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STABLE AUGMENTATION QUOTIENTS
OF ABELIAN GROUPS

ALFRED W. HALES

To the Memory of Ernst Straus

Let G be a finite abelian p-group, ZG the associated integral group
ring, and Δ its augmentation ideal. This paper determines the stable
structure of the augmentation quotients Δ"/Δ"+ 1 and the structure of the
graded ring gr ZG. It also gives an application to the dimension subgroup
problem, extending earlier results of Gupta-Hales-Passi.

l Introduction. Let ZG be the integral group ring of a finite
abelian group G. Denote by Δ the augmentation ideal of ZG, i.e. the
kernel of the map from ZG to Z sending each group element to 1. Further
denote by Qn the nth "augmentation quotient" ΔyΔ n + 1 . Then Bachman
and Grunenfelder [1] have shown that, for all n > n0 = no(G), we have
Qn = Qrt+i s Qn+2 ' * * a s abelian groups. Let Q^ = β J G ) denote the
"eventual" isomorphism type of the Qn. A number of papers ([2], [5], [6],
I7L [10], [11], [12], [13], [15]) have been devoted to the determination of

in terms of G. In [4] we gave a conjecture for the structure of
and verified this conjecture whenever G s (Cpn)m for some m and

n. Here we shall establish the truth of this conjecture for all finite abelian
G, and in the process determine n0 = no(G) and the structure of the
graded ring grZG associated to ZG. We also give an application (extend-
ing a result in [3]) to the dimension subgroup problem.

The reader should consult Passi [8] for general background on the
subject, and [4] for more specific background on this problem.

2. Description of results. Without loss of generality we may assume
that G is a finite abelian /?-group, in which case Q^ is also easily seen to
be such a group. One way of viewing our problem is that we wish to
determine the invariants of Q^ in terms of those of G. Instead, however,
we give an explicit presentation of (a group isomorphic to) Q^ from which
the invariants of Q^ can be determined in a straightforward (though
tedious) manner.

Define an abelian group QG via generators and relations as follows:
let PG denote the poset of cyclic subgroups H of G. (So PG is a tree with
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root Ho = {e}.) Take one generator xH for each H e PG, and relations
/ JC^ = xκ wherever H covers K in PG (and the relation xH = 0). Then we
have

THEOREM 1. Let G be a finite abelian p-group. Then QG = (^(G).

In [4] this theorem was proved in the homocyclic case, i.e. when
G = (Cpn)m, for some m and n. The proof involved the establishment of a
collection of " two-variable" identities in ZG. Here we establish a larger
collection of identities, some involving more variables, which will suffice
to prove our result. They will also enable us to determine no(G) and to
give a presentation for the graded ring gr ZG.

Our results will immediately yield, using techniques of [3], the follow-
ing

THEOREM 2. Let G be α finitely generated metabelian group so that
G/Gf has exponent pk. Then the (n + l)st term yn+1 in the lower central
series coincides with the (n + l)st dimension subgroup Dn + ι for all n >
pk+pk-\

Although our Theorem 1 gives a very satisfactory description of Q^,
we regard its proof as far from satisfactory—being computational rather
than conceptual. The difficulty seems to stem from the non-naturality of
the isomorphisms guaranteed by Bachman and Grunenfelder.

3. Identities. We begin with the new two-variable identities, which
are " unbalanced" forms of those established in [4]. These new identities
were in fact stated in [4], but details of their proofs were omitted.

Let G = (g) X (λ) where g and h have orders pm and pn, respec-
tively, with m > n. Denote by x and y the elements g — 1 and h — 1,
respectively, of the group ring ZG. (Here our notation differs somewhat
from [4].) We will also work with the polynomial ring Z[X, Y], which
maps suqectively to ZG by substituting x for X, y for Y.

LEMMA 1. For each k, 0 < k < n, we have that

lies in Δ{m-"){p"~k-pn~k~l)+pn~k+pn~k~ι + ι .

Proof. The strategy of the proof is similar to that of Lemma 1 in [4].
We regard m — n as fixed throughout, and first show how the k = 0 case
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follows from the validity of all cases with larger k (and the same m, n).
Then we show how the k = 0 case for given ra, n implies all cases k = t,
m' = m 4- t9 nf = n 4- t.

