROLLARY 2.1.5.
ﬁn(E/F)(Lg‘/F) N End (V) = gn(L?")’
Bn(E/F)(L%/F) N Glz(F) = Bn(Lg')‘

DEFINITION 2.1.6. Define the character 0 - on E[b]* by 0;,-(g) =
0(Ngip)/r15,8) Where Ny, (5 is the norm map from E[b] to F[b].

DEFINITION 2.1.7. One obtains a character pg,r on H(Y, g r) =

E[b]xBn(E/F)(LE/F) by setting pE/F(ga) = 0E/F(g)¢b,E/F(a) for g in
E[b]*,ain B, g r(Lg,r). We observe that by Lemma 2.3.4 of [K4] pj /1
is independent of the choice of b. pg r is then called the lift of p to

H(Yp,5/r)-

PrOPOSITION 2.1.8. Suppose w(L,y,, p) ® x = w(L’, ¢, p") ® x'.
Then

'”(LE/F» Yo,/ PE/F) ® Xg/r = W(LIE/F’ Yo £/ p;E/F) = Xe/r>

where X g ,p = X © Ng /.

Proof. See Proposition 3.1.4 of [K4].

DErFINITION 2.1.9. Given an irreducible admissible ramified super-
cuspidal representation 7 = w(L, ¢,, p) ® x of Gl,(F), we may, using
Proposition 2.1.7, define the tame lift 7 of 7 to GL,(E) by

Tg/p = ’T(LE/Fa ‘l’b,E/F, PE/F) ® Xg/F-

22. If T =T(E/F) is the Galois group of an odd prime cyclic
extension of degree / such that p # /, then the natural action of I' in E
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provides us with an action of I' on Gl,(E). Thus, we may form the
semidirect product Gl,(E) = I' X Gl,(E). Since both HWy /1),
K([Lg,r)) are stable under I' we may also consider

H(Yy zr) =T X H(Y, ;) and K([Lgr])=T K([ Ly, ).

Since pg, r is fixed by T’ (is defined through norms and traces), we
may extend pg - to a character pg - on H(¢,, ) in the obvious way, i.e.,
trivial on I'. Furthermore, we may define:

DEFINITION 2.2.1.

ﬁE F = - Ind - pE F-
E BWeptGLE)

PROPOSITION 2.2.2. iy - is an extension of mg . to G1,(E).

Proof. First we make use of Mackey’s theorem (see [K1]) to see that in
fact 7y is irreducible, for if I (, ) denotes the space of intertwining
operators we have

{7y, pr 7 )=1(_ Ind P, Ind B )
E/F» TE/E H(yp,g/r) 1 Gl (E) E/F H®y g/r) TGl (E) E/E

= @ 1(peyr Pryr)s 2 € H(Wy5,r) \CL(E)/H (Y5, 5,r)
= eaI(PE/F’ p%/F)’ ze H(‘Pb,E/F) \Glz(E)/H(‘Pb,E/F)

= I(WE/F? WE/F)'

Now since I' is cyclic and fixes 7 - it follows that any irreducible
subrepresentation of Indg, (g)1c1,r) 75 r 1S an extension of mp . (see
[CI)). Thus, to complete our proof we need only show that

diml(ﬁ, Ind = )>0.
E/F> GLeynaE T

But

I('ﬁ , Ind T )
E/F> GhencnE  F

=I(~ nd 5., Ind p )
Ay, 6L(E) 2 e, 161,

and by Mackey’s theorem

1(_ ind  p.,. Ind p)
AWy 5, 16y - By, 16,8
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is isomorphic to a direct sum of spaces, one of which is I(pg,r, Pr/r)-
Since this space has dimension one, we are done.

3.1. Let T’ be the Galois group of a prime cyclic extension E/F of
degree /. We remarked above that the action of I' on E induces an action
of I" on Gl,(E). For gin Gl,(E) and 7 in I" let g" denote this action.

The following observation leads us to the definition of 7-conjugacy.
Consider the elements (7, x), (o, y) of GIZ(E). Then (o, y) X1, x)(0, y)
= (, (y“lxy’)"_l). In particular, for y = (1, y) in Glz(E) we have
y i 7, x)y = (7, y" 7).

DEerFINITION 3.1.1. The elements x, y of Gl,(E) are T-conjugate if
there is an element g in Gl,(E) such that y = g~ 'xg".

Let us fix once for all a generator 7 of .

We define next a non-abelian norm map N: Gl,(E) — Gl,(E),
which was first introduced by Saito.

DErFINITION 3.1.2. Let N: Gl,(E) — GIl,(E) be defined by N(g) =
gg'r e g'rl—l'

We note that the map N is not multiplicative and, in fact, is not even
well-defined, depending as it does on the choice of 7. However, one checks
easily that if 4 /F is a quadratic extension of fields with 4 lying in M,(F)
then the restriction of N to (EA)* is just the abelian norm map Ny, .

PROPOSITION 3.1.3. Suppose x and g lie in Gl1,( E). Then:

(a) N(g~'xg") = g7'N(x)g;

(b) N(x)" = x~'N(x)x;

(c) det(N(x)) = Ny ¢(det x);

(d) N(x) is conjugate in Gl,( E) to an element of Gl,( F);

(e) N induces an injection form t-conjugacy classes in Gl,(E) to
(ordinary) conjugacy classes in G1,(F).

Proof. The first three statements are easy calculations. On the other
hand (b) says that N(x) has F-rational determinant and trace. Thus, the
rational canonical form of N(x) lies in Gl,(F). This proves (d). Finally,
(a) and (d) say that N induces a function from 7-conjugacy classes in
Gl1,(E) to conjugacy classes in Gl,( F). The injectivity is a result of [Sa].

It should be noticed now that x and y are 7-conjugate if and only if
(7, x) and (7, y) are conjugate in GIZ(E).

In the following lemma, we take w,,...,w,_; to be not necessarily
commuting variables.
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LemMA 3.1.4.
-1

Wowy cc W — 1 — Z(Wi—l)
i=0

"(Wi —1)"'(“’1—1_1)

where " indicates that the factor below it has been deleted.
In particular,

N(w)—1-Tr(w—-1)

-1

=Nw-1)+ ) Y (w—l)(w’—l)’--(w”—l)

j=10<i<--- <ij<i-1

= 1) (T ).

Proof. We first prove that for all r-tuples (k,...,k,),2 <r<1-1,
the number of times the element w, w, --- w, appears on the right side
of the statement with positive sign equals the number of times the element
appears on the right side of the statement with negative sign.

Now the summand (w, — 1) - - - (w,_; — 1) provides us with one copy
of the above element with sign (—1)'~". Also, only the terms such that
1 <j < I — r provide us with such copies. For each j we have (’;’) times
the element w, w, - -- w , each with sign (—1) /=r=J, But from the expan-
sion of 0 = (1 — 1)’~" we get the desired result in this case.

A similar computation shows that the linear terms and the constant
term are the same in both sides of our equation. Our result now follows.

3.2. Let C(Gl,(F)) be the space of compactly supported and locally
constant complex valued functions on Gl,( F).

Let 7 be an irreducible supercuspidal representation of Gl,( F). Since
« is admissible, we may extend this representation to a function 7 on
CX(G1,(F)) by setting 7(f)v = [, (r) f(x)m(x)vdx (where dx is an
appropriate Haar measure on Gl,(F)). We note that [g r) f(x)7(x)v dx
may be defined without difficulty for f in C°(Gl,(F)) and admissible =
and that, in fact, this integral is a finite sum. For details, see [H — C].
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Furthermore, one may show that #( f) has finite rank. Thus, tr 7( f)
exists and we get in this way a map f ~ tr #( f), which is a distribution on
Gl,(F), i.e., a linear functional on C*(Gl,(F)).

It is a theorem of Harish-Chandra that there exists a locally inte-
grable function x,, unique up to measure 0, such that tro(f)=
Jor,cr) F(%X) X 2(x) dx, where dx is a Haar measure on GI,(F).

DEFINITION 3.2.1. X, is called the character of 7.

If p and 7 are as in 1.5.1 then 7 = Ind gy, ) 1 G1,(F) P and the Frobenius
formula for induced characters holds.

ra(f)= X [ fGchx)p(h) dh (see [S]).
xin GlL(F)/H(y,) “H(¥s)

One would, of course, like to apply Fubini’s theorem to the above
formula to obtain a Frobenius formula for x . Although this application
of Fubini’s theorem is not permissible in general, there is a large set of
elements (the elliptic elements) which have the property that Fubini’s
theorem may be applied to the above integral for functions supported on
this set.

