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LORENTZIAN ISOPARAMETRIC HYPERSURFACES

MARTIN A. MAGID

A Lorentzian hypersurface will be called isoparametric if the minimal
polynomial of the shape operator is constant. This allows for complex or
non-simple principal curvatures (eigenvalues of the shape operator). This
paper locally classifies isoparametric hypersurfaces in Lorentz space.

The classification is done by proving Cartan-type identities for the
principal curvatures and showing that the hypersurface can have at most
one non-zero real principal curvature. Standard examples are given in §3
and the main theorems are in §4.

The hypersurfaces with minimal polynomials (x — a)? and (x — a)?
are called generalized umbilical hypersurfaces since they have exactly
one principal curvature. The classification of these hypersurfaces gives
insight into principal curvatures and the effect of the constant principal
curvatures on the structure of a hypersurface.

1. Preliminaries. In this paper all manifolds and maps are assumed
to be C*®. f: M — M will always be an immersion but f can be treated
locally as an embedding. Thus x will often be identified with f(x) and the
mention of f will be supressed.

Lorentz space and its hypersurfaces. Let L"*! be the n + 1 dimensional
real vector space R"*! with an inner product of signature (1, ) given by

(55, )—") = —XoJp t Z X; Y
i=1

for X = (xg, X,...,%,) and ¥ = (¥p, Y1,---,¥,). L"*! is called Lorentz
space.

The n-dimensional sphere of radius r in L"*!, S7(1/r?), is the
hypersurface

(e L (%,X)=r?}
with the induced Lorentzian metric. It has constant sectional curvature
1/r2
Generally a hypersurface M in L"*! is called a Lorentzian hyper-

surface if the induced metric has signature (1, » — 1). If D is the flat
connection on L"*! the Levi-Civita connection ¥ on M is specified by

(1.1) DY = v, Y+ a(X,Y)
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where X and Y are tangent vector fields on M, Vv,Y is the tangential
component of D,Y and a(X, Y) is the normal component. a is called the
second fundamental form.

In a neighborhood of each point of M we can find a field £ of unit
normal vectors. Using ¢ a field of endomorphisms 4 on M can be defined
by
A is symmetric with respect to the induced Lorentzian metric and is called

the shape operator of M.
The curvature tensor R of M is related to 4 by the Gauss equation

(1.3) R(X,Y)=AX A AY
where U A V denotes the endomorphism of the tangent space defined by
UnAvyw=(v,w)u—-(Uw)V.
The shape operator satisfies Codazzi’s equation
(1.4) Vx(4Y) — A(VxY) = vy (4X) - A(VyX).

Throughout the paper the equation which results from taking the inner
product of both sides of (1.4) with a tangent vector Z will be denoted by
{X,Y}Z.

Symmetric Endomorphisms. If V is a vector space with a Lorentzian
inner product (,) an orthonormal basis { E,,...,E,} is one satisfying

(E, E))= -1, (E,E)=38, (E,E)=0

ij
for 2 < i, j < n A pseudo-orthonormal basis is a basis {X, Y,
E,,...,E,_,} such that

(X,X)=0=(Y,Y)=(X,E)=(Y,E), (X,Y)= -1
and
(E,E)=6, forl<i,j<n-—2.

A symmetric endomorphism 4 of a vector space V with a Lorentzian
inner product can be put into one of four forms [11].

a, 0 a, O 0
. 1 a,
I. 4~ - . A4~ a,
0 an 0 an—2
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a, 0 0

0 a, 1

m. 4~|-1 0 a,

a;
i Qn-3 |
ay b,
-b, a
V. 4~| ' g
) an~2

Here b, is assumed to be non-zero. In cases I and IV A4 is represented with
respect to an orthonormal basis while in cases II and III the basis is
pseudo-orthonormal. In cases I, II and III the eigenvalues are real, while
a, + ib, are eigenvalues in case IV.

2. Cartan’s identities. In the case where the shape operator A4 is
diagonalizable a hypersurface is said to be isoparametric if A has constant
eigenvalues (principal curvatures). If 4 is not diagonalizable define a
hypersurface to be isoparametric if the minimal polynomial of the shape
operator is constant. Such a hypersurface has constant principal curva-
tures and 4 can be put into exactly one of the canonical forms I, I1, III, or
IV.

Following and simplifying the method in [10] we show that in each
case the principal curvatures satisfy an identity.

If M" is a Lorentzian hypersurface in L”*! with a constant principal
curvature a, define a distribution 7, on M by

T,={Ue€ TM: AU = aU }.

LeEMMA 2.1. T, is an integrable distribution.

Proof . If Uand V arein T,, by 1.4
AlU, V] = a[U, V]
so that [U,V]isin T,. ]

This doesn’t depend on the metric induced on T,, which may be
degenerate.

THEOREM 2.2. If the shape operator of a Lorentzian hypersurface in
L"*1 is diagonalizable and has distinct constant eigenvalues a,...,a » With



168 MARTIN A. MAGID

multiplicities v, . .. Vs then forany i,1 < i < p,

(2.1) y 4

j=i i T 4

Proof. For an eigenvalue a of A define the focal map f,: M — L"*! by

fulx) = x + 28(x),

so that
(f)sU=U~ 2 A4U.
For anyj,1 <j < p, denote faj by f; and Taj by T,. We see that
(f)x =0 onT, while

a,—a; )
U forUinT,j+i.

a.

(fi)*U=

Call (M) = V,. This is an n — », dimensional submanifold of L"*!, at
least in a neighborhood of £,(x). We can identify 7,(V;) with [T;]*. The
line x(t) = x + t£(x) is normal to V; at f,(x) and x(¢) = §(x). For U in
[T,]* we want to calculate the shape operator B,U at f,(x).

D¢ = (f)e(=BU) + Vit

where v £ is the component of D ;¢ normal to V. If Uisin 7,

Dy¢= —aU
so that B.U = (a;a;/a, — a;)U. Therefore
3 vaa,
(2.2) tr B, = Z'——————a._a_.
J*Ei J

Following [10] we define a differentiable mapping from M,, the
integral manifold of 7; through x, to N,(V}), the normal space to V, at
f.(x) = p. f, maps M, to the single point p. Define g;: M, — NP(V,.) by

g.(») =&(y).
The differential of g; at x is
(8)+Z = —a,Z
so that g, is injective. N,(V)) is either Euclidean or Lorentzian, depending
on M,. Consider the linear function w on this vector space given by
w(V)=1trB,.

Let S, C N,(V,) denote the unit sphere, which is either a Riemannian

or Lorentzian manifold. g;(M,) is an open subset of S, containing §(x).
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By (2.2) w is constant on an open subset of S,. An easy argument shows
that w = 0 on N, (V). O

In order to prove the appropriate identity when A falls in case IT we
need the following lemma.

LEMMA 2.3. Suppose A is the shape operator of a Lorentzian hyper-
surface. If A has distinct constant eigenvalues a,, a,,. . . ,a, with multiplici-
ties vy, vy,...,v, and the minimal polynomial of A is (x — a,)*(x — ay)
-+ +(x — a,) then there is a pseudo-orthonormal basis

(x.Y,2,,....2, 5, Ey,....By,5. - E,, |

of vector fields in a neighborhood of any point in M with respect to which

Note. The multiplicity of an eigenvalue ag is the exponent of (x — ap)
in the characteristic polynomial. See, for example, [7], p. 236.

