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SOME THEOREMS IN PROBABILITY THEORY

BERNARD R. GELBAUM

In memory of Ernst Straus

The following miscellany deals with questions of stochastic indepen-
dence, normality, and "quantum mechanical" probability. The author was
a close and admiring friend of Professor Straus from the time in 1941,
when he first came to the United States (on the last ship from Palestine),
until his untimely and tragic death in 1983.

0. Introduction. In the modern definitions [6, 7] of Gaussian
processes the model is that of a real Hubert space Jf, a (probability)
measure situation (5, «Ŝ , P) and a linear isometry T: Jf»-> L2(S) such
that for all/in ^ , fs(Tf)(x) dP = 0, such that orthogonal elements/, g
in J(? map into (stochastically) independent random variables Γ(/), T(g),
and such that each nonzero Tf is normally distributed, i.e.,

P{x: (T(f))(x) <t} = j-JmJ'jxP(-y2/2\\Tf\\l) dy.

Among the consequences of the results that follow is the fact that the last
two requirements stated above are mutually redundant (see §3).

The underlying phenomenon is found in the following:

THEOREM 1. //X,Y e L2(S), if X and Y are independent and noncon-
stant and if X ± Y are independent then X and Y are normally distributed
(and hence so are X ± Y).

The works of Skitovich and Darmois [1, 8, 9] imply this theorem but
it and some of its natural generalizations are derived below by methods
somewhat different from those used in [1, 8, 9]. Along the way there are
proved some analytical lemmas of independent interest.

1. The proof of Theorem 1. Since I , 7 G L2(S) it follows that
X, Y e Lι(S) and thus they may be normalized according to the transfor-
mation:

Jx(x)dp\/ X- fx(x)dP = X.
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Then X, Ϋ are independent and nonconstant and the hypothesis re X ± Y
implies X/ ]/2 ± Ϋ/ yfΐ are independent. If φ and ψ are the respective
characteristic functions of X and Ϋ, e.g., φ(t) = jse

ιtXdP, and if

tf-^ + U F = A _ X

then U and V are independent,

and if ξ and μ are the respective characteristic functions of U and V9 the
conditions of independence imply:

(1)

(2)

Replacing ξ and μ in (2) by their formulae given by (1) yields:

or

Mathematical induction applied to the process of replacing φ, ψ in the
right members in (3) by the formulae provided by (3) yields the following
general formula:

f )/\Ψ(t/(j2 Ϋ

and a similar formula for ψ.
Since
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it follows, since also | | ^ Ί | 2 = 1, that ψ(t) = e~t2/1 = ψ(t). And so the
normality of X (and similarly of Y) is proved.

2. Generalization. Although Theorem 1 appears to be quite special,
the line of its proof may be imitated in a far more general setting. If X, Y
are in L2(S) and independent and if U = aX 4- bY, V = cX 4- </Y are
also independent then Z and Y may be normalized (so that jsXdP =
jsYdP = 0 and ||-X]|2 = ||Y||2 = 1) without disturbing the conclusion.
Then jsUdP = jsVdP = 0 and so after multiplication by suitable con-
stants the original hypothesis may be rephrased: X, Y are independent, U,
V are independent and a2 4- b2 = c2 4- d 2 = 1, ac + bd = 0. As given in
the preceding sentence the hypothesis does not imply that X or Y or t/ or
V is normal (e.g., α = d = 1, 6 = c = 0, X, Y arbitrary and independent).
However, if the hypothesis, which already states that (a

c

h

d) is an orthogonal
matrix, also requires that it represents a rotation through an angle θ that is
not an integral multiple of ττ/2, then the conclusion that X, Y, £/, V are all
normal is forced. The supplementary requirement avoids triviality and
without loss of generality is simply a normalization.