Consider in TLG the following product:

• p"-\

Π («*-'-!)
m-n p"-l

Π Π (*'*"'-!)
i-1 7=0

Π
i-O

\

"+ ιA - 1 ) .
/

Since any character of G must annihilate one of the factors, this product is
0 in ΊJG. NOW, as in [4], we use the standard map from G to Δ/Δ2 to
conclude that the product

p

Π (x - Π Π Π i-tp"
i - O

lies in Δ ( m" f l X^" / >""1 ) +^+ / >""1 + 1. We then apply Lemma 3 of [4] repeatedly
to this latter product, observing that calculations mod ρn are legitimate
for any term involving y since pny e Δ2. Eventually we conclude that,
when/? is odd, the element

lies in ^{m~n){pn~pn~l)+pn+p"~1 + ι. Expanding this by the binomial theorem
we see that the two outer terms are the ones we want,

The other terms, paired according to their distances from opposite ends,
are formal multiples of instances of Lemma 1 with k > 0, and as such are
easily seen to lie in the appropriate power of Δ. This concludes the k = 0
case for odd p.

For p = 2 the argument is similar but somewhat more tedious, as was
the corresponding case in [4].

Suppose now that the k = 0 case of Lemma 1 has been established for
given m, n. We show how to deduce the k = 1, m' = m -f 1, n' = n -f 1
case from this. (A similar argument will handle k = t, mr = m + /,
n' = n + ί.) Let

1 4- 1. Then, from the k = 0

, Y) = ye»

and let / = (m - «)(/?" - pn~ι) 4- />* +
case, we know that

, y) - u(x, Y) -
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where u has all terms of degree > /. To establish the k = 1, mf = m 4- 1,
n' = n 4- 1 case, i.e. to show /?/(JC', >>') e (Δ')' when JC' = g' - 1, / =
A' — 1, and g', A' have orders/?m+1,/?"+1 respectively, it will clearly suffice
to show that/?g(jc', / ) ( ( * ' 4- l)*m - 1) and/?A(x', / ) ( ( / + 1)*" - 1) lie
in (Δ')7. Recall from [4], however, that p((x' 4 ΓK™ - 1) lies in
(Δ')^+1-/>m + 1 and that/>((/ + I)77" ~ 1) lies in (Δ')Pn+1-pn + \ For p odd
this immediately implies thatpg(x\ y')((x' + l)pm — 1) lies in (Δ')', since
pm + 1 - pm + I > Lltis more difficult to handle

ph{x\ / ) ( ( / + l ^ - l ) .

For this we consider the equation (*) more carefully. If h(X,Y) =
Σ, aijX

iYJ

9 withpe'j the highest power of/? dividing # ., then it suffices
to show (etJ 4- l)(pn+ι - pn) 4- 1 + / +y > / for all /, y. Suppose not,
and let (for a given /) eίy be minimal so that this fails. Then the term
aiJXΎJYp" occurs on the right hand side of (*), and all other occurrences
of XΎJ+Pn in (*) have coefficients divisible by a higher power of p than
pe'j. This is a contradiction, so we concludeph(x\ y')((yf 4- ΐ)p" — 1) lies
in (Δ')7 also. Hence pf(x\ y') e (Δr); when p is odd. (The case p = 2 is
only slightly more complicated.)

This completes the proof of Lemma 1.
Now we pass to the multivariable identities. Let G = (g) X (A) X

(aι) X * * * X (tfr)>
 w ^ h g, A as before and with a{ having order pe' for

each i. Let x = g— 1, y = h — 1, and (for each /) z7 = ai — 1 in the
group ring ZG. Then the polynomial ring Z[X, Y, Z 1 ? . . . ,ZJ maps surjec-
tively to ZG in the obvious way. For any k > 0, denote by 0m n k the
following element of ZG:

Then we have

LEMMA 2. Suppose n = e0 > ex > e2 > * * > er and, for each i with

1 < / < r, /Aα/ /:• is a positive integer such that et + kι < et_x. Suppose

k > 0 and define, for each /, d{ = eι — Σr

J=ι + ιkj — k and st = pdι~ι 4-

^, ( ^ f ~ Pd'~l). Also let q = Σr

i=ιkι,4- &

/β^ ί>7 Δ7, where

r

1= (m- n)(p"-c' - p"-"-1) +P"-" + p"-"-1 + £ J, + 1.