DEFINITION 3.2.2. An element x of Gl,(F) is called elliptic in case x
is irreducible as a matrix, i.e., the characteristic polynomial of x is
irreducible.

An element (7, x) of Gl,(E) is elliptic if N(x) is elliptic.

DEFINITION 3.2.3. Define p in G1,(F) by setting p(x) = p(x) if x lies
in H(y,), and p(x) = 0 otherwise.

By [S] if x is an elliptic element of Gl,(F) then p(y 'xy) = 0 for all
but a finite number of y in Gl,(F)/H(y,) so that

Xa(x) = ) p(y xy)
YEGLL(F)/H({)

3.3. Following [L] (see also [G-L]), let = be an irreducible super-
cuspidal representation of Gl,(F). Let E/F be as in §2.2. Denote by I1
an irreducible admissible representation of Gl,( E) which is stable under
I', i.e., which is equivalent to its conjugate by 7.

DEerFINITION 3.3.1. II is called a Shintani lift of « if there exists an
extension I of II to Gl,(E) such that X7, z) = x,(N(2)) for all z in
G1,( E) such that Nz has distinct eigenvalues.
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PROPOSITION 3.3.2. Any 7 as above has, up to equivalence, a unique
Shintani lift.

4.1. By Lemmas 7.9 and 7.12 of [L], in order to show that 7 . is the
Shintani lift of =, it is enough to prove the identity x . (7, x) = x,(n(x))
for those elements x for which N(x) is elliptic (compare Proposition 3.3.3
of [K4]). The proof of this identity will be the goal of this chapter.

Set
1 o
Zm,F— 0 ﬂ';-" .

Then the collection of z, =z, , as m ranges over the non-negative
integers, is a complete set of representatives in Gl,( ) of the double coset
spaces K([LyD\Gl,(F)/K([L})) and F* Gl,(0p) \ Gl,(F)/K(L}))
(see [K2]).

Let E/F be as in §2.2.

PROPOSITION 4.1.1. The set { z,, p}m_ is a complete set of representa-
tives of K([Lg,r)) \ Glo(E)/K([LE/r))-

Proof. We consider the case E/F ramified, the unramified case being
clear.
Consider the element

1-0),2
_ |7 O}
w = of Gl,(E).

[ 0 1 ()

Then we have

Gl,(E) = wGlL(E)w™! = G wK([LY])z,K([LE])w™?

- QOWK([LOE])w‘lwzmw‘lK([L%])w‘l.

But a computation shows that wz,w™! = z, . Also as we remarked after

Proposition 2.1.3, we have wK([LY)w ™' = K([L} ¢)). Thus,
GL,(E) = L_JOK([LOE/F])me([LOE/F]).

Finally, it is clear that the sets K([L} 7))z, K([L} 7)) are disjoint.
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PROPOSITION 4.1.2.
(a) The set { z,, i }m—o is a complete set of representatives of

K([L3,r])\GL(E)/K([L])-

(b) There is a natural projection between the sets Gl,(E)/H(y b,E/F)
and Gl,(E)/H(Y;, g/r)-

Proof. If (1, g) is an element of Gl,(E) then g is of the form k,z,k,
for some m >0 and for k;, and k2 in K([L /F]) Thus (7, g) =
1, k)1, z,.)(7, k,) lies in U2_, K([L2 £/ 2 K(LY g/r])- From this (a)
follows.

As for (b) we observe that for all i, (7/,1) lies in H(w,bb g/r)- Thus
(7', g) and (1, g) have the same image in GIZ(E)/H(pr E/F)-

PROPOSITION 4.1.3. The set {z,, g}m— —(e(E/F)-1)/2 IS @ complete set of
representatives of E* Gl,(0z)\ Gl,(E)/K([L} 7))

Proof. We prove the proposition when E/F is ramified, the unrami-
fied case being clear.
If w is as in Proposition 4.1.1, we recall that wK([LY)w™! =

K(Lr).
Now,
Gl,(E) = Gly(E)w™ = U E*Gly(0p) 2, K([13])w"!
m=0
= U E*GL(0)z,w wK([ L] )w™!
m=0
= U ¥ GL(0)z,w k([ L))
But since

E*GL(0g)z,w 'K ([ LY #])

(I-1)/2
- £ Glz(oE)["E WO,,,]K([L%/F])
E

1
= EX Glz(OE)wg"l)ﬂ[O Wén«?—l)/Z]K([L(E)/F])

= EX Glz(OE)Zmu—l)/zK([L%/F])’
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we get then from above that
0

GL(E)= U  E*Gl(0g)z,K([LY/F])-
m=—(I-1)/2

Finally, we check that the sets are disjoint. Let a;h,z,, ki = a,h,z,, k,
where a; and a, lie in E, h; and &, are elements of G1,{(O;) and k, and k,
lie in K([ L}, £)). Since for i = 1,2 we have

— =D/
ZmiW = 7TE(~ )/ Zm,-+(l'—1)/2’
we get
-1 _ 1-1)/2 -1
alhlzm1+(l—1)/2w k1W—a2h27T§ 4 Zmy+(1—-1)2W kw.

Thus,

mo+ St =m0

This completes the proof.

andso m; = m,.

We note that since EXC K([Ly7]) then
E*Gl,(0g)2,K([ L) = G1,(0x) 2, K([ LY, #]).

4.2. Let b be an elliptic element of Gl,( F). Denote by s the trace of b
and by A its determinant. Then b is a zero of the irreducible polynomial
X2 —sX + A.

We embed F[b]* into Gl,( F) using the right regular representation A
with respect to the basis {1, b}, i.e., if y is an element of F[b]*, so that
y = x + yb for some x, y in F, then we set

X Yy
A(x+yb)=[__Ay x+sy]'

DEFINITION 4.2.1. Let O be the set of matrices [§ {] and let O, , be
the subgroup of Q. of matrices

[ U }<n+ 1)/2]
0
If E/F is a prime cyclic extension of degree / we define the subgroup

Q. 5,0t Qp/p= Qpby
U[(n+1)/2] P[n/2]+(1‘e(E/F))/2
Qn,E/F= [ E E s
0 1

Le., Qn,E/F = QE N Bn([LOE/FD

[n/2]
Pfl ] — B,(L) N Q.
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PROPOSITION 4.2.2. Gl,(F) = QrA(F[b]) = A(F[b])Qf. Also,
Qr NA(F[]) = {1}.

COROLLARY 4.2.3. Gl,(F) = Q F[b]*= F[b]*Qp and QN F[b]
= {1}.

PROPOSITION 4.2.4. H(Y, i 5/r) N O = Qe /F)E/F

Proof. The result follows from the following lemmas:

LEMMA 4.2.5. Let b be a #(L)-generic element. Then K([L]) =
F[bI(QF N B(L)).

Proof. Let x be an element of K([L]). By Corollary 4.2.3 there is an
element y in F[b]* and an element g in Q. such that x = yq. Since F[b]*
is a subgroup of K([ L]) we have, in fact, that g lies in

K([L]) n Q= ((K(IL]) = F*B(L)) N Q;) U(F*B(L) N Q)
= F*B(L)N Qp

since all elements of Q are split (i.e., reducible as matrices) and so can
never be K([L])-generic. Now, F*B(L) N Qr= B(L) N Q, since ele-
ments of @, have one eigenvalue equal to one.

LEMMA 4.2.6. If b is a #( L)-generic element, then B (L) = Ug,,Q, -

Proof. Let x be an element of B,(L). By Lemma 4.2.5, x = yg where
vy lies in F[b]* and q lies in Q N B(L). Since ¢ and x lie in B(L), y lies
in B(L) N F[b]*= U, It is easy to see that if y lie in F, then v lies in
Ug(s)- It follows that g lies in B, (L) and the lemma holds in this case.

We assume then that y does not lie in F, i.e., y is generic. We observe
as above that on the other hand g is not generic.

There are indices r, s such that y — 1 liesin £,(L) but notin £, (L)
and g — 1 lies in £(L) but not in £, ,(L).

Suppose that r < s. Since ¢ lies in B(L) we have that (y — 1)gL, =
(y—-1)L,cL,,,. Also, given that r < s, we have that (¢ — 1)L, C L, ,,
SO

(x - 1)Lt = (('Y - 1)‘1 +q-— 1)Lt c Lt+r‘

This is for all . On the other hand there is an index ¢ such that
(y—1DgqL, ¢ L,.,,, Sincer < s we also have (¢ — 1)L, Cc L, , . Thus,
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x — 1liesin £ (L) but not in £, (L), from which » > n, whence y and ¢
lie in £,(L). This completes the proof when r < s. We omit the proof
when r > s, since an argument similar to the one above can be applied.

