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THE RADON TRANSFORM ON Z*

PERSI DIACONIS AND R. L. GRAHAM

In memory of Ernst Straus

Suppose G is a finite group and / is a function mapping G into the
set of real numbers R. For a subset S c G, define the Radon transform
Fs of/mapping G into R by:

Fs(χ)- Σ f(y)
y^S + x

where S + x denotes the setf-s + x i s e S ) . Thus, the Radon transform
can be thought of as a way of replacing/by a "smeared out" version of
/. This form of the transform represents a simplified model of the kind of
averaging which occurs in certain applied settings, such as various types
of tomography and recent statistical averaging techniques.

A fundamental question which arises in connection with the Radon
transform is whether or not it is possible to invert it, i.e., whether one can
recover (in principle) the function/from knowledge of Fs.

In this paper we investigate this problem in detail for several special
classes of groups, including the group of binary ^-tuples under modulo 2
addition.

1. Introduction. Let X be a finite set and let Y be a class of subsets
of X. For a real-valued function /: X -» R, the Radon transform of / at
J G 7is defined as

f(y)- Σ/OO

This paper investigates uniqueness of the transform when X is the group
of binary k-tuples Z* or the symmetric group Sn9 and Y is the class of
translates of a given set S c X.

In §2 we deal with Z*. It is shown that the transform is one-to-one
when | 5 | is odd and is not one-to-one for most sets of even cardinality. It
is also shown that the problem of determining uniqueness is TVP-complete
so that at present no polynomial-time algorithm (in k and | S\) is known to
exist to determine uniqueness.

In Section 3 we give explicit inversion theorems for the case where
S = {x & Z^: H(0, x) < 1} where H(x, y) is Hamming distance—the
number of coordinates where x and y disagree. The transform is one-to-one
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if and only if k = 2n is even. Then an inversion theorem can be given as

where

v ' (2w - l)(2/i - 3) (2Λ - 2y + 1) "

When /c is odd, a similar result holds for the transform based on
translates of S = {x: H(Q, x) = 1).

In §4, X is taken to be the symmetric group on n letters and Y is
taken to be the translates of S = { TΓ e Sn: d(id,π) < 1} where J(ττ, η) is
the Cayley metric—the minimum number of transpositions required to
bring iτ to η. Using the representation theory of the symmetric group
we show that the transform is one-to-one if and only if n G
{1,3,4,5,6,8,10,12}.

The program of investigating general Radon transforms was studied
by Gelfand et al. [11]. They used a transform based on averages over
submanifolds as a way of writing down all of the irreducible representa-
tions of certain Lie groups. We learned of this program through work of
Bolker [2] and Guilleman-Sternberg [12]. They worked with the class Y
generated by a combinatorial block design. They discuss many issues not
treated here. For example, they give characterizations of the range of the
transform in many examples. Kung [15] generalizes the theory based on
block designs. He shows that if X is a finite set and Y is the collection of
sets of rank / in a matroid on X, then the transform is one-to-one. The
examples considered in the present paper do not fall into any of the
previous frameworks: the class of translates of a set does not arise from
matroids.

Discrete Radon transforms of the type studied here are starting to be
used in applied statistics. For example, Diaconis [4] considers an example
of data analysis of syllable counts in the books of Plato. For each sentence
in a given book (e.g. Plato's Republic) the syllable pattern in the last five
syllables was recorded. This gives a binary vector in T\ (syllables being
coded long or short). A function/: ΊJ\ -» R was defined by counting the
number of sentences with each pattern. This was analyzed by taking
various averages, amounting to Radon transforms for various choices
of Y.

It is natural to inquire if the averages considered were rich enough to
characterize/. Further discussion, and many other examples, can be found
in Diaconis [5].
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In applications, we are sometimes given the unordered set {/(>>)}•
This happens when the classical Radon transform (X = R", Y = affine
hyperplanes) is used to inspect high-dimensional data in statistics by using
a "grand tour" as in Asimov [8]. In an important set of papers, Straus
[20], Selfridge and Straus [18], and Gordon, Fraenkel and Straus [9]
determined conditions on \X\ to guarantee that the set of values { f(x)} is
determined when Y is the class of all fc-element sets. For example, when
k = 2, the set of values is determined if and only if \X\ Φ 2J for some j .
For any other fixed k Φ 2, the set of values is determined for all but a
finite number of values of \X\.

Similar questions can be considered for the transforms considered
here. We can show that if two probability measures in R" have compact
support and the same set of projections along affine hypeφlanes, then the
two measures are the same up to an affine change of variables, the result
being false without the support conditions. Aside from this, and Straus'
results, we know nothing.

2. Uniqueness for Radon Transforms Based on Translates in Z*.
Throughout this section the underlying space Xis Z*. Let/: Z* -> R be a
function, and S c Z* a non-empty subset. Define

; ω = Σ f(χ).