STABLE AUGMENTATION QUOTIENTS OF ABELIAN GROUPS 405

Proof. Notice that, for r = 0, this is just Lemma 1. The proof is in

fact a considerably more elaborate version of the second half of the proof

of Lemma 1. We consider first the case k = 0, p odd, and proceed by

induction on r. More precisely, we work in the polynomial ring R =

Z[ X, y, Z x , . . . , Zr] and assume that we have an identity

(**) γθ»-»W-q-pM-4'-1)(χp-<γp'"q-1 - χpn~q~ιγpn~q)Z[^ - Zs;

B((Y 4- \ ) p n -

such that

(2) each element A9 B, Cv...,Cr_λ lies in the ideal generated by

Zf'~\pZΓ~\ ,Pe'-ιZr

(3) B lies in the ideal generated by dllpe^XΎJ with

(eiJ+l){pΛ"^ι-pn^) + l + i+j

>(m~ n){pn~q - pn~q~ι) +pn~q + pn~q~x + 1.

(4) For / = 1,2,... ,r, C, lies in the ideal (Δίi?))7 ' where

Note that condition (1) guarantees that the assumed identity implies the

corresponding case of Lemma 2. Furthermore, we have essentially verified

that the case r = 0 of this identity holds in the process of proving Lemma

1. (Indeed we were required to verify condition (3) in the second half of

the proof of Lemma 1.)

We must now show that this identity implies the corresponding

identity (a) for kr replaced by kr -f 1 and each of m, n, ev...,er_ι also

increased by 1, and also the corresponding identity (b) for r replaced by

r + 1, with a new variable Zr+ι where kr+1 = 1 and er+ι < er - 1, and

each of m, «, ev...,er increased by 1.

Two facts about integral group rings of cyclic groups are used for this

purpose. Suppose a has orderp e + ι , and z = a — 1 in Z ( α ) . Then

(ϊ)p((z + l)Pe - 1) e Δ^+ 1~^((z + 1 ) ^ - 1)

(ii) zpe+ι lies in the ideal generated by pzp\ p2zpe \... ? jp
e + 1z.

The first of these was proved in [4] (and earlier in [9]), and was used

implicitly in the second half of our Lemma 1. The second of these is just

the binomial theorem.
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Now, to derive identity (a), we multiply both sides of (**) by
Zfr~pSr~γ and use (ii) (or rather its polynomial analogue) together with
condition (2) to provide an extra factor of/? in each term (except the first)
on the right-hand side. This factor of /? enables us, by (i), to replace each
of these terms by a corresponding term (with m,«, or an et increased by 1)
plus a term which (by either condition (3) or (4)) lies in a high enough
power of Δ(i?) to be absorbed in the "new" d.

To derive identity (b), we proceed in a similar manner. We multiply
both sides of (**) by Zf^1 and use (ii) to provide a factor of p in each
term (except the first) on the right-hand side. Then, by (i), we can use this
factor of p to replace each of these terms by a corresponding term (with
ra, n, or an eέ increased by 1) plus a term which can be absorbed in the
new d. In the process a new term is introduced on the right-hand side
involving (Zr+ι + \)Per+ι — 1, which is easily seen to satisfy the ap-
propriate case of condition (4).

The verification that conditions (l)-(4) persist in each of cases (a) and
(b) is straightforward.

This completes the proof of Lemma 2 for k = 0 and p odd. The proof
of the second half of Lemma 1 can now be immediately adapted to handle
higher values of k. Finally, the case p = 2 can be handled in a similar but
somewhat more complicated fashion.