Proof. Take such a basis at a point x,. Extend the basis to vector
fields { X, ¥, Z,,...,E,, } in a neighborhood of x,. Consider
(A-a)(4-a)---(A—a)--(4-a,)E,,

J

1<j<p,1<k<v,.

For a fixed j these »; vector fields span 7;. They can be made orthonormal
using the Gram-Schmidt process, ~yie~lding Ey,... ,Ep,,p. Using these we
can form X,Y, Z,,...,Z, _,from X,Y,...,Z, _, which are perpendicular
toT; ® --- & T,. Now apply Gram-Schmidt to

X+Y X-Y = =
, Zyse s Z,
{ V2 2 0 °2}

to form { W,,..., W, }, an orthonormal basis of [T} & --- & T,]*.
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W, + W, is lightlike (has length zero), (4 — a,)(W; + W,) #0in a
neighborhood of x, and (4 — a,)*(W, + W,) = 0. This means that
(A4 = ag)(Wy + W,), (A4 — ap)(W, + W,)) =0 and
A((A = ag)(W, + W) = ao((4 — a,) (W, + W)
so that (A — ay)(W; + W,) is lightlike and in T;,. Thus there is a multiple
of W, + W, such that

(c(Wy + W), (A — ag)(c(W, + W,))) = —
near x,. Setting X = ¢(W, + W,) and Y = (4 — a,)(c(W, + W,)) it is

easy to complete the desired basis. O

In the statements and proofs of the following theorems the indices i, j
and B will have the following ranges: 1 < i,j <pand 0 < B < p.

THEOREM 2.4. If the shape operator of a Lorentzian isoparametric
hypersurface in L"*' has minimal polynomial (x — ay)*(x — ay) - -+

(x — a,) and the eigenvalues have multiplicities v, vy,. . ., v, then for any i
vea,a
(2.3) y EE .
B+#i a; ag

Proof. Fix i and again consider

fi(x) = x + £(x).

Then
(f)*U— U for Uin T}, j # i,
whileon T, = [T} ® ---eBT]lwehave
(Aa(x)=x 2y

i i

for X and Y as in Lemma 2.3 and

(f)sU= 4 a—oao U for Uin Tj,.

Therefore ( f;), is injective on [T;]*, which can be considered the tangent
space to V, = f,(M). The line x(z) = x + t£{(x) with x’(¢) = §{(x) is
normal to V; at f,(x). We want to calculate the shape operator of V; in this
normal direction. For U in [T}]*

Dyt = —(f)u(BU) + viré= —AU.
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With respect to the basis above
[ a,aq,

_Lo%i
a;,— ag

2
a; aga

1

B, = (a; - a0)2 4~ do

i

a,a,

a,— 4 |

so that tr Bg Y. vga;ap/(a; — ag). As in the proof of Theorem 2.2 this
constant is zero. O

To tackle case III we need another indefinite Gram-Schmidt lemma.

LEMMA 2.5. Let A be the shape operator of a Lorentzian hypersurface. If
A has distinct constant eigenvalues a, a,,...,a, with multiplicities
Vos P1s- -+, and the minimal polynomial of A is (x — a0)3(x —a)) -
(x — a,) then there is a pseudo-orthonormal basis

{(X,Y,2,2,..,Z, 3, Ey,....Ey,,....E,, }

of vector fields in a netghborhood of any point in M with respect to which

a, 0 0
0 a, 1
A= -1 0 a .
-a,
al.
! 4y

Proof. As in Lemma 2.3, find Ey,,...,E v, with the desired properties
and X,Y,Z,Z,... Z,,O_3 which are perpendicular to 7,® --- 01T,
Apply the Gram-Schmidt process to

X+Y X-Y > =
Rt
to obtain {W,,..., W, }, an orthonormal basis of [T; & --- & T,]*. Set
= (W, + W)/ﬁ "X is lightlike, (4 — a,)?X # 0 and (A - a0)3x——
O Now let

X
\/((A ~a,)’X, X)
—(4—-ay)’X and
= —(4-a))X-((4-ay)X, X)7.

b'e

Ii
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A

These vector fields satisfy: (X, X)=0=(, 1), (X, ¥)=-1,(X,2)=
0=(Y,2),(Z, Z)=1and
AX = aof( +CY-2
AY = aOY
AZ =T+ a,2.
C is a possibly non-zero function. Finally set

A Cc?. C -
X=X+ TY— —2-Z
Y=Y
—C - .
Z = TY + Z.
As before Z,,...,Z, _; are simple to find. a

THEOREM 2.6. If the shape operator of a Lorentzian isoparametric
hypersurface in L** has minimal polynomial (x — ay)*(x — a;) -+ (x —
a,) and the eigenvalues have multiplicities vy, vy,.. . ,v,, then for every i

vga.a
(2.4) Z _BTITR 0.

g=i %~ 9

Proof. Fix i and look at the focal map f,.

a,—a )
(f)al = —— LU forUin Ty,
while
(X =""0x4+ 7
(f)eZ = —alY+“"—“°z.

We calculate as above that the shape operator B, to V, has the form

a,a
0
0 0 0
a, — ap
8% a; 9,4, 4 %% 0---0
3 2 a,—a a,—a 2
(al - aO) (ai - aO) ! 0 ' 0 (ax - aO)
B, = 49 4 0 4,4,
2 a,—a a, —a
(ai - ao) ' 0 ! Y
0
s a;a
0 P
a;,—a,

As above the trace of B, = 0.
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COROLLARY 2.7. If M" is a Lorentzian isoparametric hypersurface in
L"*! whose principal curvatures are all real then M has at most one non-zero
principal curvature.

Proof. Suppose that A has more than one non-zero real eigenvalue. By
looking at +£ we can assume some are positive. Choose the smallest
positive eigenvalue. If it is a;, i # 0, then

>

B+i

vpa,ag
ai - aﬁ

has only non-positive summands, so that a,a; = 0 for all B # i. If the
shape operator is diagonalizable, this finishes the proof. If not, there is the
possibility that a, is the smallest positive eigenvalue. In this case we may
also assume that all eigenvalues are positive or 0.

If all the non-zero eigenvalues are positive and a, is the smallest, let
a, be the largest.

-1
Yg4p9p
g=0% ~ 9

has only non-negative summands so a,a, = 0 for all 8 # p and only g, is
non-zero. O

THEOREM 2.8. If the shape operator of a Lorentzian isoparametric
hypersurface in L"*! has minimal polynomial [(x — a,)? + bZ](x — a;)

++(x —a,), by # 0, and the real eigenvalues have multiplicities v,,...,v,
then for every i
- — b2 v.aa;
(2.5) 20,| % ”0)“20 0l+ Y L.
(a, —ay) + B2 jei 4T 4

Proof. Choose an orthonormal basis of vector fields {C;,
Gy, Eyy,. .., E,, } such that

AC,

boC; + aoCy,

AE; = a,E,, 1<j<p,1<k<v,.