Finally, we consider the case r = 5. Since ¢ — 1 is not generic, there
is, for some ¢, an element y lying in L, but not in L, ; such that (¢ — 1)y
liesinL,,, . It follows that (x — 1)y = ((y —1)g + g —1)yliesinL,_,
but notin L,,,,,, so x — 1 lies in £(L) but not £, _,(L). We then have
r > n and the result follows.

4.3. It was proved in [K4] that K([LY]) € K([L} z). Let z,, = z,, rbe
as in 4.1. Write Z. = {z,,}%_,. Then Z, is a complete set of representa-
tives of double cosets of K([L%])\ Gl,(F)/K([L%)).

Let E /F be a prime cyclic extension of degree / and let 7 be a prime
element of F. If E/F is unramified then =, remains prime in E and we
may take 7y = 7. If Zp = {2, g} m_o, We have then that

ZF = ZE/Fm Glz(F).

If E/F is ramified, we observe that, given m > 0, there exist a and r such
that m = la + r. Let

|1 0 {1 O
Zm,E/F = 0 77.;3 0 '”1; s
where 7, and 7, are, respectively, prime elements in O, and O. Set
2, =2, pgpand Zy = {z,}7_, It follows that Z, = Z; . N Gl,(F).
It should be observed that Z; - is a complete set of representatives of
double cosets of K([L3])\ G1,(E)/K(L%).

Next, we state some results that are going to be needed later.

LemMA 4.3.1. If z lies in Zg . and K([Lg/F])zK([L%/F]) N Gl,(F) #
&, then z lies in Z.

Proof. Let y be an element of K([LY (])zK([L,r]) N Gl,(F). Then
there is z, in Z, such that y lies in K([L%])z,K([L%]), which is a subset of
K([L},F) 2, K( LY, ). We conclude that

K([L%/F])ZK([LOE/F]) n K([L%/F])ZIK([L%/F])

is not empty. Thus, z = z, and the lemma holds.

LeMMA 4.3.2. Suppose z,, lies in Zg . and
0 N(K([L2/]) 2K ([ L27])) # 2.
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Then z,, lies in Z and

Q- N (K([L8/r])znK([L8/r])) = 0 N (K([L8])z, K ([ L2])).

Proof. The first assertion follows from Lemma 4.3.1. As for the
second,

0r N K([LYr]) 2. K([L3,£])

- [ U orn k(s ek ((23) 0 k(L8] 2k (18,2

= zgz QN K([Lg])zK([L?:]) N K([L%/F])ZmK([LOE/F])

= 0, N K([L}])z, K ([L2]).
Similar results may be obtained for the decomposition of Gl,(E)
determined by the double cosets

GL(0:)z,K([LYr]), m= —(e(E/F)-1)/2.

Namely, if Zg,r = {2, £}m=—e(E/F)—1),2 fOT the next two lemmas, then

LemMA 4.3.3. If z lies in Z,r and (GIZ(OE)ZK([LOE/F])) N Gl,(F) is
not empty then z lies in Z.

LEMMA 4.3.4. If z,, lies in Zy - and (Gl,(0g)z, K([Lg,r]) N Qp is
not empty then z, lies in Zp and Qp N (Gly(0p)z,K( L, r)) =
OrN (Glz(OF)ZmK([LOE/F]))~

LEMMA 4.3.5. Let n(E/F) be as in Definition 2.1.4. Then Q, =
OrN Qn(E/F),E/F‘

Proof. If E/F is ramified, let s; be the least multiple of / which is
greater than or equal to [(n(E/F) + 1) /2] and let s, be the least multiple
of / which is greater than or equal to [n(E/F)/2] + (1 — I)/2. Then

UE(n(E/F)+1)/2 NF Pg(E/F)/2+(l—I)/2 NF
0 1

_ [Ung P2NF
0 1

One checks that s, = [(n + 1)/2])/ and s, = [n/2]l. From this the
lemma follows for E/F ramified. The remaining case follows at once.

QrN Qn(E/F),E/F = [
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Let E/F and 7 be, respectively, as in 2.2 and 3.1.

LEMMA 4.3.6. If w lies in E and w™ — w lies in Py then there exist
elements a in Pgand r in F such thatw = a + r.

Proof. We consider first the case that E /F is unramified. In this case
w=x2 c;m where vy(w) =m and c; are (gz — 1)th-roots of unity
where g = [Og: P;]. Wethen get w™ — w = X2 (¢] — ¢,)mf. Write w =
Yok emh+ X2 c;mi and define r= X5} cmf, a=X cmp. Since
ve(w” — w) > s we have ¢] — ¢; = 0 for i < s. It follows that w = r + a,
where r lies in F and a lies in Pj.

We assume now that E/F is ramified. We have w = X!_{ ¢« for
some c¢; in O, i =1,...,/ — 1. Since the extension is tamely ramified,
7y = cumg where c lies in Up — U} and u lies in Uj. If we apply the norm
Ng ptomg = cumgwe getl = ¢'N(u), from which ¢ has order / in U,/ U}.
But then v (7). — w}) = vy(7L). Also note that for i # j we have v,(c,7})
# vp(c jqrg) (because i and j are different modulo /). Thus,

/-1 /-1
( Y e,(nf - wg)) - ( Y i

i=1 i=1

Define, then, r = ¢, and a = X!Z] ¢,7i. It follows that w = r + a, where r
lies in F and »y(a) = vg(w™ — w), ie., a lies in P;. This completes the
proof.

LEMMA 4.3.7. If w lies in E* and w™/w lies in U} for some s > 0 then
there exist elements a in Ug and r in F such that w = ra.

Proof. We claim first that w lies in F* Uy, for, if w = wiu with u in

Ug, then
w' 7\ u”
w Te| U’

Since w”/w lies in U and E/F is a tamely ramified extension, we see that
t is a multiple of e( E/F). Thus, w lies in F*U~.

Write then w = ra, for some r, in F and a, in Ug;. We have
w'/w=ai/a; =1+ (a] — a;)/a, lies in U;. It follows that a] — g, is in
P;. Now, Lemma 4.3.6 implies that a, = a, + r, for some a, in P; and r,
in F. It should be noticed that r, is a unit. Then define r = r,r, and
a=1+ a,/r,. Whence a lies in U, r liesin F and w = ra.

PROPOSITION 4.3.8. Let y be an element of Q. If y~'y" lies in Q, k/F
then there is an element r in Q . and an element a in Q,, - such thaty = ra.
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Proof. Write

y= i )
0 11
Since y~ly™ lies in we have that y7/y, lies in UL"*D/2 and
y 'y n,E/F i/ N E
yi(y3 — y,) lies in P[n/A+1~e(E/F)/2 | emma 4.3.7 says that there are
elements a, in U["*Y/? and r, in F such that y, = r,a,. Since
1 E 1 N 191

=) = ar ((3r)" =yt

lies in P/A+A-<E/F)/20 jt follows that (y,r7)" — yry! is in
pln/A+A-e(E/F)/2 1 emma 4.3.6 implies the existence of an element
a, lying in PLr/2+1=¢(E/F)/2 gand an element r, in F such that y,r; ' =
a, + r,. Define
nor 2] [al a,
r = and a = .
[ 0 1 0 1

Then one checks that y = ra, from which the proposition follows.

4.4. In this section we study the connection between generic elements
of Gl,(F) with respect to the standard lattice and generic elements of
Gl,( E) (with respect to the class of the corresponding lifting lattice).

PROPOSITION 4.4.1. If z is K([L%))-generic of level 2m + 1, where
m=0o0rm= —oo,thenzis K([L%/F])-generic of level 2m + 1)e(E/F).

Proof. We consider first the case when z has level —oo. Since
K’ (L%) = F*¢](L%), we see that z is generic of level — oo if and only if
ve(det z) is odd. But v (det z) = e( E/F)vp(det z) and e( E/F) is odd, so
that v.(det z) is odd and z is K([L} r])-generic of level — co.

Suppose now that z has level 2m + 1, m > 0. Then there is an
element d in F* such that dz is B(L%)-generic of level 2m + 1, i.e.,dz — 1
is £(L%)-generic of level 2m + 1. So dz — 1 lies in 4,,,,,(L%), which is
contained in £, x5y m+ 1) ( L3/ F)-

vo(det(dz — 1)) = e(E/F)v.(det(dz — 1)) = e(E/F)(2m + 1).
Since the elements g of £,z r)om +1)(L% ,r) are such that vy(det g) >

e(E/F)2m + 1), it follows that, in fact, dz — 1 is #(L} r)-generic of
level e( E/F)(2m + 1). The result now follows.