Lemmas 1 and 2 give us "identities" which hold in the augmentation
quotients QN(G) for JV sufficiently large. For future use, note that
whenever an identity from Lemma 2 holds for Gp, then p times that
identity holds for G. Furthermore, if such an identity holds for Gp, and all
cyclic factors of Gp have order > pe, then zpe times that identity holds for
G X (a), where a has orderpe and z = a — 1. (Indeed, if such an identity
holds for Gpt and all cyclic factors of Gpt have order > pe, then

ZP<-1 + «P<-P-1) t i m e s t h a t identity holds for G X (a).)

4. Proof of Theorem 1. Singer showed in [14] that the order of Q^
is/?6"1, where c is the number of components of the rational group algebra
QG. However, this number c is also the number of cyclic subgroups of G.
From this it is easy to see that QG also has order pc~ι, so Iβ^l = \QG\. By
the argument given in [4], it will be sufficient to show that, for any k and
for large N,pkQN can be generated by the number of elements required to
generate pkQG. This will force the (Ulm) invariants of QN and QG to
coincide. (Note that the number of elements required to generate pkQG is
the number of maximal cyclic subgroups of Gp\)

Let G = Πjl^g,-), where gt has order pe; and ex > e2 > > em.
For each / let JC, = gέ — 1 in ZG. Then, for any N9 QNis generated by (the
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images of) all monomials ΓiJLιX?J with Σα y = N. It will suffice to show

that, for large N9 there is a subcollection of these monomials which also

generates QN and whose cardinality is the number of maximal cyclic

subgroups of G. (And to show a similar result for pkQN and Gp .) We

proceed by induction on m, with the result being clear for m = 1.

The maximal cyclic subgroups of G can be partitioned into ex — em +

2 classes in the following way. For each /, 0 < / < eγ — em, let G, =

ΠJ!i1(gy) where raz < m is chosen maximal so that em > em 4- /. Then let

Tt be the set of maximal cyclic subgroups of G of the form ((gζ ι , . . . , g£w))

where ((gfS ..,gj^')) is a maximal cyclic subgroup of Gf' and, for

ra, < y < ra, g$ has order less than/?**1. Finally let S be the set of maximal

cyclic subgroups ((gf1,... 9g{fr)) where g# has order less than/?*"1 for all

j < m. Then we have

l̂ ol = P*m ' (number of maximal cyclic subgroups of G o ),

for 1 < i < ex - em,

- (number of maximal cyclic subgroup of

and

It is clear that Γo,... ,Γ , S partition the set of maximal cyclic

subgroups of G.

Now we construct sets C0,Cl9...,Ceι_e , D of monomials represent-

ing elements of QN in such a way that \Ct\ = |7].| for all / and | / ) | = \S\. If

we can show that these monomials generate QN we will be finished. (The

C, and D depend on JV, though our notation does not indicate this. For

large N the monomials we construct will be formally distinct, but for

small N the sets C,, D may overlap.)

Let Co be the set of all monomials YlJL1Xjj where 0 < <xm < p6m,

Σ J = 1 oίj = JV, and where Π ^ 1 xfj is a monomial which is a member of a

previously chosen set of generators for QN_a (G o). (Since Go has rank less

than «, and we are proceeding by induction on w, this is legitimate.)

Similarly, for each i with 1 < i < eλ — em, let C, be the set of monomials

ΠjL1x^ where

αy </7 e -" 1 for mι <j < m, ΣjLiα y = ^ ? and Π ^ x ^ is a monomial

which is a member of a previously chosen set of generators for
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QN-Σ"L +1a (&?')- Finally, let D be the set of monomials Y\™=1X"J where
oLj < p~e«-l foτj < m9 and Σ J = 1 « 7 = N.

For N sufficiently large it is clear (by induction on m) that \Ct\ = |ΓJ
for all /, that \D\ = \S\9 and that the sets Ci and D are pairwise disjoint. (It
will suffice to take N = (p6m — 1) + Nθ9 where No is large enough so that
a corresponding result holds for Go.)

