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A HYPERBOLIC PROBLEM
A. EL KOHEN

We consider the following problem: let x € R", t € R™, and let o:
R™ = R be a given lipschitz continuous surface with lipschitz constant
1:
(1) |ve(x)|<1, ae.onR"
Let f € H. . (R") and g € L2 _(R"); then we prove that there exists a
unique solution of the following system of equations:

(2) Suppdu € {(x,1):t=0(x),t> 0};
3 uw(x0=1(x); u(x,0=g(x);

@ S(x0(x)+0) = -3(x,0(x) - 0)
on { x:0(x) > 0&|ve(x)| <1},

where O = 32/3:t> — A is the wave operator in R” X R*. The one-
dimensional case has been studied by M. Schatzman, who used it in the
problem of a string compelled to remain above an obstacle.

The difficulty in solving the problem lies in the fact that as 62 may
be characteristic, one has to show that (4) makes sense. More generally,
we show that, if u is a solution of finite energy of the wave equation, one
may take traces of du/d¢ on either side of the non-characteristic parts of
a non-time-like surface. We make use of techniques from harmonic
analysis, such as maximal functions on thin sets, and Fourier integral
operators.

Once this is done, we show that if v is the solution of the free wave
equation

&) Ov =0, v(x,0)=f(x), v,(x,0)=g(x);
and if a measure p(v) is defined on test functions by

(6) {n(v),¥)
- ‘2fx;am>o ¥(x, 0(x))n(x, 0(x))(1 = vo(x)[) dx,

then the unique solution of (2)-(4) is given by

@) u=v+8&xp(v),

where & is the elementary solution supported in ¢ > |x| of the wave
equation in R” X R*.

Our result represents a trend towards some kind of “hyperbolic
capacity” theory; it is known that one take traces of solutions of the
Laplace and heat equations on sets of elliptic (respectively, parabolic)
positive A hyperbolic capacity. If one defines a characteristic surface as a
set of zero hyperbolic capacity, then we have proved that one can take
traces on subsets of positive hyperbolic capacity of time-like surfaces.
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1. For a general space-like and sufficiently smooth hypersurface S in
R"*! the solution to the Cauchy problem

du
Ou=0, ulg=F1, 5;1-S—g,
where O = 92/9t% — 9%2/0x? — --- — 3%/0x2 and 9/3n is the normal

derivative to S, is given by the integral representation

(») u(P)= ﬁfsp(g(Q)[p — gl nb2

~1(Q)4m P = Q1) as

for & = 2 in the sense of the analytic continuation of the integral as a
function of «a, and

[P]=t*—x?— --- — x2, P=(t,x,...,%,),

e

S*P={0esS:[P-Q]=0,(P-Q) -1<0},
1=(1,0,...,0) € R"*1.

Formula (%) is an application of Green’s theorem with respect to the
Lorentz metric (for details, see [3]). In the sequel we need the following:

LEMMA 1. For S = {(t, x1,...,x,): t = 0},
@)

e 2](a—n—1)/2
g~ M,g(x) = sup mfw g(y)[t2 —|x =yl ] dy

>0

is a bounded operator from L*(R") to L*(R") for all « > 1, and
(1)
_ 12« al, 2l(a—n—1)/2
1 Maf(x) = sup|2ms [ () 552 e =] dy

is a bounded operator from H'(R") to L*(R") for all « > 1.

Proof. (ii) is an easy consequence of (i) via the Fourier transform, and
(i) is a result of Stein [5].

We now let ¢t = o(x) be a Lipschitz continuous function with Lipschitz
constant 1, i.e., the graph of o(x) is a non-time-like hypersurface and 7 is
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the following operator:

Tf(x) = [ &' ErR](£) dg.
R
For this operator we have the following estimate:

LEmMMmA 2. T: L7, (R") = Li, (Q), where & = {x € R",|Vo(x)| <
1.

Proof. Let K be a compact set contained in £ and ¢ a non-negative
smooth function with compact support in {2, where ¢ = 1 on K. Then

J el ax < [ 1T (x) dx

- fff(ﬁ)f(_ﬂdé dnf e xE-MgioCNIE-InDgy (x ) dx.

We now let

o(£,1) = f e X(E=Mgie(NE-IMDey (x) dx.
Using the change of variable

£—m
u=x+o(x) > (1€ = nl)
(]
and integrating by parts, one sees easily that
N
o (& m)l < Cu/(1+16 =)
We use the Cauchy-Schwarz inequality to finish the proof.