This can be done by complexifying the tangent bundle. Letting f; be the
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focal map corresponding to a non-zero real eigenvalue we have

(fi)*cl =

a,—a b
°c, + 2C,
a; a;

—b, a,—a
(fi)*C2= a‘OC1+ a 0C2

i i

i

a;

- q, _
U forUinT..
a; J

(fi)*U= :

Thus ( f;)« is injective on [T;]* . It is easy to see that the shape operator B,
of ¥, in the direction of £ has

(ai —ay)a, — bg 4 Z via,a;
(ai—a0)2+b§ 4= 4;

ji i J
As before (2.5) holds. O

Note that (2.5) holds with a, = 3, a, =1, b, = % and i = 1. Thus 4
can have more than one non-zero principal curvature and satisfy (2.5).
However, 4 can have at most one non-zero real principal curvature.

COROLLARY 2.9. If M" is a Lorentzian isoparametric hypersurface in
L"*1 with complex principal curvatures a, + ib,, by # 0 then M" has at
most one non-zero real principal curvature.

Proof. Assume that M" has a non-zero real principal curvature and
call a, the smallest positive one. If a; > 0 > a, or a, > a, > 0 then by
(2.5)

a, —ay)a, — b3 v.aa;
2a1[(1 o) 0 0}4_ JU17
Jj#*1

(a, — a,)” + b2 4 4,
where the distinct real principal curvatures are given by a,, a,,...,a = The
summands are all non-positive and so a,a; = 0 for allj # 1. In addition
(2.6) (a, —ag)ag — b3 = 0.

Suppose a; > a, > 0. If there were another non-zero real principal
curvature there would be either a negative one with smallest absolute
value, a,, or all would be positive and some a , would be largest. In the
first case

a>ay>0>a,.
By considering 4 _, this has been done. In the second case
a,>a;>ay,>0.
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Summing over j # 1 and then overj # g in (2.5) gives
(g, —aglag—b2=0
(a,—ap)ag—b;<0
which is impossible. O

3. Examples. The main purpose of this paper is to describe locally
the Lorentzian isoparametric hypersurfaces of L"**. It will turn out that
no such hypersurface has complex principal curvatures so only those with
one or two real principal curvatures and at most one non-zero principal
curvature need be classified.

If the shape operator of M " is diagonalizable and M" is complete then
M?" is a Lorentzian hyperplane, sphere or one of two types of cylinders:

M= {(xg, Xp,...x,): —x5 +x} + -+ +x2=r%} or
M= {(xq, %p,...,x,)i X2+ -+ x2=r%}, 1<k<n.

If the shape operator is not diagonalizable then M will be called either
a generalized cylinder or a generalized umbilical hypersurface. The following
examples give the necessary local models.

A null curve x(s) is a curve whose tangent vectors have length zero. A
frame for a curve x(s) in L"*! is a set of vector-valued functions
E\(s),...,E, ,(s) such that, for each s, { E(s),...,E, (s)} is a basis of
L"*1, If the basis is pseudo-orthonormal it is called a pseudo-orthonormal
frame.

We assume a > 0 below. If a < 0 the examples can be easily modified
by requiring that f(s, 0) = x(s).

ExAMPLE 3.1. Generalized cylinder of type 1.
Take a null curve x(s) in L'***3 with a pseudo-orthonormal frame
{ X(s), Y(s5), C(s), Wi(s),- .., W, (5), Zi(5),...,Z,(s)} such that

x(s) = X(s),
C(s)= —B(s)Y(s), B=+0,
Zy(s) € span{¥(s), Z,(s),...,Z,(s)}, 1<B<p.

The parametrized hypersurface in L'***3 defined, in a neighborhood of
the origin, by

(s, u,wie oWy, 21,.00,2,) = x(s) + uY(s) + LwW(s) + X z5Z(s)
J B

+2C(s) =/ ;1-2- — Y22 C(s)
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is called a generalized cylinder of type 1.

£ = a(1/ % - zz;)c(s) - aZa7Z(s).

The minimal polynomial of 4, is x*(x — a) if p # 0 and x?if p = 0.

ExAMPLE 3.2. Generalized cylinder of type 2.
Let x(s) be a null curve in L"***3 with a pseudo-orthonormal frame
{ X(5), Y(s), C(5), Zy(5),...,Z,(5), Wi(5),..., W,(s)} such that
x(s) = X(s),
C(s) = —aX(s) — B(s)Y(s), B=#0,
W(s) € span{Y(s), W(s),...,W,(s)}.
The parametrized hypersurface in L'+ *2 defined by
fls,u, 2,0z, Wy, ow) = x(s) + uY(s) + Y2,Z,(s) + 2 wiW(s)
J B

+ %C(s) - ‘/ -al—z - 2.z;C(s)

is called a generalized cylinder of type 2 if p # 0.

¢= —auY(s) + a‘/ % - 227 C(s) —a).z,Z,(s).

The minimal polynomial of A4, is (x — a)’x if p # 0 and (x — a)* if
p = 0. If p = 0 the hypersurface is called a generalized umbilical hyper-
surface.

If p=0 then for each s we get a map f(u, z,,...,z,) =
f(s, u, z,,...,z,). The image of f, is an r + 1 dimensional submanifold of
R’*3 which is contained in the r + 2 dimensional sphere of radius 1/a
centered at x(s) + (1/a)C(s). f,(u, z3,...,2,) — x(s) — (1/a)C(s) is also
perpendicular to Y(s). Therefore f(s, u, z;,...,z,) consists of those r + 1
dimensional submanifolds of ‘the appropriate r + 2 dimensional spheres
perpendicular to Y(s) moving along x(s).

ExAMPLE 3.3. Generalized cylinder of type 3.

Start with a null curve x(s) in L’**** and a pseudo-orthonormal
frame { X(s), Y(s), Z(s), C(s), Uy(s),...,U,(s), Vi(s),...,V,(s)} satisfy-
ing

x(s) = X(s),
C(s)=B(s)Z(s), B(s)#0,

Vi(s) € span{Y(s),¥i(s),....V,(s)}, 1<B<p.
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The parametrized hypersurface defined in a neighborhood of the origin by
f(s,u,z,up,...,u,,0,,...,0,)

= x(s) + uY(s) + zZ(s) + Lu;U(s)

+ 2 ugV(s) + %C(s) - ‘/ ;12- - 2 v3C(s)

is called a generalized cylinder of type 3. The minimal polynomial of the
shape operator is x*(x — a) if p # 0 and x3 if p = 0.

ExAMPLE 3.4. Generalized cylinder of type 4.
Take a null curve x(s) in L’***% with a pseudo-orthonormal frame
{ X(5), Y(s), Z(s), C(5), Vi(5),...,V,(5), Uy(5),...,U,(s)} such that

x(s) = X(s),
C(s) = —aX(s) + B(s)Z(s),
Up(s) € span{Y(s), Uy(s),...,U(s)}, 1<B<p.
The parametrized hypersurface given by
f(s,u,z,0,,...,0,,uy,...,u,)

= x(s) + uY(s) + zZ(s) + LoV, (s)

+ 2 uglU(s) + %C(s) - \/'al_z -2 v — 22 C(s)

is called a generalized cylinder of type 4, if p # 0. In this case the minimal
polynomial of the shape operator is (x — a)3x. If p=0 f is called
a generalized umbilical hypersurface and the minimal polynomial is
(x — a).