PROPOSITION 4.4.2. If x is K *""([ L%))-generic, then x is elliptic over E
and x is K*""([LY,  r])-generic.
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Proof. Without loss of generality we may assume that x has level 0.
Since x is unramified generic, it follows from Proposition 1.3.12 that f,
the characteristic polynomial of x, is irreducible modulo P.. Also, f, has
distinct roots in some extension field.

Now, either f, has distinct roots modulo Py or f, is irreducible modulo
P,. The first is not possible because if f, has distinct roots modulo P,
Hensel’s lemma implies that f, is reducible in E. Byt [E: F] is odd and
deg f, = 2. Thus f, is irreducible over E and in particular x is elliptic.
Also, by [Se], O, = Og[x]. It follows that x is K unr([ LY r])-generic (see
proof of Proposition 1.3.12).

4.5. We introduce in this section the notion of r-generic element.
These elements are going to be useful in dealing with calculations of
characters that involve T-conjugations.

Let E/F be as in §2.2. All lattices in this section are assumed to be
ramified.

DEFINITION 4.5.1. AN element x of Gl,(E) is called m-¢4( L) (respec-
tively, -B( L), -K([Lg])) generic if N(x) if £( L) (respectively, B(Ly),
K([Lg)) generic. Denote by £/( L), B/(Lg) and K/([L,]) the respective
sets of T-generic elements.

DEFINITION 4.5.2. The m-normalizer of a subset S of Gl,( E) is the set
N&y, (£)(S) of elements g in Gl,(E) such that g'Sg” = §.

DEFINITION 4.5.3. A subset S of Gl,(E) is a 7-trivial intersection set
in Gl,(E), or a -T.I set, if it does not contain 1 and

(2) S © N&,()(S),

(b) if g is an element of Gl,(E) that does not lie in NG, (g, then
g7Sg"nNn S = 2.

We observe that in fact Ng; x(S) is a subgroup of Gl,(E).

PROPOSITION 4.5 4.

(2) If g lies in K([ L)) then g lies in NG, (g,(£;(Lg)). On the other hand
if g lies out of K([Lg]) then g~ %¢/(L)g" N £/(Ly) = @.

(b) B/(Ly) and K.([Lg)) are 7-T.1. sets with T-normalizer K([ L]).

Proof. We prove the statement concerning K/([ L]), the others being
similar. So, let g be an element of K([L]). Then by Proposition 1.2.13 g
lies in Ng; (g)(K'([Lg])). From this g 'K.([Lg)g™ € K.([Lg)), because if
x lies in K/([L;]) then N(g 'xg") = g !N(x)g lies in K’([L]). Given
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that g~ also lies in K([L;]), the same argument shows that gK/([L,])g™"
C KU(Lg).ie. g K[ Lg)g" 2 Ki([Lg).

Now, assume that g lies out of K([L,]). If there is an element x that
lies in both g 'K/([L:])g" and K/ ([Lg]), then N(x) and gN(x)g~! are
generic. This says that K’([L;]) N g 'K'([Lg]) g is nonempty for g out of
K([L]), which contradicts Proposition 1.2.13.

4.6. We now introduce the notion of T-unramified generic element.
Let £/F be as in §2.2. The lattices we consider in this section are
unramified.

DEFINITION 4.6.1. An element x of GIl,(E) is called m-£"""(Ly)
(respectively, 7-K§""(Lg), -K*""([Lg])) generic if N(x) is £*""(Lg) (re-
spectively, K" (L), K “""([ L:])) generic. Denote by £""( L), K¢ (L)
and K “*"([ L)) the respective sets of unramified generic elements.

PROPOSITION 4.6.2.

(a) If g lies in K*""([ L)) then g lies in Nélz(E)(ﬁT“”"( L;)). On the other
hand, if g lies out of K*""([Ly]) then g ¢ " (L;)g" N " (L) = &.

(b) K¥""(Lg) and K'""([Lg]) are 7-T.I. sets with normalizer
K“(Lg)).

Proof. The proof is analogous to the one given in Proposition 4.5.4
and we omit it.

4.7. Let E/F and 7y, be as in §2.2.

It is a consequence of Propositions 4.8.4, 4.8.16, 4.8.23 and 4.9.9
below and our remark following 3.2.4 that if (7, x) is an elliptic element
of Gl,(E) then

Xy, (7, %) = > bre((vs ) (7, x)(v, ));

(v> V) EGL(E)/H(¥p,5/F)
this last expression is, from Proposition 4.1.2(b) and the definition of
equal to

Z 5E/F(Y_I(T,X)Y)
YyEGL(E)/HWp £/F)

= Z 5E/F(Tvy_1xy7)
YEGL(E)Y/HWp £/F)

= by F"E/F(y_lx}ﬁ)-
y&€GL(E)/H(Yy £/r)



LIFTINGS OF SUPERCUSPIDAL REPRESENTATIONS OF G12 335

4.8. In this section the comparison for 7-generic elements is made.

DEFINITION 4.8.1. Set

Xg”E"/)F(T’x) - Z ﬁE/F(y_lxyT)s
yEK([L%/F])me([L())S/F])/H(‘I/b,E/F)

where z,, is as in §4.3.

DEFINITION 4.8.2. Let

6pp=  Ind Pryp» o= Ind  p.
H(y £/r) T KLY/ FD H(p) 1 K(LED

We observe that xﬁ.,‘?/F( T, X) = (7, x). We limit ourselves then to

studying the sums x{™ (7, x).

TE/F

XaE/F

The proof of next lemma is similar to the one given for Lemma 1.2.11
and we omit it.

LEMMA 4.8.3. Let x be an element of E*B,(L} ) with n odd. Then
sup, ,, gx ve(det(cx — 1)) > n. We have equality if and only if x is
K([ L3, ))-generic of level n.

PROPOSITION 4.8.4. Let x be an element of K([L}, ,;]) that does not lie
in N"Y(E*B, g, r(L},r)) (N denoting the non-abelian norm map defined
in31.2). Ifx is ’T-K([L%/F]) generic then for m > 0, X%’E"/)F(T, x) = 0.

Proof. Let y be an element of K([L% e 2, K ([LY ,r]) and suppose
m > 0. Then y does not lie in K([L% ,r])- But given that x lies in
K/([LY,r)) and K/([L},c]) is a 7-T.I1 set, we have that y~'xy" is not
7-K([ L} ,r]) generic.

On the other hand the set H(y, ;) — N "E*B,/r(L},r))
consists only of 7-K([L% ,rl) generic elements, because if g lies in
H(Yy, g/r) — N_I(EXBn(E/F)( LOE/F)) then N(g) lies in

H( ‘l’b,E/F) - EXBn(E/F)(L?E/F)

and the elements of this last set are generic. It follows that y ~'xy” does
not lie in H(Y, z,r) = N (E*B,z/r(L3,r)-

We claim now that y~'xy™ does not lie in N"'(E*B, ;s (L3, r)),
because if it does, then y~'N(x) y lies in E*B, 5, r,( L} ) and by Lemma
4.8.3 sup, ;, gx vg(det(cN(x)) —1) > n. But by hypothesis N(x) is a
generic element of K([L} .]) that does not lie in E*B, ;. (L% ;) and
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then sup, ;, gx vpdet(cN(x) — 1) < n, a contradiction. This proves the
claim and we have as a consequence that y ~'xy™ does not lie in H(¢ b.E/F)>
so that p.,-(y~'xy") = 0 whence xﬁ.,’E"/)F(T, x) = 0.

In view of the proposition above we now analyze T-generic elements
lying in N"'(E*B, 5L}, r)). In particular, the next proposition will
allow us to assume, without loss of generality, that for such elements,
N(x) can be taken to be F-rational, i.e., an element of Gl,(F).

PROPOSITION 4.8.5. Let x be a m-K([LY, ;1) generic element. Then there
is an element k in K([ L%, /F)) such that k~'N(x)k is F-rational.

Proof. By Proposition 3.1.3(d), there is an element y in Gl,(E) such
that y "IN(x)y is F-rational. We observe that y "'N(x) y satisfies the same
irreducible polynomial as N(x), i.e., an Eisenstein polynomial, from which
F[y~'N(x)y]/F is quadratic ramified.

Now Corollary 1.2.4 provides us with a unique equivalence class of
lattices [L] on V. such that y "!N(x)y is [ L]-generic. On the other hand
the transitivity of the action of Gl,(F) on lattice flags provides us of an
element r in Gl,(F) such that K([L2]) = r 'K([L])r. It follows that
r~ Yy IN(x)yris K([ L%])-generic.