LEMMA 3. We let S be a space-like hypersurface in R"*1,

1(P) = g (ay f £@IP — Q1“2 as,

3(P) = ey fo, F(@ g 1P — 012,

and P = R + vN, where R € S and N is the normal to S at R. Then

(i) g = Mg(R) = sup2*@~V|og(R + 27*N)|
k>0

is a bounded operator from L}, to L3, for all « > 1 and

(i) f = MZf(R) = sup2*DJp3(R + 27N)|
k>0

is a bounded operator from H: __to L3 _for all a > 1.

comp loc
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Proof. This result is essentially known and has been proved in
collaboration with other authors (see On operators of harmonic analysis
which are not convolution by R. R. Coifman in [7].) The proof is lengthy
but straightforward. We omit the details.

An immediate consequence is the following:

COROLLARY. Let o(x) be a Lipschitz continuous function with Lipschitz
constant 1 and S = {(t, x): t = o(x)} (S is a non-time-like hypersurface in
R**Y), then for every compact K C {(t,x): o(x)>0, t=0a(x) and
|Vo(x)| < 1} there exists an integer | = I(K) such that the conclusions of
Lemma 3 hold for the maximal functions

M{°g(R) = sup2¥"D|pg(R + 27*N))|,
k=1

Myef(R) = sup 2~ D|pg(R + 27*N)|
k=1
on K.
From this corollary we deduce that
. 1 -
g(R) = Jim FUI(R + 27N )| 4m2

and
7(R) = lim o§(R + 2°4N)],_,

a.e. on the noncharacteristic part of S.

2. We now state our main result.

THEOREM. The initial value problem
6
u € Wi(R*; (R L (R"))) N L (R, Hio(RY)),
(i1)
SuppOu C {(¢,x):¢=o0(x),t> 0},
(i1i)
u(0,x) =f(x), f€ H,(R"),
u, (0, x) = g(x), g€ Li,(R"),
(iv)
ul(o(x), x) = ~u;(a(x),x) on{x:0e(x)>0,|ve(x)| <1}
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has a unique solution given by u = v + &xu(v), where v is the free solution
to the wave equation with initial data f and g, & is the elementary solution to
the wave equation, and u(v) is the measure given by

(¥, n(0)) = 2f g V() X0, 1)1 ~|va(x)|) dx.

The proof of this theorem will be a consequence of the following
lemmas. We let S = {(¢, x): t = o(x)}.

LeEMMA. For u satisfying conditions (i)—(iil) of Theorem 1, u;"|s and u; |
are defined a.e. on the set { x: 6(x) > 0, |Vo(x)| < 1}.

Proof. For 0 < t < o(x),

e, x) = 0le,2) = [ e Seosdgf(e) dt + [ el (e) a

and
wxx) = = [ e tsin gl |67(8) g + [ e EcosEla(€) d,

which shows that u;(6(x), x) is a linear combination of integrals similar
to the one given in Lemma 2. Using Lemma 2, we then have the desired
conclusion for u;| . To show the same conclusion for u*¢|g, we write

+ - p—
u;" =u; +(.§_y_ 9 u)(l —-IVO’IZ) V2 on S

an on
(see the proof of Lemma 5). The proof is then reduced to showing the
existence a.e. of 3*n/dn and d7n/0n on the same set. It is easily seen that
0 u/dn|s is a linear combination of integrals similar to the one given in
Lemma 2. We thus have the desired conclusion in this case. For 3 “u/0n
we use condition (i), the integral representation of u, and the corollary to
Lemma 3(i) to obtain the desired boundary values. We notice that in this
case we have a Fatour type theorem. Other results of this type can be
found in [2], [6].

LEMMA 5. For u as in Theorem 1, Ou = p(v) is a measure given by
2
(Won@)=-2f  y(o(x), x)v,(0(x), x)(1 =|vo(x)[) ax.
x:0(x)>0

Proof. We first recall the following Green formula: for D a domain in
R X R”, we have

[, bap = goy)dids = - [ (432 - o5y ] as.
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where n (resp. dS) is the inner normal to d.D (resp. the area element) with
respect to the Lorentz metric. The proof of this formula is given in [3].

We now let D be a component of {(#,x): 0 <t <o(x)}, ¢y a C®
function with compact support in the upper half-space t > 0, n a C*
function equal to 1 near the set {(o(x), x): (6(x), x) € D} and equal to
zero outside a tubular neighborhood of the same set, and p, an approxima-
tion of unity. Then

fl[ ¢Du=gigg)fb[ yO(unsp,)

1 o Qun (A7
—611711}3) un * p,0y zlil(l)j;DtP on Y TUN*P
_ —limgd¥n _ 3¢
—11111ng unOy hTr’nmp o Uz,
But
du ou du
0~ 2y~ 2 on {(o(x), ): (o(x), x) € 8D).
Therefore:

fD ¢Du=—j;D(¢%—g—j)dS.