In the appendix the existence of framed null curves with the ap-
propriate derivatives is proved.

4. Hypersurfaces in L"*! with at most one non-zero real principal
curvature. In this section isoparametric hypersurfaces of L"*! with at
most one non-zero real principal curvature are shown to be generalized
cylinders or generalized umbilical hypersurfaces. A few lemmas are needed
to begin.

LeEMMA 4.1. If M" is a Lorentzian isoparametric hypersurface in L"*!
then the kernel of the shape operator A is a totally geodesic distribution on
M.
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Proof. Let W, W, be vector fields in ker 4, and V be any vector field
on M.

(AV, W) =0
so by (1.4)
0 = Wy(AV, W) = (v, (4V), W) +(4V, v, W)
= (A(vuy), W) + (v, (4Wy), W)
—(A(v, W), W) +(4V, v, W)
= (4v,v,w)
s0 A(Vy W) L TM. m

LemMMA 4.2. If M" is a manifold with a vector field X and two integrable
distributions T, and T, satisfying

MWXxXeTeT,=TM
(2) viT, € T, i, j = 1,2,then for every point ¥(0) in M there is a
coordinate system (s, v,,. .. sUps Wi, o - ,wq) with origin y(0) such that

(1) {9/dvy,...,0/3v,} forms a local basis of T
(ii) {9/9wy,...,8/3w,} forms a local basis of T,
(iii) (s, 0,...,0) is an integral curve of X.

Proof. By hypothesis T; & T, is integrable, so by the lemma in [5] vol.
I, p. 182 there is a coordinate system (s, y;,...,),_;) With origin y(0) such
that s = ¢ defines an integral manifold of 7; & 7, while y, = ¢;, 1 <j <
n — 1, defines an integral curve of X. Thus the curve y(s) = (s,0,0,...,0)
is an integral curve for X. For each s let N(s) denote the integral manifold
of T, ® T, passing through y(s). N(s) has two complementary integrable
totally geodesic distributions 7; and 7,. Again by the lemma in [5] there is
a coordinate system {¢,,. ceslps Ugs. .U, ) on N(s) with origin y(s) such
that ¢, = ¢; is an integral manifold of 7, and u, = d, is an integral
manifold of 7;. As in [5] vol. I, p. 183 there is an open neighborhood @(s)
of y(s) in N(s) such that O(s) = 0,(s) X 0,(s) where 0,(s) is open in
M;(s) and M,(s) is integral to 7;. Now let V(s),...,V,(s),
Wi(s),. .., W,(s) be smooth vector fields along y(s) with V(s) in 7; and
W.(s) in T,. We have, possibly by making @,(s) smaller,

0,(s) = CXPy(s)(ZUjV;(S))
0,(s) = exPy(s)(ZWka(S))
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SO

0(5‘) = (expy(s) ZUJ«V}(S), expy(s) Zkak(s))
and (s, vq,... sUps Wiy o3 W,) is the desired coordinate system. O

If M" is a Lorentzian manifold satisfying the hypotheses of (4.2) and
f: M" - L"*! is an isometric immersion then we can make the following
definitions. For the coordinate system above set x(s) = f(y(s)) and let

fi.s:0(s) > L' betv — f(s,7,0) and
fZ,s:(DZ(s)_")L'H—l beﬁ?Hf(s,O,Wz).

LEMMA 4.3. Let M™" be a Lorentzian manifold satisfying the hypotheses
of (4.2). If f: M" — L"*! is an isometric immersion and a(T,, T,) = O then
f can be written locally as

fs,8,%) = =x(s) +£,,,(0) + fo,,(#).

Proof. Let (s, vy,...,0,, wi,...,w,) be the coordinate system obtained
above. For a fixed s we have 0(s) = 0,(s) X 0,(s). To employ the proof
of “Moore’s Lemma” in [2], p. 386 we must show that

B 9 .
Va/aojm =0 = va/aw"a—l)j for allj, k.
Note that
0=l 3| 3 o 8
dv;” dw; 3/04 3w, 3/3w, 3,
SO

9 _ 9
Va,au, ow, Va,/3w, du,”

But the left-hand side of this equation is in 7, while the right-hand side is
in T}, so both are zero.
Therefore

f(s,0,%) = x(s) = £, (T) = x(5) + f,,,(#) — x(s)

and

f(S,ﬁ,W)= _x(s)+f1,s(5)+f2,s(ﬁ;)' ()

THEOREM 4.4. If M" is a Lorentzian hypersurface isometrically im-
mersed in L"** whose shape operator has minimal polynomial (x — a)x?,
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a # 0, then, in a neighborhood of any point, M" is a generalized cylinder of
type 1.

Proof. In a neighborhood of y(0) in M take a pseudo-orthonormal
basis of vector fields { X, Y, W,,...,W,, Z,,...,Z,} such that AX = BY,
B+#0,AY =0=AW,and AZ; = aZgfor1 <j <rand1 < B < p. First
note that Y can be assumed to be a geodesic vector field. To see this
denote ker A by T, and ker(4 — a) by T,. If U € T, then [U, Y] € T, and
so (Y, [U,Y)=0=(Y,v,Y)—-(Y,vyU)=(vyY,U) so that v, Y 1
T,,. Therefore v, Y is in span { Y } and is pregeodesic. Multiplication by a
function makes it geodesic.

Next we show that the hypotheses of (4.2) and (4.3) hold. First define
a new distribution T, = span{ X} & T,. We recall the notation { X, Y }Z
which is explained after equation (1.4). From

(1) (X,Y}Z, e have ([x,Y],25) =0
@) (x.W)Z, (EARART

so that 7', is integrable.
Three instances of Codazzi’s equation show that 7, is totally geodesic.

(3) {Y’ Zﬁ}Zya (VZBZ'Y’ Y) =0,
(4) (x,2,)2,, a(v,X 2)=B(v,2,.Y)=0,
() (W, 23}2,, (v52,.W,)=0.

If (v W, Y) = 0 then by
(6) (X, Z)W,,  a(vxZs W) = B(v,Y, W),
and (2) (Vy, X, Z) = 0. Then (1), (3), (5) and
(7) {X,2,})Y, (vxY,2Z)=0,
would show that v, T, C Ty and v, T, C T,.
To show that (v, W,,Y) = 0 set

,
Vz, Y = ¢p¥ + ng bs,W;

p
Vi Zg = 0pY + Zl 0%z, .
-
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From {W,, Zp} X, allg = — B¢y, Because AY = 0, T, is totally geodesic
and v,7,c T,

0= (R(Y, Z5)Zy, X) = (V4V25,2s ~ V5,25 = Vo, v,vZp X)

r r B
= (szﬁyzﬁ’ X)= 21¢BJ(V%ZB’ X) = Zl‘f’ﬁj(';)‘f’ﬁj-
J= J=

Therefore ¢, = 0 = ;. With (2) we see that (VyZs, W) = 0 and by (7)
(VxZg, Y)=0.
We know then that the immersion f splits as

fls,u,wi oo w,,20,..0,2,) = —x(s) + fo (u,w) + £, (Z)

with fo ;: My(s) = L"*!and f, ,: M,(s) = L*"". Here, of course, M(s) is
the leaf of T through y(s) and M,(s) is the leaf of T, through y(s).