By Proposition 4.4.1, we have that, in fact, (yr) 'N(x)yr is
K(LS _r])-generic. Since, by hypothesis, N(x) is also K([LY /r])-generic,
the T.I. property implies that k = yr lies in K([L% r])- This completes the
proof.

As a consequence of the proposition above, we may assume without
loss of generality that for x m-K([L% ,r]) generic, N(x) is an element of
Gl,(F).

PROPOSITION 4.8.6. Let x be a 7-B(LY ,F) 8eneric element of
N"I(Bn(E/F)(LOE/F)) such that N(x) lies in Gl,(F). Then there is a
B( L%/F)-generic element z of the same level as N(x) such that N(z) = N(x).

Proof. We observe that the restriction of N to E[N(x)] is the norm of
the field extension E[N(x)]/F[N(x)] (see the remark after Definition
3.1.2).

We consider first the case when E/F is ramified. Then
E[N(x)]/F[N(x)] is a ramified, tamely ramified extension of degree /. It
follows that N(x) is generic of level s/ for some s. Since the units of the
field E[N(x)] are given by Uf vy = B(L%,r) N E[N(x)], we have, in
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fact, that N(x) lies in Ug{ N(x) but not in Ugf}:,%x)]. On the other hand it is
known that N induces an epimorphism N(Ug v/ Usinio) =
U;[N(x)]/Ufs‘[Jer(x)] (see [Se]) and since UI;E{N(x)] N FIN(x)] = Ugneay it
follows that N(x) as an element of U2 y(.y/ Us{w(xy is not the identity.
We are able then to pick z in Ug{y ./ U{x(x; Such that N(z) = N(x).
Finally, we observe that the non-zero elements of Ug{y,,/ Ulf;{;(,(lx)] are in
fact generic elements of level s/. This completes the proof in the ramified
case.

We assume now that E/F is unramified. In this case the norm N
satisfies N(Ugy.) = Urinoy for all £ > 1 ([Se]). An argument similar to
the one above allows us to pick z generic of level the same as the level of
N(x) and such that N(z) = N(x). From this the result follows.

From the above, we see that by 7-conjugating if necessary, we may
assume for all our purposes that if x is m-B(L% ,r) generic and lies in
N~Y(B,z/r(Lg/r)) then x is B(LY, r)-generic, N(x) is F-rational and
level x = level N(x).

The next proposition tells us that, in fact, it is enough to consider
elements as above, rather than elements lying in N~'(E* B,z ,#) (L} /r))-

PROPOSITION 4.8.7. Let x be a T-K([ L% /r]) generic element lying in
N~YE*B, ./ r)L} ) and such that has F-rational norm. Then there is an
element o in E* and a 7-B(LY ,r) generic element g such that x is
T-conjugate with ag.

Note. 1t is here that our assumption concerning the parity of / is used.

Proof. We have that N(x) lies in Gl,( F) and has the form N(x) = Bh
where B lies in E* and h is B( L}, )-generic. So

N = [ o]

with u and v units. Set » = Bu. Then r lies in F and r"*N(x) = r~'8h lies
in Gl,(F). We observe that r~'Bh = u~'h and if we set h; = u"'h, it
follows that k, is a B(L}, r)-generic element of the same level as h and we
have N(x) = Bh = rh,. We may assume then without loss of generality
that N(x) = Bh, where B lies in F and & is B(LY, - r)-generic element lying
in G1,(F).

Now, given that 4 lies in Gl,( F) and is a unit of E[N(x)] we have, by
the properties of the norm of E[N(x)]/F[N(x)], that there is a B(L}, JF)"
generic element g such that N(g) = h (see proof of Proposition 4.8.6).
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At this point, we know that B is an E[N(x)]/F[N(x)]-norm and we
want to prove now that B is an E/F-norm. To this end, set 4 = F[N(x)],
then

AE = E[N(x)]
E \>;qun
XF/

and B lies in F*N N, AE. By class field theory it is known that
[F™: Ng,pE*] = L. Also, we have the inclusions N, .E*C F*N N, AE
C F* and since / is prime we need only prove that the last inclusion is
proper in order to prove that 8 lies in Ng - E™.

Assume first that E /F is unramified. Then the prime element 7 of F
has valuation two in 4 (because A /F is ramified). But then it cannot be in
N,g,4AE, because in this last set the elements have valuations which are
multiples of /.

Suppose now that E/F is ramified. Then there exists a set C,_; of
(g — Dth (distinct even modulo P) roots of unity in O (q = [E : F]) such
that U, = Cq_lU}. Let d be a generator of C,_,. Since 4 /F is ramified we
have that U, = Cq_lUAl. By [Se], the element d of F is not a norm, so does
not liein N,y AE.

We have proved that there is an element « in E such that N(a) = 8. It
follows that N(x) = N(a)N(g) = N(ag). By Proposition 3.1.3(e) the
result follows.

PROPOSITION 4.8.8. Let x be a B(LY, /r)-generic element of level s and
let y be an element of K([L} ;r])z, K([Lg,¢))- Then y~'xy lies in B,(Lg )
ifandonly if m < (s — 1)/2 — [n/2].

Proof. Write y = k,z,,k, where ky, k, lie in K([L}, ¢]). Then we have

mea a Qe B/, }

1 _ (s—1)/2
k1 xkl 1+ Ty |:7TE(1+e(E/F))/2u TEC

where u, v lie in U and a, c lie in O.
It follows that y~'xy lies in B,(L} r) if and only if z,'(k; 'xk,)z,,
lies in B,(LY, ), (B,(L} r) is normal in K([L}, ])) if and only if

Mpa

-m+(1+e(E/F))/2u

a A€ (E/F)/2,
1+ a0
Tg

TEC
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lies in
P gn+ 1)/2] P E[n /21+(1—e(E/F))/2
1+ [n/2]+(1+e(E/F))/2 Pln+1)/2) = Bn(L(I):‘/F)
Py E
ifand only if —m + (s — 1)/2 > [n/2]if and only if m < (s — 1)/2 —
[n/2].

DEFINITION 4.8.9. An element x of N~ (B, g,z (L%, r)) such that x is
B(L3,  r)-generic, -B(LY, ) generic, N(x) is F-rational and level x = level
N(x) will be called reduced.

COROLLARY 4.8.10. Let x be reduced and let y be an element of
K([L%/F]) me([LOE/F])' Then y~'N(x)y lies in Bn(E/F)(LOE/F) if and only if
yxy lies in Bn(E/F)(LOE/F).

PROPOSITION 4.8.11. Let x be reduced. Then

XS'r':/)F("', x) = Z "Pb,E/F(y_lxyT)‘
yeQaﬁK([L%/FDZm K([L%/F])/Qn(E/F).E/F

Proof. We first observe that there is a natural bijection between the
sets K ([L(l)?/F])me ([LOE/F])/ H(Y,, g/r) and

O N K([L%/F])ZmK([L(I)S/F])/Qn(E/F),E/F'

Thus, we have

XS?Z'/)F(T,x) = Z pE/F(y—lxyT)'
yEQLNK(LY, r)z,y, K([L%/F])/Qn(E/F),E/F

We have to prove that if y~'xy™ lies in H(y, ¢ ,r) then it lies in
B, £,k (L% ,/r). Let, then, y " 'xy” be an element of H(Y, , r), where y lies
in Qp N K(ILY, £z, K( LY F]). It follows that y~'xy™ = tk, where ¢ lies
in E [b]* and k is in B,z p (L3 p). Since B,z r) (L%, r) is normal in
K([LY,r]), we get, after we apply the norm to y 'xy” = tk, that
y~!N(x)y = N(t)h for some hin B, g r, (L}, r).

If y lies in K([L}, r]) then y"'N(x)y lies in B, (L} r), because
N(x)isin B,z ,r(L} r). If y does not lie in K([LE £]), then y 'N(x)y is
a non-generic element lying in H(y,, z,r). It follows that y IN(x)y lies in
E*B,/r( Ly, r) since H(Y,, z,r) — E*B, gz /r)( Ly r) consists entirely of

generic elements. We prove now that under these circumstances y ~'N(x) y
lies in fact in B,z (L3 r)- Let

v = vE(det(y—lN(x)y - 1)) = vy(det(N(x) — 1));
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v is in fact an odd number greater than or equal to n( E/F) since » is the
level of N(x). Write

Ny = [ ]

with @ in EX u, v in ULV, ¢ in PL/AYA+EN/20 g in
PL/A+A=e(E/F)/2 We now observe that since
v=v;((au — 1)(av — 1) — a%d)

is odd, a cannot have positive valuation (otherwise » = 0), a cannot have
negative valuation (otherwise » = 2» (a)) and a cannot be a unit in
U, — UL*Y/2 (otherwise v (au — 1), vz(av — 1) < » and since »,(acd)
> », det( N(x) — 1) would have valuation less than »). So « lies in
Uf**D72 and then y~'N(x)y lies in B,(LY, ), which is a subset of
Bn(E/F)(L%/F)’ ie., y~'N(x)y lies in Bn(E/F)(L?i'/F)'

At this point we have then that, in any case, y 'N(x)y lies in
B,k/r(L%/r). By Corollary 4.810, we have that y~'xy lies in

n(E/F)(L(l)i‘/F)'

We observe that y~!xy” = (y 'xpy)(y~'y7), from which y~'y™ =
(y %) Ny xy7) liesin QN HWYy £ /r)- Thus, y 'y lies in Qn(E/F),E/F
(see Proposition 4.2.4). It follows that y~'xy™ lies in B,z r(Lg r). This
completes the proof.