THEOREM 2. If X, Y are in L2(S) and independent, JsXdP = fsYdP
= 0, ||ΛΓ||2 = ||Y||2 = 1, if θ is such that cos0 sin# Φ 0, and ifU =
JTcostf 4- Ysin0, F = -Xsin0 4- Ycos0 are independent, then U, V, X,
and Y are all normally distributed.

Proof. As in the proof of Theorem 1, it is readily established that
(with the notations, c, s for cos θ, sin θ)

ξ(t) =

μ(t)=<p(st)ψ(ct)

<p(t) = ξ(ct)μ(st)

Then the substitution procedure leads to

= <p(c2ί)Ψ(cs/) φ(s2/)ψ(ey/) =

Ψ ( 0 = <P(

This time, the repeated process of replacement does not yield the simple
formulas found earlier. But the fact that φ(t), ψ(ί) = (1 - /2/2 4- o(t2))
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allows the conclusion (established by induction)

Φ ( 0 = Π o ( i -{nkYc2y'k[s2)ktΐ] + ̂ ( / 2 )' n = 1'2' "
En{t2) -* 0 asw -> oo.

A similar formula obtains for ψ.

At this point the following general lemmas are useful.

LEMMA 1. // (tnk) is a Toeplitz matrix (Σf=1tnk -> 1 as n -> oo,

/ B i k -• 0 ω Λ-> oo, Σ^ = 1 | / Π J < M < oo) oΛέ/ if furthermore Σf=1t
2

k -> 0

as n -^ oo then for all complex z, Π ^ = 1 ( l + /^z) -> ez as n -> oo.

REMARKS. The condition that Σ jLxί^ -* 0 as « -> oo cannot be

dropped, e.g., if tnk = 8nk the conclusion is false. The special case tnk =

l / « , A: = 1 ,2 , . . . ,Λ, /n^ = 0, A: > w, should be noted as related to the

formula ez = l i m ^ ^ l + z/n)n.

Proof. Since Σ™=λ\tnk\ < M < oo, the infinite product Π ^ = 1 ( l + tnkz)

converges for all z in C and represents an entire function fn(z). Further-

more, if 0 < 8 < \/M there are functions an(z) such that for all n and all

z such that \z\ < δ, |α Λ (z) | < K < oo and

exp{tnkz-(t2

nk/2)z2an(z)) = (1 + tnkz).

Hence if |z | < δ and >?„ = Σ ^ = 1 t
2

nk then

Λ(-) = Π (1 + ίΛ^) = expf Σ tnkz - ί^ϊ\ ^e*

Since t h e / ^ z ) and e z are entire,/n(z) -> β z as « -> oo for all z.

LEMMA 2. //O < a, b9 a + b = 1, and if tnk = (n

k)an kbk then (tnk) is

a Toeplitz matrix such that Σ ^ = 1 t
2

k -> 0 as n -> oo.

Proof. That (/πΛ) is a Toeplitz matrix is immediate. The proof that

ΣA°= x /
2^ -^ 0 as « -» oo is divided into two cases.

Case I. a = b = \. Then t2

k = (^) 22~ 2". If n is even, n = 2m then
Λ is by Stirling's formula

δ w -> 0 as m -> oo.
m / V7rm
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Thus since Σfwml(ΐ)/2n = 1 and (n

k)/2n > 0, it follows that

n \ Ir) 2 9~2m

and so

0 < 52 I L. I 2~2n < —=^- -> 0 asm -> oo.

If n is odd a similar calculation yields the same conclusion.

2. 0 < a < b, c = b/a > 1. Then

The last term of the sum is c , the first term of the sum is 1 and if

0 < k < n the ratio

C2n

is, again by Stirling's formula

(l + μ A J*" + 1 (l-£) 2 " 2,r •(!-*/«) 2A:
(n — k)

(μkn —* 0 as n -> oo) which is unbounded as n -» oo.Hence for large n,

c2n is the largest term of the sum and so the sum is not more than

(n 4- l )c 2 r t . Consequently, since 0 < b < 1,

0 < a2" t (ΐ)2c2k < (ac)2n(n + 1) = bln{n + 1) - 0

as « -> oo.