Now restrict f «(X), f&(Y), fx(W1),....f«(Z,) to x(s) = f(v(s)) and
denote the restrictions by X(s), Y(s), W(s),...,Z,(s). Denote {(x(s)) by
C(s).

We'll see that f (M,(s)) maps onto an open subset of the r + 1
dimensional plane spanned by Y(s), W (s),..., W,(s). For each fixed s
M(s) is a totally geodesic submanifold of M, so that each geodesic in
M,(s) is a geodesic in M. Furthermore f(M,(s)) is a totally geodesic
submanifold in L"*!. In fact if w(¢) is a geodesic in M,(s) then

th*(w(t)) = f*( V,W(t)) + a(W(t), W(t)) =0,
and f(w(?)) is a geodesic in L"**. Therefore f( M,(s)) is an open subset of
an r + 1 dimensional plane in L"*! passing through x(s) and can be
written

fos(u,wy,...ow) = x(s) + u¥(s) + LwW,(s).
fa(M,(s)) is an open subset of the p-dimensional sphere passing
through x(s) contained in the subspace perpendicular to f (7 4(s)) with
center x(s) + (1/a)C(s) and radius 1/a. By equation (4) and v T; C T,
we see that V7. Ty C Ty.
If V(0) is in T,(s) and z(¢) is a curve in M,(s) passing through y(s)
let ¥V(¢) be the parallel translation of ¥(0) along z(#).
Df«(V(1)) = a(V(2), 2(2)) = 0

which shows that f ,(¥(t)) is a constant vector in L"*!, Now
;j—t(f(Z(t)) = f(¥(s5)), £+(V(0))) = (f4(2(2)), f£(V(0)))
= (f+(2(2)),74(V(2))) = 0.
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Therefore f(z(2)) is contained in [ f«(T(s5))]" . f, (M, (s)) is an umbili-
cal immersion in this p + 1 dimensional space and so is an open subset of
the sphere of radius 1/a, with center x(s) + (1/a)C(s). Therefore locally
M is a generalized cylinder of type 1. O

If the minimal polynomial of A4 were x? in the hypothesis of Theorem
3.4 it is easy to see that M is a generalized cylinder of type 1 with p = 0.
In [2] complete isometric immersions with this hypothesis are classified.

THEOREM 4.5. If the shape operator of a Lorentzian hypersurface M" in
L"*! has (x — a)?, a # 0, as its minimal polynomial then, in a neighbor-
hood of any point, M" is a generalized umbilical hypersurface as in Example
3.2

Proof. We take a pseudo-orthonormal basis { X, Y, Z,,...,Z,}, r =
n — 2, for TM in a neighborhood of x(0) such that AX = aX + BY,
AY = aYandAZj =aZ, with B # 0.

Let T, denote the integrable, degenerate distribution ker(4 — a) on
M. Treating M” as an embedded hypersurface, let x(s) be an integral
curve of X and indicate X(x(s)) by X(s), etc. If C(s) = §(x(s)) where £ is
the unit normal then

DC(s) = —aX(s) — B(s)Y(s).

We show that M_(s), the leaf of T, through x(s), is an n — 1
dimensional submanifold of the n-dimensional indefinite sphere centered
at x(s) + (1/a)C(s) with radius 1/a. Fix s and let x(s) + B(¢) with
B(0) = 0 be a curve in M (s) so that B(¢r) € T,(x(s) + B(2)).

Dx(s) + B(1) + 2 £(x(s) + B(1))] = 0

so x(s) + B(t) + (1/a)é(x(s) + B(r)) is a constant vector equal to its
value at ¢z = 0, x(s) + (1/a)C(s). Therefore for each ¢

x(s) + B(1) + +£(x(s) + B(1)) = x(s) + = C(s)

giving
M) B(0) ~ L) = ~ Le(x(s) + B(1) and
@ B(1) = 7C(s), (1) = 7C(s)| ==

From (2) M (s) is contained in the appropriate sphere.
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Consider now Codazzi’s equation with Uin T, and X.
Viy(AX) = A(VyX) = Vx(AU) — A(VxU) gives
B(v,Y)=(4-a)vyX—(A4 — a)vyU—(UB)Y.
The image of A — a is contained in span Y so VY is in span Y for all U
in T, i.e., Y is parallel along 7,. In addition
D,)Y=v,Y+(AY,U)¢ = v,Y
so Y is parallel along T, in L"**. From (1)

[¥Y(x(s) + (1)), B(1) = 5 C(5)] = 0.

Because Y is parallel along 7,
1
(¥(s), (6) = 3C(5)) = 0

and M" is a generalized umbilical hypersurface. O

THEOREM 4.6. If M" is a Lorentzian hypersurface isometrically im-
mersed in L"*! whose shape operator has minimal polynomial (x — a)*x,
a # 0, then, in a neighborhood of any point, M" is a generalized cylinder of

type 2.

Proof. Denote ker(A — a) by T,, ker 4 by T, and [T,]* by T,. For
any point y(0) in M choose a pseudo-orthonormal basis { X, Y, Z,,...,Z,,
Wi,...,W,} of vector fields near y(0) such that AX = aX + BY, B # 0,
AY = aY, AZ, = aZ, and AW =0. Asin 44 (v,Y,U)=0for Uin T,.
Examining {Y, W,}Y gives (Vy W, Y) = 0, so we may assume that Yis a
geodesic vector field.

Next we show that M" satisfies the hypotheses of Lemmas 4.2 and
4.3.

T, and T, are integrable. Using

(1) (x,vyw,, ([x,Y],w)=0,
(2) {(Z. W)Y, (v W, Y)=0,
(3) {X, Z} W, ([X’ Zi]’VVB)=B(VZ,Y’VVB)=Oa

we have the integrability of T,.
To see that v T;, € T, note that (Vv W, X) = 0 by (1) and

(4) (X, W,}Y, (v W, Y)=0.
(VyWp, Y) = 0 because Y is geodesic.
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B (VW) 2, (W) =0,
© ¥ Z)W (9 7) =0,
(7) (Z.We}z,, (v W 2)=0

would finish v T, C T, if we knew (VzWj, X) = 0, which will be shown
later.

To see that 7, is parallel along 7 note that (ViY, W)=0-=
(Vw2 W,) because T is totally geodesic. We also have (v% Y,Y)=0
so we need only (v, Z,, Y) = 0. This can be done by expanding

0 = (R(Y, W)Wy, X) = (Vy Vs — V0 Ws — iy wy War X).
T, is totally geodesic and v, T;, C T; so this reduces to
0=(Vo, W X).
Set v, Y = bY + ¥’_, b,Z;. The equation becomes
0 =X b,( v, W, X).