PROPOSITION 4.8.12. Let x be reduced. Then

XS'r:l/)F(Ta x) = Z ‘Pb,E/F(y_lxy)-
YEQrNK(LED 2,y pKALED/ Qo F

Proof. We observed in Proposition 4.8.11 that if y lies in

QN K([L%/F])me([LOE/F])/Qn(E/F),E/F

then y~'xy™ = (y "'xp)(y~'y") and y~'y" lies in Q,, x5, £ r- By Proposi-
tion 4.3.8 there is an element a in Q, g r)r/r and r in Qp such that
y = ra. Thus, without loss of generality we may take y = r, i.e., we may
choose y lying in Gl,(F), whence y~'xy” = y~!xy. Thus y is F-rational
modulo Q, g ) g/ S0 that by Lemmas 4.3.2 and 4.3.5 z,, lies in Z, and
we may replace the sum over Q, N K([LOE/F])me([L%/F])/Qn(E/F),E/F in
the formula in Proposition 4.8.11 by a sum over

0r N K([L3])2,K([L2])/ Q0 -
We get

XS?;"/)F(T’ x) = Z \Lb,E/F(y_IXJ’)-
YEQNK(LEN 2, K(LED/ Q0 ¢
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LEMMA 4.8.13. Let w be an element of Bn(E/F)(Lg/F) such that N(w)
lies in Gl,(F). Then N(w) lies in B,(L%) and Y, 5,r(W) = Pp(N(W)).

Proof. N(w) liesin B, ;. ,r(L} ,r) N Gl,(F)soin B,(L}) by Corollary
2.1.5.

As for the second assertion, we have that ,(N(w)) = ¢, g r(w) if
and only if yY(tr b(N(w) — 1)) = ¢(tr bTr(w — 1)) if and only if
Y(trb(N(w) —1 - Tr(w — 1))) = 1.

Seta = N(w) — 1 — Tr(w — 1). Then by Lemma 3.1.4

-2

a=Nw-1+Y Yy (w—l)(w’—-l)w-(w"f— 1)

Jj=1 0<ij<---<i;<i-1

/-1

,,(wf'f_ 1) e (wTT =),

We observe that a lies in 4,z /r)(Ly,r) N End (V) which is, by Prop-
osition 2.1.3, equal to &,,(LY%). Thus, tr ba lies in P, because b lies in
¢, _,,(L%), and then ¢ (tr ba) = 1. Now the lemma follows.

LEMMA 4.8.14. Let x be an element of H(Y,, i,r) such that N(x) lies in
G1,(F). Then N(x) lies in H(y,) and pg ,r(x) = p(N(x)).
Proof. Write x = tk with ¢ in E[b]* and k in B, 5 ,r,( L3 ). Then
Nx)=N@)( "k Y ke )
. (t,r—(l——l)k,rl-zt,rl—l)k,rl—l.

Since N(¢) lies in Gl,(F) we have a = (N(2)) 'N(x) lies in Gl,(F) N
Bn(E/F)(L(I:'/F) = B,(LY), so that N(x) lies in H(y,) = F[b]*B,(L}).

On the other hand, by Lemma 2.3.3 of [K4] and Lemma 3.1.4, we get
thata — 1 — Tr(k — 1) liesin B,(L%) and

a—1-Tr(k—-1)
/-1
— Z (t,r—(/-l)t,r—u—z) . t,r—(:+1)k_r;t_r.+1 L. t,r(/—x)) _ Tl'(k _ 1)
i=0

(modulo JZn(E/F)(L%/F)). It follows that Y(trb(a — 1 — Tr(k — 1))) = 1,
from which ¢, (a) = ¢, g, (k). Finally,

p(N(x)) = p(N(t)a) = 6(N(2))y,(a)

= 0E/F(t)¢b,E/F(k) = pE/F(tk) = PE/F(X)-
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LemMma 4.8.15. Let x be reduced. Then

X (7, x) = )y P, (y7IN(x) y).
y€QrNK( LNz, KALYD/ Q. ¢

Proof. We observe that if y lies in Q N K([LY]) z,,K([L}])/Q,, r then
N(y~xy) = y"IN(x)y. Now, the proposition follows from Proposition
4.8.12 and Lemma 4.8.13.

PROPOSITION 4.8.16. Let x be reduced. Then
Xgo (7, x) = x7"(N(x)).

Proof. We observe that the correspondence yQ, > yH(y,) estab-
lishes a bijection between

0rNK([L3])z,K([L3])/Q, r and K([L}])z,K([LE])/H(s).
Now, the result follows from Lemma 4.8.15.

In order to complete the comparison in the ramified elliptic case, it is
thus only necessary to compare x P with x . In order to do this we need
some preliminaries.

PROPOSITION 4.8.17. Let z be K([LY, r))-generic of level —oo. Then
E[z)*C E[bY B,z L} r) if and only if z lies in E[b)*B, gLy /r).

Proof. If E[z]*C E[b]*B,/r(L},r) then it is clear that z lies in
E[b)*B,g/r)(LE/F)-
Conversely, if z lies in E[b]XBn(E/F)(LOE/F), let w be in E[z]*. Then
w = a + Bz for some a, B in E. If « = 0 we clearly have that w lies in
E[b)*B,z,r(Lg/r)- We then consider the case when a # 0. We have
w = a(l + a'Bz), so w lies in E[b]*B,x,r (LY, ) if and only if 1 +
a”'Bz lies in E[b]*B, z (L}, r). We observe now that '8z is generic
(because z is generic), lies in E[b]*B, /F)(L% ,r), and does not lie in
E*B, g,r(LY, ). Thus, we need only show that if z lies in
E[b)*B,x,r(L},r) — EXB(L} ) (so that z is generic) then 1 + z lies in
E[bY*B,g/r)(LE/r)-
Note that

K([L%,F]) - E*B(LY,r) = T, E*B(LY, /)

= HL"E/F<'”E>B(L?3/F) = U JJ(L%/F)~
n odd
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Suppose first that z lies in £/,( LY r) wWith m > 0. We have that z = tk with
t in E[b]%, k in B, ;,r(L},r). We observe then that ¢ lies in £,,(L%r)
and

14+z=1+th=00+0)1+1)7'Q + k).

But 1+ ¢ lies in E[z]*= E[b]*, so that is enough to prove that
(1 + )71 + tk) lies in E[b]*B, 5 /r,(LY ). Write

A+0)7'Q+k)=Q+)'Q+r+t(k-1))

=141+ 1) 't(k=1).

It follows that (1 + ) (1 + tk) lies in E[b]* ,,(E/F)(LOE/F) (because
t(k — 1) liesin 4, ;). ,m(Ly,r) and 1 + ¢ lies in B(Ly ;).

We suppose finally that z lies in £,,( L% ,¢) With m < 0. Thus, z7 ! lies
in £’ (LY, ). Write 1 + z = z(1 + z7"). Then, by the above, (1 + z7')
lies in E[b]*B, s r (LY, F). It follows that 1 + z lies in
E[b]* B, g,r)(Lg,r)- This completes the proof.

COROLLARY 4.8.18. Let x be K([L% r]) generic of level —oo and
-K([LY /r)) generic of level — oo and such that N(x) lies in H(y,). Then x

lies in H(Y,, g /r)-

Proof. Since H(y,,) € H(y, ,r) we have that N(x) lies in H(Y;, g r)
= E[b]" n(E/F)(L?z/F) and E[N(x)] ¢ E[b]* n(E/F)(L(l)f/F)~ Since
x7IN(x)x = N(x) and E[N(x)] is the centralizer of N(x), we have
E[x]*= E[N(x)]*. By Proposition 4.8.17 our result follows.

PROPOSITION 4.8.19. Let z be a B(LY r)-generic element of level
r < n(E/F) (so that z does not lie in E*B, (L} r)). Then E[z]*C
E[b]xBn(E/F)_,(LOE/F) if and only if z lies in E[b]XB,,(E/F)(L%/F).