In the proof of the theorem itself the lemmas above show that (with

a = c2,b = s2)

as required.

3. Gaussian processes. In [6, 7] a Gaussian process is defined as a

(linear) isometry T: Jf-* L2

R(S) of a (real) Hubert space ^ i n t o the

(equivalence) classes of square-integrable R-valued functions on a proba-

bility sample space S. Furthermore, it is required that if x9 y in ^f are
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orthogonal then T(x), T(y) are independent and that each T(x) is
normally distributed with mean 0 and variance (var(Γ(x)))||;c||2. Theorem
1 shows that the requirement that each T(x) be normally distributed is
redundant.

Indeed, if x and y are orthogonal so are x ± y whence T(x) = X and
T(y) = Y are independent as are X ± Y and Theorem 1 implies they are
normally distributed. The fact that Γis an isometry implies that var(Γ(x))
= ||x||2. On the other hand, the requirement var(Γ(x)) = ||x||2 implies
that T is an isometry and the additional requirement that T(x) be
distributed normally implies that orthogonal x, y go into orthogonal T(x),
T(y), i.e., orthogonal normally distributed random variables having co-
variance 0, hence independent.

The (finitely additive) Gaussian cylinder measure induced on Jίf by T
is not extendable to a countably additive measure on the σ-algebra Z^
generated by the cylinders of Jίf if Jίf is infinite-dimensional. On the other
hand, if S is a domain in C, if the two-dimensional Lebesgue measure of S
is finite (and normalized so that it is 1), if Jf'is the set of R-valued
square-integrable harmonic functions on S, and if T is any bounded
endomorphism of Jf, then [4] T induces a countably additive measure on
Z^. Thus no such T: Jf-> Jίfcan satisfy either of the following require-
ments:

(a) if(x,y) = 0 then T(x), T(y) are independent;

(b) each T(x) is normally distributed and

var(Γ(jc)) = fc||jc||2 (k independent of x).

It should be noted also that //{Xλ} c L2(S) (S arbitrary), if L2(S) is
infinite-dimensional, and if all {finite-dimensional) joint distribution func-
tions for the Xλ are (multidimensional) normal, then [span{ J^}]"1 is
infinite-dimensional. The proof follows.

If {Yn}n=i is a n orthonormal subset of span{Xλ) then each Yn is a
limit of finite linear combinations of the Xλ and the joint distribution
function of the Yn is also multidimensional normal while all covariances
are 0. Thus the Yn are independent. Since there is an orthonormal subset
{Yμ} of span{Xλ} and for which span{l^} = span{Xλ] it follows [2]
that [span{ ̂ j ] - 1 is infinite-dimensional.

The last result gives rise to the following question:
1. Are there useful ways of stating conditions on the set of finite-di-

mensional joint distribution functions {i7^ λ ( x λ i , . . .,jcλ)} for the set
{Xλ} so that these conditions are necessary and/or sufficient for the
truth of [span{Xλ}]±= {0}?
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4. Quantum mechanical probability. Associated with each observa-
ble Si in quantum theory is a resolution of the identity E(t)9 — oo < / < oo,
and with each state/(a unit vector in Hilbert spaced) there is associated
a distribution function Ff defined by: Ff(t) = (E(t)f, / ) , [10]. The num-
ber Fj{t) is interpreted as the probability that in the state/the observable
S$ assumes a value in (— oo, t]. As a monotone increasing function iy is
differentiable almost everywhere. If Sf= {t0: F/(t0) exists} then the
Lebesgue measure m(R\Sf) = 0. On the other hand if supp(2?(/)) =
R \ {(α, b): a < b, E(b) = E(a)}9 then there obtains:

THEOREM 2. Let K be a set of the second category in Σ l 9 the surface of
the unit spherre ofJtf*, or in 3tf itself. Then

suρp(£(O) n ( Π SΛ = 0.