By
(8) {Z,, W} X, a(Vz,WmX) (V%Z Y),
we have (Vz W, X) = — 4(v,,Y, Z)) so

__By
0=-= Z;lbj.

Therefore b, = 0 = (VW , Y)and (V, W, X) = 0 which completes the
proofs that v, T, C T, and vT, € T,
In order to prove that T, is a totally geodesic foliation note that

(VyZ,Y) =0, (vyZ, ) 0 by(5),
(v, Y. Y)=0, (v,Y,W,)=0 by(6),
(v4Z,W;) =0 by(7)
and we have
9) {(x,2}z,, (v,z,Y)=0.
By Lemmas 4.2 and 4.3 we know that, locally, the immersion f splits,
f(s,u, 2,0z, wy,.00,m,) = —x(s) + fo (4, z,,...,2,)

oW, oow,).
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Restrict the vector fields f 4( X), f«(Y),...,f«(W,) to x(s) and denote the
results by X(s), Y(s),..., W,(s). As before let §(x(s)) = C(s). We can see
that DW,(s) € span{Y(s)} & T, using (4), (3) and (V W, X) = 0.

As in the proof of (4.4) f, (M,(s)) is an open subset of the p-dimen-
sional plane passing through x(s) spanned by W,(s),..., W,(s).

Also as in (4.4) f, (M,(s)) is contained in the subspace of L+
through x(s) perpendicular to f ,.(T;(s)). Following the proof of (4.5) we
see that M" is a generalized cylinder of type 2. O

The following theorems involve shape operators with minimal poly-
nomials that have x* or (x — a)? as factors. As the polynomials become
more complicated so do the proofs.

THEOREM 4.7. If M" is a Lorentzian hypersurface isometrically im-
mersed in L™+ whose shape operator has minimal polynomial x*(x — a),
a # 0, then locally M" is a generalized cylinder of type 3.

Proof. Let { X, Y, Z,U,,...,U, V,...,V,} be a pseudo-orthonormal
basis of vector fields near y(0) satisfying AX = —BZ, AY =0 =AU,
AZ = BY and AV, = aV; where B + 0. We can assume Y is geodesic.

We use the following notation:

T, =ker A
T} = ker A?
T,=ker(4 — a) and

T,=[T,]".
Next we show that the hypotheses of 4.2 and 4.3 hold. From
1) {(Y.Vs}7,, (va y’Y)=O=
2) (Z,V,)V, B(v,Y.V,)-a(v,2.V,) =0,
(3) (x.%}v,, B(v,ZV,)+a(v,X,V,)=0,
(4) (U.v%}v,, (v,W.U)=0,

we see that 7, is totally geodesic.

In order to prove that T} is totally geodesic the covariant derivatives
of any two vector fields in 7;? must be perpendicular to Y and Vg,
B =1,2,...,p. Some of the necessary equations come from the following
instances of Codazzi’s equation.
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(5) {x,z}Y, (v;2,Y)=0,
(6) (Y. 2}V, (942, %) = (V2Y. V),
(7) (Y.V3}Z, (vyVs, Z)=0,
(8) {z,uy}z, (v.U,Y)=0.

Because Tj is a totally geodesic we must only prove
(V22.%) =0, (V2U,%)=0 and (vyZ,¥;)=0.

This can be accomplished as follows. Consider M" as the tube of radius
1/a over f,(M"). If By, is the shape operator in the direction of Vj of
f,(M") and W is a tangent vector to f,(M") then

AW =(I-aB,) 'B,W
where A is the shape operator of M. (See [1] for this computation.) We
know that A°W = 0 for all W and so B,3,BW = 0. For a fixed B we write

V _Vp restricted to T, as a matrix with respect to the basis
{X,Y,2,U,...,U}.

a; 0 0 0 0
an agz a§3 cgl Cgr
as a§3 cé;l Cgr

b2 0 bA

From

(8) (X, Y}V, a(vyY,Vp) (

9) {X, Z}V, a(VXZ’VB)_B(VXY’VB)
(

10 (XU}%, a(vl,
) (U)W (VUH) = (V42 W),
we get the following relations:

af = af,,

—aafy — Baf, = aal; — Ba%,,
—abh = ac§; — B,

b = cb,.
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By substituting in and cubing the matrix, which must equal zero since
B?,ﬂ = 0, we see it has the form

0 0 0 0 R 0
ahy 0 afy| -bfy - - - -Bf
—ah 0
v.V=| bf 0 0
0
L |

Therefore T} is totally geodesic.
Combining what was just proved with the following two equations we

see also that v, T € T
(12) {(z.Vs}z, a(va¥p, Z)= -2B(v,2,7),
(13) (U.Vs}z, a(vy¥. Z) = -B(v, U, Y).
The integrability of T, follows from (9), (10) and
(14) (X, Y}V, a(lX.Y],V,) = B(VyZ, V).
Using the notation above, i.e.,
aly = (Vb X) = = (Vi Z)
b = (V. U) = (vy ¥, X)

we must prove a5, =0 = bj/{ in order to have V5T, C 7,. This will be
done by showing that a§; and b%,j = 1,...,r, B = 1,...,p satisfy a certain
over-determined system of partial differential equations.

Yaby = —Y(Vi¥, Z) = = (VyVip Z) = (Vi¥p, VyZ)
= — (Vi Z) = —(VxVy¥p, Z) (Vi V3> Z)

since

R(Y, X)W, =0 = =, T(v 4 1)) 2)

Y

+([v, x1], Y)(VXV;s’ Z)
= L (VW V) (Vi Z) + (1Y, X1, Y)(Vi¥p, Z)

because [Y, X1 L T,and (v, V;, Z) = 0if Wisin T. So
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Yab, = Z(VYVB’ Vy)a% —([Y, X], Y)a5,.
y
Similarly

Zag3 —(VXY’ Z)a§3 + Z(Vz%’ Vy)a% —([Z X] )a23

Y

—g(vzz,U,)bﬁ
Uaby = (vyY, Z)b§ %:(VUV}%’ V)ays = ([U, X], Y)a5,
Ybﬁ=§(vyVB,Vy) —([v, x], ) fi+2k:(vy U )by
26fi = (9., U) ks + K94, ¥, )}

_(VZUJ,Z)aga_([Z X1, Y)b +Z(Vz pUk)bkl
Ubfy = —(VxY,U)bf; +Z(vUVB, v, b —([U, X], )bl

+ Z(VU,Uk’ Ui)bil-

A leaf of T} is an r + 2 dimensional euclidean space. These six sets of
partial differential equations give an over-determined system in R"*2. A
unique solution is determined once the values of a5%,, bﬁ are determined at
one point. One possible solution is clearly a8, = 0 = bj’{. From the defini-
tions of the functions we see that their value at y(0) is determined only by
X(v(0)), Y(v(0)),...,V,(v(0)) and not by any extensions of these vector
fields. Consider then a normal coordinate system with X(v(0)),...,V,(v(0))
as initial conditions. For this coordinate system the Christoffel symbols
are zero and so a%;(v(0)) = 0 = b4(v(0)), showing that the functions are
identically zero. Therefore V7.7, C T,. The theorem follows as in the
proof of (4.4). O

THEOREM 4.8. If the shape operator of a Lorentzian hypersurface M" in
L"*Y has (x — a), a # 0, as its minimal polynomial, then, in a neighbor-
hood of any point, M" is a generalized umbilical hypersurface as in Example
3.4.