Proof. We assume first that z lies in E[b]*B, r (L}, ). Write
w=z—1and z = tk with ¢ in E[b]* and k in B, (L} ). Then w is
¢(Lg ,r)-generic and

w=tk—1=(t—1)(1+(t— 1) "t(k - 1)).

Since ¢ — 1 lies in E[b]*N 4,(L} ) and k — 1 lies in 4,z r (LY ), it
follows that w lies in E[b]*B, /(LY ;). By Proposition 4.8.17 we
then have E[w]*= E[2]*C E[b]*B,zr,_(Lr).

Conversely, assume that E[z]*C E[b]*B, g, r,_, (L} r). Then
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w=z-1
lies in E[b)*B, s r,_ (L}, r). Write w = tk with k in B, (L}, )
and ¢ in E[b]*, £( L}, r)-generic of level r. Thus,

z=1+w=Q0+0)1+Q+1) "t(k-1)

lies in E[b]* n(E/F)(L%/F)'

COROLLARY 4.8.20. If x is B(L}, r)-generic, T-B(L}, ) generic of level
r (i.e., both x and N(x) have level r) and N(x) lies in H(y,). Then x lies in

H(Y,,5/r)-

Proof. We have E[N(x)]*C E[b]XB,,(E/F)_,(L%/F), because N(x)
lies in H(y, /). Since E[x]*= E[N(x)]* it follows that E[x]*C
E[b]*B, £/r)-.( LY ,r)- Now by Proposition 4.8.19 the result follows.

DEFINITION 4.8.21. Let Cy,9;(x) be the set of conjugates y Ixy of x
as y ranges over K([L%]). Let Cxq L%/F])(x) be the set of T-conjugates
y~'xy” of x as y ranges over K([L}, 7).

Suppose x is an element out of N™'(E*B, r(Lg,r)), Which is
generic, T-generic and such that N(x) is F-rational. Then, either

(a) Cgq L%/F])(x) N H(Y, g,r) = 2 (it follows, by Corollaries 4.8.18
and 4.8.20 that in this case Cggro;(N(x)) N H(Y,) = &; thus,
XS (7, %) = XO(N(x)) = 0), or

(b) there is an element y in K([L}, r]) such that w = y~'xp” lies in
H(Y,, g/r), so that X(.,?E)/F("', x) = X;‘?/F(T, w).

From this observation we may assume without loss of generality that
if x is out of N"Y(E*B, (L%, r)) and is generic, 7-generic, N(x) is
F-rational, then x lies in H(Y, £ r)-

PROPOSITION 4.8.22.

(a) Let z be a K([LY . r))-generic element of level — oo of H(Y,, ¢ ,r) and
let y be in K([LOE/F]). Then y~'zy lies in H(Y,, g ,r) if and only if y lies in the
normc;lizer NK([L‘};/F])(E[b]X ;.(E/F)(L%/F)) of E[b]* n(E/F)(LOE/F) in
K(LYs).

(b) Let z be a B(LY - r)-generic element of level r < n(E/F) in
H(Yy g/r) and let y be in K([LOE/F]). Then y~'zy lies in H(Yy, g /r) if and
only if y lies in NK([Lg/F])(E[b]XBn(E/F)—r(L%/F))-

Proof. In order to prove (a), we observe that z = tk where ¢ is in
E[b]* and k is in B,,(E/F)(L%/F). Then ¢ lies in E[z]XBn(E/F)(LOE/F) and
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E[b])*= E[t]*. By Proposition 4.8.17

E[b]*=E[t]*c E[Z] XBn(E/F)(L%/F)'
Also, by the same proposition, E[z]*C E[b]*B, g, r (L, r). It follows
that
E[Z] XBn(E/F)(L%/F) = E[b] xBn(E/F)<L?5/F)'

Thus, if y~'zy lies in H(Y, z r) = E[2]*B,z/r(Lg/r), then y lies in
NK([LoE/FD(E[z]XB,,(E/F)(LE/,,-)) and conversely

We now prove (b). Let us assume that y~'zy lies in H(y b.E/F)- SInCe
y~lzyis B(L} r)-generic of level r, from Proposition 4.8.19, we have

E[y‘lzy] “c E[b] XBn(E/F)—r(L%/F)‘
Also, y~'zy = tk for some ¢ in E[b]* and k in B,y (L% ), we apply
Proposition 4.8.19 to get
E[b] = E[t] “c E[y‘lzy] XBn(E/F)——r(LOE/F),
so that

E[b]xBn(E/F) r(L%/F) = E[y—lzy]xBn(E/F) r(LOE/F)'

Similarly, E[b]*B, g r)- (LY g/r) = E[2]"B, g r) - (LY £/r)- 1t follows that
y lies in

NK([L?._-/F])(E [] XB,,(E/F)_,(L%/F)) = NK([L%/FD(E [6] XBn(E/F)—r(L%/F))-

Conversely, we assume that y lies in Ny 12, ])( E[b]*B, /P (LY 7))
Write y ~'zy = y~ltyk for some ¢ in E[b]* and k in B,,(E/F)(LE/F) Then k
lies in H(Y, ;,r)- Thus, we may assume that z lies in E [6]*. Under these
circumstances, z — 1 is an element of E[b]* that lies in £/( LY r)- Write
y Nz — 1)y = t,k, where 1, lies in E[b]* and is £( L%/F)-generic of level r
and k, is in B, (L} r). We then have

yilzy=14+tk, =0+ tl)(l +(1+ 1) 'ty (ky — 1))
Thus, y~'zy lies in E[b]*B, (L%, r) = H(Y; £,r)- This completes the
proof.

PROPOSITION 4.8.23. Let x be a K([L3 ¢]) generic, T-K([ Ly, ) generic
element of H(Y, . ,r) that does not lie in N"*(E*B, g ,r(Lg r)) and such
that N(x) is F-rational. Then x(o) (7, x) = xD(N(x)).

Proof. We recall that

ng)ﬁ("'ax) = Z pE/F(y_lxyT)'
yin K(Lg, r)/H(Wy £/F)
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Assume then that y lies in K([L £sr)) and y~ "xy™ lies in H(y, , r)- Then

y IN(x)y lies in H(Y, g,r)- We have that either x and N(x) are
K([LE/F]) generic elements of level — oo, or x and N(x) are B(LY E/F)
generic elements of level » < n. In the first case, Proposition 4.8.22(a) says
that y lies in NK([Lo (E[b]™ n(E/F)(L ,r)) and then y~ Ixy lies in
H(Y,, g/ r) (by Proposmon 4.8.22, now applied to the generic element x).
By the same argument, Proposition 4.8.22(b) implies that y‘ Ixy lies in
H(Yy g,r) if x and N(x) are B(LY £sr)-generic. Thus, y~ xy lies in
H(Yy, g/r) if y lies in K([LE/F]) and y 'xy" lies in H(Y,, £ /r)- 1t follows
that if y is in Qp, y™'y" = (y " 'x ")y~ 'xp") lies in H(Y,, z/p) N Qp =
0, (£/r),e- Now we have by Proposition 4.3.3, since

QN K([LE/F])/QE N H(‘Pb,E/F)
and K([LY £,F])/H(¥y £, r) are in natural bijection, that

O _ —
XSTE)/F('Ta x) = Z PE/F()" lx)’)
yin QFmK([LOE/F])/QFn Hy g/F)

= > F"E/F(yle)’)-
yin QrNK(LED/ Q. F
Finally, Lemma 4.8.14 implies that
X9 (7,x) = )y p(y IN(x)y) = xP(N(x)).
yin QeNK(ILED/Qu r
4.9. For this section only we set
X;':/)F( T, X) = Z pE/F(y—lxyT)
yin Glz(OE)ZmK([L%/FD/H(%,E/F)

where z,, lies in Z; . (see §4.3).

It should be observed that K ""(L%)=U>,K*"(LY%), where
K “*"'(LY) consists of the K*""( L)-generic elernents of level r. It follows
that it is enough to restrict ourselves to T-unramified generic elements in
NK (L) = UEKM(LY)).

PROPOSITION 4.9.1. Let x be a m-K “""([ L%.]) generic element. Then there
is an element h in Gl,(Oy,) such that h~*N(x)h is F-rational.

Proof. Similar to the proof in Proposition 4.8.5.
It follows from above that we may assume without loss of generality
that if x is 7-K “*"([ L}]) generic then N(x) lies in G1,(F).
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PROPOSITION 4.9.2. Let x be a T-K¥""(LY) generic element of level r
(i.e., N(x) has level r) such that N(x) is F-rational. Then there is a
K¥""(LY)-generic element z of level r such that N(z) = N(x).