To show that the (images of the) monomials in the Cι and D generate
QN9 suppose to the contrary that some monomial Πy

m

= 1 xJJ with ΣtJι

==1aJ =
N cannot be expressed as a linear combination (modulo ΔN+1) of mono-
mials in the C, and D, and that the m-tuple ( α 1 ? . . . ,am) is lexicographi-
cally greatest with this property. Consider the exponent am9 and first
suppose am<pem. By induction the monomial ΠjL'ϊ1*/' *s (modulo
Δ(G0)

N+1~am) a linear combination of a previously chosen set of genera-
tors for QN_a (Go). Multiplying by x%", we obtain an expression for
YlJL\XjJ as a linear combination (modulo Δ7V+1) of elements of Co.
Secondly, suppose for some / with 1 < / < eλ — em that

pem~l + i(pem _ ^ - 1 ) < a m < pem-l + ( f + l ) ( / m _ pem-iy

If any αy with mι<j<m satisfies αy > p€m~ι

9 Lemma 1 allows us to
simultaneously replace am by am — (pβm — p6m~ι), αy by αy + (p6m —

pe™~1) without changing the monomial modulo ΔΛΓ+1. This contradicts the
lexicographic maximality of (al9...9am)9 so we conclude αy < pe™~1 for
mi < j < m. Now the monomial T\™±λxJj

9 considered as an element of
δyv-Σm_ a (Gf')' c a n ^ e W Γ i t t e n a s a linear combination of the (images
of) a previously chosen set of generators by induction, using previous
instances of Lemma 2. But then multiplication by YV}Lmt + ιχ^J converts
this to an expression for Π 7

m

= 1 x^ as a linear combination (modulo ΔN+ι)

of elements of Cr (See the comments at the end of Section 3.) Finally,
suppose am > pβm~ι + (eλ — em + l){pβm — pβm~ι). Then as above we
conclude that αy < pβm~ι for ally < m, so I\™==1X"J lies in D.

This concludes the proof that QN can be generated by a collection of
monomials whose cardinality equals the number of maximal cyclic sub-
groups of G. To show that, for each k > 1, pkQN can be generated by a
collection of monomials pkYlJLιXjJ whose cardinality equals the number
of maximal cyclic subgroups of Gp\ we proceed in an exactly similar
fashion, using Lemmas 1 and 2 with this value of k (see the comments at
the end of Section 3). This completes the proof of Theorem 1.

Let U = UN denote the union of the sets of monomials Ci and D.

(Recall that, for small TV, these may overlap.) Any linear relation between
the (images of the) elements of UN in QN can be converted to a similar
relation between the elements of UN+M in QN+M by multiplying by x M for
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an appropriate j9 and then reducing terms in the result (increasing their
exponents lexicographically) as in the proof above. (The "appropriate j "
is m if a term actually appearing in the relation comes from D, and
otherwise is determined inductively in a similar fashion.) This would
contradict QN+M = Q^ for M large. Hence no relations not implied by
Lemma 2 can hold among the UN (for any JV), and similarly for the
corresponding sets for k > 1. Hence, as in [4], we conclude

COROLLARY 1. QN is isomorphic to Q^ if and only if
m

N>(ex- e2)(p<* - p^1) + p^1 + £ ( ^ - 1).

COROLLARY 2. The graded algebra grZG = Z θ Qx θ Q2 θ as-
sociated to ΊJG is isomorphic to the quotient of the polynomial ring

Z{Xl9...9Xm] by the ideal generated by all p6iXi (i = l , . . . , m ) and all

homogeneous binomials given by application of Lemma 2.

5. Proof of Theorem 2. By Corollary 2 of the previous section, the
kernel of the map from Z[XV... ,Xn] to gr ZG is generated by a collection
of homogeneous polynomials of degree at most {ex — e2)(pe2 — pei~ι) +
/ 2 + / r l . (It is easy to see that this bound is minimal.) Hence, in the
notation of [3], we have no(G) < peγ + peι~ι = pk -f pk~λ where k is the
exponent of G. By Theorem 4.1 of [3] we thus obtain our Theorem 2. In
fact we obtain the slightly stronger

THEOREM 2'. Let G be a finitely generated metabelian group such that
G/G/ is a product of cyclic groups of orders pe\... ,pβm with ex > > em.
Then the (n + l)st term yn+1 in the lower central series coincides with the
(n + \)st dimension subgroup Dn+ι for all n > (eλ — e2)(pe2 — pei~ι) +
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