Proof. Choose a pseudo-orthonormal basis { X, Y, Z, V,,...,V,}, r =
n — 3, in a neighborhood of x(0) such that AX = aX — BZ, B # 0,
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AY = aY, AZ = BY + aZ and AV, = aV,. Let T, = ker(4 — a) and T
= ker(4A — a)>.

If Uisin T?, AU = aU + B(U, Z)Y so from
(1) {X7U}Y’ (VUZs Y)=O and
(2) (Z,U) U, (VY. 0;) = (U, Z)(V,Y, Uy)

+(U,, Z)(v,Y, Uy),

where U,, U, are in T? we get V,Y is in span Y and T is a totally
geodesic distribution. We assume that Y is a geodesic vector field.

Assuming M" is embedded in L"** let x(s) be an integral curve of X
through x(0). For a fixed s let M_(s) be the leaf of 7, through x(s). We
will show that M (s) is contained in the sphere of radius 1/a centered at
x(s) + (1Q/a)é(x(s)) =:x(s) + (1/a)C(s). To do this a function k(x)
near x(s) is constructed which satisfies

(Yk) =0
o (ZK)Y = 2+ kv,¥ =0
(VK)Y +k(v,Y)=0
k(x(s)) = 0.

It is possible to find such a function because v,Y and v, Y are in
span Y.
Given such a k(x)

Dyg(x + 36(x) + k(x)¥(x)) = 0.
Therefore, if x(s) + B(¢) is a curve in M,(s) with B(0) = 0
x(s) + B(2) + ;1,-$(x(S) + B(1)) + k(x(s) + B(2)) Y(x(s) + B(2))

is a constant vector equal to x(s) + (1/a)C(s). This yields

@) B(1) — = Cls) = — L&(x(s) + B(1))
~k(x(s) + B ¥(x(s) + (1))
5) (B =g Cs). B -5C(s)) = .
As in the proof of (4.5)
© (¥(). B(1) - zc(s)) =0

and M" is a generalized umbilical hypersurface.
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To construct k(x) let

L(x) = (X(s), g(x) +x = ZE(x(s)) = x(s)).
L(x(s)) =0and WL = (X(s), W — (1/a)AW), so that

(7) YL=0

(8) V,L=0

) ZL= - 2(X(s),Y).

We also define g(x) = —(X(s), Y(x)), so g(x(s)) = 1.
(10) Yg=0

(11) Zg= —(Vv,Y, X)g

(12) Vg=—(v,Y, X)g.

For example,
Zg = —(X(s),vzY) = +(X(s),(vzY, X)Y) = (v2Y, X)(X(s), Y).
Finally, set k = L/g. O

THEOREM 4.9. If M" is a Lorentzian hypersurface isometrically im-
mersed in L"! whose shape operator has (x — a)*x, a # 0, as its minimal
polynomial then, locally, M" is a generalized cylinder of type 4.

Proof. Choose a pseudo-orthonormal basis {X,Y, Z, V,,...,V,,
U,...,U,} such that AX = aX — BZ, B # 0, AY = aY, AZ = BY + aZ,
AV, =aV, and AUy = 0. Let T, = ker 4, ker(4 — a) = T, ker(4 — a)*
=Tr?and T, =T .

Using
(1) {X,Y}Y, (vyZ,Y)=0
) {v,z}v,, (vy¥,7)=0
3 (LU)Y, (9,05, ¥)=0

we can assume that Y is a geodesic vector field. Next we show that M”
decomposes. We first show that certain covariant derivatives are zero
using (1.3) and (1.4).

By (3)
(4) (v.g}z, (vyU;,2)=0
and
(5) {(Y.G}v,, (vyGp.V))=0.
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VyUs is in span{ Y} ® T;. Tj is of course totally geodesic and so v, Y is
in T,2. Therefore we can write

(6) vY(JB= —(le],B’ X)Y+Z(VYIJB’Uy)Uy
Y
(1) vy¥ = —(vyY. X)Y +(v,Y. Z)Z + L(v,Y. V)V,
J

Expand
0=(R(Y,4)Y;, 2)

0= (VU,,Ys Z)[(VZUB’ Z) +( vy, X)] + Z(V%Y’ Vj)(ijU;i’ z).

Given
(8) (v.4)x, a(v,, X)= —B(v,Y, 2Z)
and
(9) (z.y)z,  a(V,U, Z)=2B(v,Z.Y)

the equation becomes

-3B
0=— (vUﬁY,Z)2+Z(V%Y,Vj)(vVJUB,Z).
J
Using (5) and
(10) (Y. V)G (v, G) = (VY. Gp)

we have ( v,,!Y, U;) = 0. Combining this with
(1) {Z,V)}G, a(v¥,G) = B(v,Y.4) +a(v,Z, 1)
and

(12) {Z9 %}K; a(vz%sV

J

) = ‘B(VUHY’VJ)

the equation is

-3B B
0= (v, Y. 2) - =X(v,7.V)

a a -
J

SO
(13)  (vyY.Z)=0=(v,Y.V) = (V¥,.0p)

= (v,2.U,) = (VU Z) = (9,4, X).
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In order to see that T? is totally geodesic we need several more
instances of Codazzi’s equation, as well as (4), (5), and (13).

(14) {v,Z)U, ([Y, 2], Q) =0.

(15) {(X,2}Y, (v,2,Y)=0

(16) {(x,v;})Y, (v,z,Y)=0.

(17) (z,v}z, (v,Y)=2(v,ZY).
(18) (z.G}V,.  a(v:0. V) = =B(v,Y.7)).
(19) {(V,U}Y, (vl ¥) =0

(20) {(zviv.,, (v,v.v)=0.

(21) {V;"UB}Vk’ (V Us» V, )

Using (13) we have v,7/C T} and v;Ty C T, because T, is
totally geodesic.

From equations (4), (5), (13), (14), (19) and (21) we can almost
conclude that v;2T, C Tj; the only additional information needed is that

(VU X) = 0= (v, U, X).

From (13) we have (Vv X, U) = 0. In conjunction with
(22) (XY}, (VaY, ) = (V4 X, )
and
(23) {X,Z}U;, B(VyY.U) +a(VyZ, Up) = a( VX, Up)
this gives

(V2Up. X) = (V3lp. 2).
We also have from { X, V;} Uj that
(VV,-UB’ X) = (VU V).
Set
(VxUs, Z) = az and (VyU,, V) = by,

We will show that az and bg; are solutions to an over-determined system
of partial differential equations on 7;,, and are identically zero as in
Theorem 4.7.

(24) U, = %(VU,UB, Up)as —([U,, X], ¥)a, + Z(vuz V,) b,
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(25) U, bg; = %:(VU,UB’ Ua)bsj' "([Uw X]’ Y)bﬁj

+(vU1Vj, Z)a, + Xk‘,(v%Vj, AL

Using the techniques of the previous theorems M”" is a generalized
cylinder of type 4. O

THEOREM 4.10. If M™" is a Lorentzian isoparametric hypersurface iso-
metrically immersed in L"*! then its shape operator cannot have a complex
eigenvalue.