Proof. We recall once more that the restriction of the norm map N to
E[N(x)]is the norm of the field extension E[ N(x)]/F[N(x)].

We prove the proposition when E/F is ramified. The unramified case
is proved similarly.

Suppose first that r = 0, i.e., N(x) lies in U ., but not in ULUg y(,;-
It follows that x lies in Ugy,), and cannot be an element of UpUgy(y);
(otherwise N(x) becomes an element of U2Ugy(,y, Which is false). Also,
since x commutes with N(x) we have that E[x] = E[N(x)], so that x is
unramified generic of level zero.

We now suppose r > 1. Then N(x) lies in Ugy(,, but not in
UgUj{nxy- It follows that r = sI for some s (because N(x) lies in Uy,
some s, SO we may take s such that N(x) lies in Ugy(,y — U;[*NI(X)] from
which r = s/). Thus, by properties of the norm (see [Se]), there is an
element z in Ug{y(,, — Us{x(xy Such that N(z) = N(x). It follows that z
lies in fact in Uf v, — UsUg{n .y (because if z is in UgUyly .y, then N(z)
is in UgUg[*],}(x)], which is false). Also, given that x commutes with N(x),
we have that x is unramified generic. The level of x is r. This completes
the proof.

LEMMA 4.9.3. Let k be a quadratic extension of the finite field F, of q
elements. Let | be an odd prime number and suppose that for ¢ # 0, lying in
F, there is B in k such that B' = c. Then there is an element v in F, such that

Y =c

Proof. Suppose first that / does not divide ¢ — 1. Then the function
y — y'is an injective endomorphism of F, so that is an automorphism.
It follows that given c in F*, there is y in F,* such that yi=c

Consider now when l d1v1des q— 1. Smce B’ = c lies in F, we have
that B¢~V = 1. Also, 87! = 1. Thus, the order of B in kx divides
g.cd.(q*—1,/(q — 1)) = g — 1 (because [ does not divide g + 1, since
[ is odd). We then have 877! = 1. The uniqueness of the subgroup of a
given order in a cyclic group implies then that f lies in F,. This completes
the proof.

PROPOSITION 4.9.4. Let x be a 7-K*""([ L%])-generic element such that
has F-rational norm. Then there is an element a in E* and a 7-K¥""([L%))
generic element g such that x is T-conjugate with ag.
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Proof. N(x) has the form Bh where B lies in E* and & is K} (LY)-
generic of level » for some r > 0. So

v - [

where one of u, v, a or ¢ is a unit. Suppose u is a unit. Set » = Su. Then r
lies in F and r"'N(x) = r~'Bh is F-rational. We have r '8h = u~'h and if
we set h; = u~'h, it follows that A, is K" (L%)-generic of level r. We
observe that N(x) = Bh = rh; so we may assume without loss of general-
ity that N(x) = Bh where 8 lies in F and & is K""( L%)-generic.

Suppose E/F is unramified. By properties of the norm there is a
K4mr(LY)-generic element g such that N(g) = k. It follows that 8 is a
E[N(x)]/F[N(x)]-norm, but we need to prove that 8 is an E/F-norm.
Since

NE/FEXC NE[N(x)]/F[N(x)]E[N(x)] N F*c F~

and [F™: Ng,zE*] =1 (see proof of Proposition 4.8.7), it remains to
prove that this last inclusion is proper. The element 72 has valuation two
in F[N(x)], so it is not in Ny y(.y rive E[N(X)], because in th is last set
the elements have valuations which are multiples of /. From this the
proposition follows for E /F unramified.

Now suppose E/F is ramified. Set 4 = F[N(x)]. Then
v N, prpr®) = vp(B) so we may scale x by mr¥ and we may then
assume N(x) is in U,. Suppose first that N(x) lies in U, but does not lie
in U U]. We have then that x is a K/""(L%)-generic element lying in
U, — UgUy. Next, if N(x) lies in U; and B lies in Uy, then B is an
E /F-norm (see [Se]). Thus, 4 is a AE/A-norm and by Proposition 4.9.2,
we are done in this case. Finally, suppose that N(x) lies in UrU; but not
in U;. Then N(x) = Bh where h lies in U; and B lies in Uy. It follows that
h is an AE/A-norm, i.e., there is an element h; in U, such that
N(hy) = h. So B is an AE/A-norm and the proposition will be proved
once we prove that g is, in fact, an E/F-norm. Denote by B the image of
B in k , (the residue field of A). Consider the diagram

B is an /th-power in k , and it lies in k .. Thus, B is an /th-power in k . (by
Lemma 4.9.3). It follows that 8 is an E/F-norm.
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From the above we see that we may assume that x is 7-K3""(L%)
generic, K /""( L%)-generic, N(x) is F-rational and level x = level Nx.

PROPOSITION 4.9.5. Let x be K" "-generic of level r and let y be in
G1,(0p)z, K((Ly/F). Then y~'xy lies in B(LY,) if and only if
—-m+r=[n/2l+ 1+ e(E/F))/2.

Proof. Write
x=1+ w,g[z Z]
with u, v in Uy and a, d in Og. Also, let y = hz, k where h lies in Gl,(Oy)
and k is in K([L} /5]

We have y~'xy = k™'z, 'h"'xhz,k lies in B,(L} ) if and only if
z,,'h"'xhz, lies in B,(L} ). But since x and h~'xh are unramified
generic of the same level, it is enough to prove that z,'xz, lies in
B,(LY, ) if and onlyif —m + r > [n/2] + (1 + e(E/F))/2.

It follows that

r m+tr
22z, =1+ T YT
m m Uﬂgm+r d'ﬂ'Er

lies in B,(L} 7) if and only if —m + r > [n/2] + (1 + e(E/F))/2.

COROLLARY 4.9.6. Let x be K!""( LY)-generic and -K¥""(LY) generic,
level x = level N(x) and let N(x) be F-rational. Then y *N(x)y lies in
B,(LY r) if and only if y~'xy lies in B,(L} ).

PROPOSITION 4.9.7. Let x be K{""(L%)-generic and y be an element of
Gl1,(0p)z, K((LY,£). If y~'xy lies in E*B,(LY,,z) then y~'xy lies in
Bn(L%/F)'

Proof. Write y~'xy = ac where a is in E* and ¢ = [c;;] lies in
Bn(LOE/F)'

Since for k in K([LY,/]) we have that k™ 'zk lies in E*B,(Lg r) if
and only if z lies in E*B, (L} ,r), W€ may assume that y has the form
y = hz,, with h in G1,(Og).

Given that A~ 'xh is unramified generic, we may write

-1 _ 1 a u
h xh—1+7rE[v o]

where u, v are units. It follows that
a T U
y iy =z'hxhz, =1+ wé[ £ }

—m

"™ d
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We get 1 + 7a = acy;. Since ¢y is a unit, it follows that v (a) > 0. Also,

—m+r=vg(a)+rg(cy) = [-’21—] + lie—gé/—a.

The result now follows from Proposition 4.9.5.

PROPOSITION 4.9.8. Let x be as in 4.9.6. If y~'xy” lies in H(Y,, ;)
theny~'xy liesin B,y (L% ).

Proof. Since y~'xy” lies in H(y, ), we have that y~'N(x) y lies in
H(Y, ¢/r)- Also, y"'N(x) y is unramified and

H( %,E/F) - ExBn(E/F)( Lg/F)

consists only of ramified generic elements, so that y !N(x)y lies in
E*B,r,r(L3,r)- By Proposition 4.9.7, y"'N(x) y lies in B, r\(Lg,r)-
Finally, by Corollary 4.9.6, y 'xy lies in B, (L%, r). This completes
the proof.

It follows from the above that then y 'y lies in H(y p.eyr) and if y is
in Q, then, in fact, y~'y" lies in H(Y), z/r) N Qp = Q,x/r) £ /r NOW,
the analogs of Propositions 4.8.11 and 4.8.12 follow. Finally, with argu-
ments similar to ones made in §4.8 we get

PROPOSITION 4.9.9. Let x be as in 4.9.6. Then

X (7, x) = x{" (N(x)).

4.10. We have at this point all the elements we need in order to
present our main resuit.

THEOREM 4.10.1. Let F be a p-field. Let E/F be a prime cyclic
extension of odd degree [ such that p + I. Let 7 be an irreducible admissible
ramified supercuspidal representation of Gl,(F). Let my,r and 11 be defined,
respectively, as in 2.1.9 and 3.3.1. Then the representations wy,r and 11 of
Gl,(E) are equivalent.
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