Interpretation: For each/in Σ1? for each positive e, and for each t0 in
Sf there is in Σλ a g such that | |/ — g\\ < e and Fg is not differentiable at t0.
Thus iy is and Fg is not differentiable at t0 even though/and g are close.

Proof. For t0 in supp(,E(0) if F/(t0) exists for all/in ίΓ then

tQ + h)-E(tQ))fj)/h

exists in K. The Banach-Steinhaus theorem implies there is an R an M
such that

to + h)-E(to)\\/h<M

for all h near 0. Since E(t0 + h) — E(t0) is idempotent it follows that

\\E(to + h)-E(to)\\/h<hM2

whence

However if /0 is in supp(is(0) then either (a) t0 is an isolated point of
the set or (b) there is a sequence {tn}™=1 such that /„ T to ( 0 Γ ̂  i ô) a n ^
(E(tn + ι) — E(tn)) Φ 0. If (a) is true then there is an Σλ an / such that
E(to)f = /and if t < tθ9 then E(t)f = 0. Hence if h is small and positive

((E(to-h)-E(to))f,f)/h= -\/h

and so

\\E(t0 - h) - £(*o)||/Λ -» 0 asΛ^O.
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If (b) is true, for each n in N there is in Σx an fn such that
(E(tn+ι) - E(tn))fn = /„ and {fn)n-xis orthonormal. If

n in N, then Σ~= 1 bl = 1 and Σ"=1£„/„ = /is in 2X. On the other hand

The left member above is also ((E(tm) - E(tQ))f,f) and so if iy'(/0)
exists it must be ~(tx - to)~ι which is not 0, and a contradiction
emerges. The result follows.

THEOREM 3.1/Jf is separable there is an 3^ a sequence {fn }^=1 dense
in3tf (or inΣJandsuch that m(R\Γi™=ιSfn) = 0.

Proof. If {/„}£.! is dense in^T(or in Σx) then m(R\ S}) = 0 and so

REMARKS. If F is any (probability) distribution function there is a
Hubert space Jf7, a resolution of the identity E(t), and in Σλ an/such that
for all t, F(t) = Ff(t). Indeed if Jίf= L2(Ry P), P being the measure
induced on R by i% let E(t)k be χ ^ ^ ?] k for fc in^f7. Then the function
/ identically 1 is in Jf and F = iy.

More generally, if F is a family of multidimensional (probabil-
ity) distribution functions satisfying the classical Kolmogorov consistency
conditions (all at are members of a fixed parameter set A) and if S = RA,
endowed via Kolmogorov's construction with the relevant measure P, then
for each a in A and each/in L2(S, P) let Ea(t)fbe defined by: if {rh) is
in S then

Ea(t)f({rh})=f({rb}) i f r Λ < / = 0, otherwise.

Then i f /= 1 on S

Thus every stochastic process may be realized as a quantum mechanical
process. By varying / over Σλ in L2(S, P) one achieves a family of
(related) stochastic processes.

If Xx and X2 are random variables with distribution functions Fλ and
F2, then when Xx and X2 are independent, the distribution function for
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Xx + X2 is JFi * F29 i.e.,

P ( ^ + X2 < x) - Fx * F2(x) = /V^x - y) dF2(y).
JR

If Xx and Z 2 are not independent the formula above may fail to hold. On

the other hand, if Xx, X2 is realized in the manner given above, then, e.g.,

FM-iEMf.f) (/-I)

F2(x) = (E2(x)f,f).

Now, however, even if Xx and X2 are not independent,

P(Xλ 4- X2 < x) = [({E^x - y) dE2(y))f, / ) ,

i.e., a convolution-like formula may be used. Furthermore if Ua(s) =

/R e*stdEa(t) then the joint characteristic function for Faχar,,a is

(Π / = = 1 t/β (JJO/J /)> i e., a product-like formula even if there is no indepen-

dence indicated.
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