Proof. If such a hypersurface existed its shape operator would have
one of four possible minimal polynomials:

((x —a)+ bz), ((x —a) + bz)x, ((x —a) + bz)(x —c)
or
((x —a)’ + bz)(x)(x —¢),bc # 0.

The first would be attached to a surface in L?. Using the techniques of
[6] it is easy to see that such a surface cannot exist.

For the remaining three cases choose an orthonormal basis
{C, Gy, Zy,...,Z,, W,,...,W,}, where p or r may be zero, satisfying
AC, = aC, — bC,, AC, = bC, + aC,y, AZ; = ¢Z;, and AW, = 0. The dif-
ferent minimal polynomials correspond, in order, to r = 0, p = 0, and
ro # 0. In addition, if » # 0 then ¢ = (a? + b?)/a.

To simplify the calculations which. follow, note that T, = ker 4 is
totally geodesic and that 7, = ker(A4 — ¢) is integrable. In addition we
have:

(1) {CL, GG, (chcz’q) =0
(2) {C,G}G, (Vclcl’cz) =0.
Using

3 {C.z}z, (c—a)(v,C,2) +b(v,C,Z)=0
and
@ (G, z}z, -b(v,C,2) +(c~a)(vyC,2) =0

we see that, because (¢ — a)? + b% # 0, (VzZ, C) = 0=(VzZ, Cy).
With

(5) {Zj’%}zk, (VZjZk7VI/B)=O
this shows that T, is totally geodesic.
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Let us introduce the following notation

(VCCI’W) = ag, (Vccp Z ) = a,
(Vcczs Wﬁ) = by, (VC1C2, ) =B
(VeCi W) =5 (V1. Z) =7
(VeCo W) = dp, (VeGa Z)) =8,
(V%Cv Cz) eg> (Vz,-cucz) = g

Using { C,, W3} G, { C,, W3} Gy, { Gy, W} C and { G, Wy} C, we have

2= d. = 2ab .
(6) o
T g
From {C,, Z,}C,, (G, Z;} G, { G, Zj}C1 and { G,, Z;} C, follows
—2ab
a; =8 = a’ bzs,-
(7) ”
TRT 2>+ b
Defining

(ViZ, C) = ag, (V62 We) = dpg,
(V%Z;’ G)= bg; (VZ,WB’ G)= €jg>
(VeZ We) =cigy (V2 W3, Co) = fs,

and using { Z,, W) C,, { Z,, W) Gy, {Cir Z} Wy, {(C1, Wy} Z;, (Cra W) Z,
and {C,, Z;} W, we find

—b
ep="7"bg»  fp=7%;
c—a b
(8) Cg= "7 4t Zbﬁj’
c—a b
dig=—"7"bs; — Zay,

First assume that r = 0. We then have 0 = (R(C;, Wp)C, —
R(C,, Wp)C,, Wp) = —2aj — 2bj, so that a; = 0 = b,. In this case the
immersion would split into f; X f, = M2 X R*"2 -» L3 X R""2 and the
principal curvatures of f, would be complex, a contradiction.
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Next let p = 0. Expanding
2ac = 2(a*> + b*) = (R(C,, Z,)C, — R(C,, Z,)C,, Z))
we obtain 2(a® + b*) = —2a’ — 287, which is impossible since b # 0.
Finally assume pr # 0.
(R(Cy, Z;,)C, — R(Cy, Z,)Cy, Z;) = 2(a® + b?)
gives

b(c —a b b
(9) 2(a®+b?) = —2a2 — 2B2 - z[—(T) b Z}%mbﬂj

c—a b’
St R
(R(Z;, Wp)Z;, Wp) = 0 yields
3
2b + 2b + 2ab
a a(a’>+b%*) (a*+b?)
This means that ag;bg; = 0. If ag; = 0 then (8) shows that b = 0, which is
impossible. We assume then that bg; = 0. Under this assumption
(R(Zja vVﬁ)st G)=0is
(11) — age; + fipa; + agB; = 0.
This implies ag;e; = 0, so assume ¢; = 0. (R(Wj, Z,)C,, Wj) = 0 implies

)
that egay; = 0. This means e, = 0. Recalculating

(R(Cv Ws)Ci, WB) =0
under the assumptions ¢; = 0 = e, = by; we see that az; = 0 and no such
hypersurfaces exist. a

(10) agby; = 0.

5. Appendix. In order to guarantee the existence of the examples in
this paper, we need to find null curves with pseudo-orthonormal frames
having prescribed derivatives. This can be done as soon as certain neces-
sary conditions hold.
If x(s) is a null curve in L**? with a pseudo-orthonormal frame
{A(s), B(s), Ci(s),...,Ci(s)} and x(s) = A(s) then the fixed inner
products give
(A(s), A(s)) =0
(B(s), B(s)) =0

o (4(s), B(5)) +(4(s), B(s)) = 0
(A(s), Ci(s)) +(A(s)’ Ci(s)) =0
(B(s),Ci(s)) +(B(s5),Ci(s)) = 0
(Ci(s), G(s)) +(Ci(s), G(s)) = 0

forl <i, j<k
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Therefore
A(s) = a(s)A(s) + 0 + byy(s)Cy(s) + -+ + byo(s)Cp(s)
(2) B(S) = —a(s)B(s) + by, (s)Cy(s) + -+ + bk1(S)Ck(s)
CJ(S) = bjl(S)A(s) + bjO(S)B(S) + Zdij(s)ci(s)

where [d, ()] is a skew-symmetric k X k matrix.

Now let
[ a(s) 0 bu(s) : ’ © by(s) ]
0 ~a(s) blO(S) : : © bro(s)
bio(s b, (s

d,(s)

B bko.(s) bkl.(s)

where the entries are smooth functions of (s) and [d, ] is skew.

THEOREM 5.1. Let M(s) be the matrix above. There is a null curve x(s)
in L**2? with a pseudo-orthonormal frame field { A(s),
B(s), Ci(s),...,C,(s)} such that

x(s)=A(s) and (2) holds.

Proof. Following [4] p. 14-15 we see that there is a k + 2 X k + 2
matrix X(s) which solves

(3) X(s) = X(s)M(s), X(0) = Id.
Set
o -1 0
T=|-1 0 )
0 I,

M(s) satisfies M(s)T + T(*M(s)) = 0, where 'M(s) is the transpose of
M(s). The solution X(s) satisfies X(s)T'X(s) = T. In fact

(X(s)T'X(s)) = X(s)T'X(s) + X(s)T("X(s))
using (3)
= X(s)M(s)T'X(s) + X(s)T'M(s) 'X(s)
= X(s)[M(s)T + T'M(s)] 'X(s) =0
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and at s =0, X(0)T'X(0) = T. Therefore the columns of X(s) =:
[A(s), B(s), Cy(5),...,C,(s)] form a pseudo-orthonormal basis of L**?2
with metric given by T. Let x(s) = [5 A(¢) dt. O

(11
[2]
B3]
(4]
151
(6]

(71
(8]

9
(10]

(1]
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