By summing over all the components we have
0*u Jdu

tf>0 ¢Du=fo(x)>0\1/( o’ —a—n)dS.

Now, for any function w,

@ = ;(Wt + wa . Vo’)

" (1= vy

and
(vwls) - vo = W,|V0|2 + v,w- Ve onS.
Forw = u — v, w|g = 0; thus
W:|V0|2 + vw-ve=0 onS.
Hence, on S,

otu O u d'u Ou 1 2
" En T 0n [ g )~ —elel]
- (ut+ _ Ut)(l ~_.|Vo|2)1/2 _ —201(1 _IVUIZ)I/Z

by condition (iv) of Theorem 1. This establishes the desired formula.
Notice that dS = (1 — |va(x)|?)"/? dx. To finish the proof of Lemma 5,
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we need to show that the distribution
2
p@): g 2f (a(x), x)v(o(x), x)(1 ~|va(x)]) dx
a(x)>0

extends to a measure. It is then enough to show that v,(1 — |Vve|?) is
locally integrable. By Lemma 2, v,(1 — |va|?)'/? is locally square integra-
ble on the set {x: |V o(x)| <1}, which implies that v,(1 — |Vo|?) is
locally integrable on the same set.

LEMMA 6. For u = v + & *»(v), u," exists a.e. on the set { x: 6(x) >
0, |va(x)| < 1}, and, for o(x) > 0, u/(a(x), x) = -v,(o(x), x).

Proof. For (t, x) sufficiently close to the set {(a(y), y): o(y)>
0, |va(y)| < 1}, we may write

2(a—n-1)/2

2
t — — —_—
el R R CO A PR
2
v(0(»), y)(1 =|ve(y)|') d
for a« =2 in the sense of the analytic continuation of the integral

as a function of a. We let P = (t,x), Q = (a(p),y), w(Q) =
(1 — |vo(y)|)/? and rip = [(1 — 0(»))* — |x — y|*],. We then have

u=v-—

u=v )f ra YV 2y wdS|, .

The distribution

1
A(P,dS) = r+ (a=n=1/2 48
in the sense of the analytic continuation as a function of a, for a = 2, is
supported by S”, and as a function of P its restriction to S is zero. We
then have

oA _ 9A 21/2
FrREY, (1 ‘VG|) on S.
Thus
2 a
o 9 4+ (a-n-1)2
u; — v, Hn(a)f a;7Po vwdS
2 1 0 —rp Y2 48

“H(a)) 3n, T

1 0
=) + (a—n-)/2 )
H(a) 8nQrPQ v, dS
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By the construction of the solution to the Cauchy problem (see §1), the
restriction of the integral
+ (a n—1)/2
H ( a) ./ an'? v, dS

to the part of S corresponding to the set { x: o(x) > 0, |Va(x)| < 1} is
equal to —v,(o(x), x), which shows that u; (o(x), x) = —v,(o(x), x) on
the same set. To finish the proof of Lemma 6 we need to show that such a
restriction defines —v,(o(x), x) a.e. But this is an immediate consequence
of the corollary to Lemma 3.

LEMMA 7. (The energy condition.) For S, = (|V.u|*> + u?
-2u, u,,...,—2u, u,) we have divS, = 2u,0u = 0 in the sense of distribu-
1 n
tions.

Proof. For ¢ a test function,

[y = [ 4(o,+ 6o n(e)ou= [ yoou+ [y n(o)ou
By Lemma 5

Joomu=2f  w(o(x),x)oi(o(x), $)(1 ~|vo(x)[) dx.

Also, in the proof of Lemma 6, we showed that &, * u(v) has a restriction
to the part of S corresponding to the set {x: o(x) > 0, |Va(x)| <1}
equals to —v,(o(x), x) a.e.. Thus
2
Jvten@pu=2f  4(o(x),x)eX(o(x), 1)1 ~|vo(x)I) dx
Lo(Xx

which finishes the proof of Lemma 7.

By a standard argument, one deduces the following estimate from the
energy condition:

2 2
Vol +lu|),_dx < v ul +lu dx
A (A7 PR (N (A T2

(for details see [1]), which implies condition (i) and the uniqueness part of
the theorem.

3. A refinement of Lemma 2 is given by the following estimate:
THEOREM 2. With the same notation as before, we have

) [T -Ive(a)f) ax < c [ 1) ax,

where C is an absolute constant.
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Proof. To show (xx) we let

Tf(x) = [ e fcosa(x)IEIf(¢) a¢

Tf(x) = [ e tsino(x)|Elf(€) dt

and show (*x) separable for T}, T,.
Let v(¢, x) be the solution to the initial value problem:

Ov =0,
v(0) =0,
v (0) =1,
and let S, = (|vp|* + |v,]% -20,0,,...,-20, v,). We then havedivs, = 0,
and, by Gauss’ theorem (given in [3]),
S,-nds =0,
D

where D is any bounded domain in the half-space ¢t > 0, and n (resp. dS)
is the outer normal to 0D (resp. the area element) with respect to the
Lorentz metric. If, for D, we take a lens-shaped domain bounded below
by the hyperplane ¢t = 0 and above by S, then

(S, n) dS = —|v,(0, x)l2 dx ondD n{(z,x),t=0]},
’ (Iva[2 + |v,|2 AR va,) dx otherwise,

where w is a defining function for 0D; w = 0 for 9D N {(¢, x); t = 0},
w=o0 for DN S, and w = t, — |x — x,| for the remaining part of 3D,
where (7, x,) is some point in the upper half-space ¢ > 0.

Since

|vol” +o)° — 290 - Voo, =|vp — ove| +(1 —|ve|)e?,

we have
2
S, -nd =—f v,zodx+f |v.0 — v vol| dx
aD |x—x0|< 1ty = to—0o(x)=|x—x0|
+ v} (1 —IVOIZ) dx
le=o(x)

to—0(x) = |x— x|

2
+ vav + 0,V |x — x| [ dx,

to—o(x) <|x—Xxp|<1y
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which shows that

—f v2 dx + v} (1 ——]V0|2) dx < 0.

teo [
Ix—xol<ty " Ix—xol<to—o(x) T

But
— ix-iSin t|£| 2 d
(1 x) = [ eI E) de.
Hence 0,(0, x) = f(x) and v,(&(x), x) = T, f(x).Therefore,
'{— <15~ 0(x) |T1f(x)|2(1 —|V0(x)|2> dx Sf|— <1 (I d

from which one easily deduces (*x) for T;.
To show the same estimate for 7,, we consider the following initial
value problem:

Ow =0,
w(0) = f,
w,(0) =0,

where fis a smooth and rapidly decreasing function such that f(£) = 0 for
|€] < 1 (a simple application of the Cauchy-Schwarz inequality shows that
we can always reduce the problem to this case). We then can write
(&) = 8(£)/)]; g then has the same properties as f.

By using the same energy condition and the same domain as before,
we have

J

x—xg|<tp—o(x

2 2 2
Ddieaof1 =l vol ) dr < |Vwl—g dx.

[x—xo|<1o

But
w(t,x) = [ e fcosfé|f(£) dt,
R’
w,(0, x) = 0,
Wt(O(X), x) = T2g(-x),
and

v, x) = Z R,(5)[",

where for each j =1,2,...,n, R, is the Riesz transform Rj(g)A(é) =
(&,/1€)-8(€). Since R; is bounded on L*(R") with norm 1, for each
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j=1,2,...,n we have
2 2 2
| Tog(0 (1 = Ivo()) dx s n [ 1(x)f d.

|x—xo|l<2y—0(x)
The estimate (**) for 7, is now an easy consequence. ‘

As a final remark, we notice that 7 is a Fourier integral operator
(Egorov’s operator) with a degenerate phase function: ¢(x, §) = x - § +
a(x)|§| It is then desirable to have a direct proof for (**). For n = 1 such
a proof is immediate. In this case it is easily seen that, up to a constant,
the kernel of T'is

1 B 1
o(x) —(x—y) o(x)+(x—-y)’
and, hence, up to a constant, we have
Tf(x) = Hf (x — o(x)) — Hf(x + o(x)),
where H is the Hilbert transform
Hf(x) =p.v. xX—y)—=.
f(x)=pv. [ flx=y) )

K(x,x—y)=

Thus
/Z ITf(x)I2(1 - o’(x)z) dx < 2/;: |Hf (x — o(x))|2(1 - a’(x)z) dx

+zj:; Hf (x + o(x))|"(1 = 0'(x)?) dx

<af JHf(x = o(x)[(1 - o'(x)) dx

i Z Hf (x + o(x))["( + o'(x)) dx.

The obvious changes of variables and the well-known estimate for H show
the desired estimate for 7. This case shows also that (xx) is the best
possible. In the case n = 1 we, in fact, have

[ - e ) dr= 6 Il ax

for all 1 < p < oo. This suggests that we might have some L?-estimate
(p # 2) in the general case.
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