This includes several familiar examples:

EXAMPLE (2.1). Let H(x) = i/(0, x) be the number of ones in x. If
S* = {x ^ Z£: H(x) < r), the transform becomes the nearest neighbor
transform which averages/over all points of distance less than or equal to
r. If Sr = {x ^.ΊJ\\ H(X) = r) the transform averages over "shells" of
radius exactly r.

The next lemma connects uniqueness of the transform to the Fourier
transform on Z*. Recall that if /: Z£ -> R is a function, f(x) =
Σy( - l)x γf(y) defines the Fourier transform with inverse

LEMMA 1. The transform f -> / based on the translates of a set S is

one-to-one if and only if

yes
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More generally, the dimension of the vector space of functions f such that

f = 0 is the number of x such that χs(x) = 0.

Proof. For any /, the Radon transform at y can be represented as the
convolution of/with the indicator function of the set S:

f(y)= Σf(y-χ)=f*χs(y)

Taking Fourier transforms of both sides leads to

If x s(x) is never zero this equation specifies/and so/.
Conversely, for every z such that χs(z) = 0, define

The orthogonality of characters implies

The /, are linearly independent functions on Z*. Since the Fourier
transform is an isometry, the/z are linearly independent. Clearly fz(y) =
fAy)Xs(y) Ξ 0. So the/, are non-zero independent functions with/, zero.
It is easy to see that the/, form a basis for the space of all functions /with
/=0. ' D

EXAMPLE 2.2. If \S\ is odd then the transform / -> / is one-to-one.
Indeed, Xs(y) cannot vanish since it is a sum of an odd number of ± l's.
This implies that the nearest neighbor transform based on S? = {y:
H(y) < 1} is one-to-one when k is even and that the transform based on
Sλ = {y: H(y) = 1} is one-to-one when k is odd.

It is certainly not necessary that \S\ be odd to have unique inversion.
For example, if k = 5 and S = {JC: H(X) = 2}, then |5 | = 10, but it
follows from Example 2.3 below that the transform based on S is
one-to-one. The parity restrictions on Sf and Sx are necessary and
sufficient. As an example, consider

= k~2H(y).

If k is even, this vanishes for all vectors with k/2 ones. There are (k

 k

/2) of
these so the dimension of the space of functions / such that / = 0 is
reasonably large.
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REMARKS. If χs has no zeros then χSc has no zeros because χ z*( >0 = 0
for all non-zero y. It is easy to show the following pale version of the
Wiener Tauberian Theorem holds: if S c Z* then any function can be
written as a linear combination of the translates of χs if and only if χ s is
never zero.

EXAMPLE 2.3. When S = Sr = {x: H(x) = r} we have

where for variable v, and integers 0 < r < k, p^(v) is the Krawtchouk
polynomial (see Mac Williams and Sloane [16], p. 130)

/=0

We see that the Radon transform based on Sr is one-to-one if and only if
the Krawtchouk polynomial p^(v) has no integer zero in [0, k]. For
example:

PQ(P) = 1—the transform based on So is one-to-one.
PΪ(p) = {k ~~ 2^}—the transform based on S1 is one-to-one iff k is

odd.

Pi(p) = 2{(k ~ ^VΫ ~ k}—the transform based on S2 is one-to-one
iff k is not a square.

Pτ(p) = \(k ~ 2*0{(^ - 2vγ - 3k + 2}—the transform based on
S3 is one-to-one iff k is odd and 3k — 2 is not a square.

The recurrence for the polynomials pf can be used to show that when
r is odd the polynomial has a factor of the form (k — 2v) and so has an
integer zero whenever k is even and r is odd.

MacWilliams and Sloane ([16], p. 153) give the identity

Po(p)+pϊ(p) + ••• + p?(p) = p?~ι(p - 1).

It follows that the transform based on S* = {x e Z£: /JΓ(JC) < r} is
one-to-one if and only if the Krawtchouk polynomial pr~ι{v) has no
integer zeros in [ — 1, /: — 1]. We do not know of any systematic study of
integer zeros of Krawtchouk polynomials.

Using classical results on integer zeros of polynomials, it is straight-
forward to show that for r even and at least 4, the transform based on Sr is
one-to-one for all but a finite number of values of k. In particular for
r = 4 the only values of k for which this transform is not one-to-one are
those k for which the (transformed) Krawtchouk polynomial

z4 - 2(3k - 4)z2 + 3k(k - 2)
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has an integer root z0 with 0 < z0 < k. This can be transformed by a
straightforward change of variables to the diophantine equation

(*) 6x2(x2- l) + 9 = j 2 .

The values of n for which the transform based on S4 is not invertible are
then given by

n = x2 4- 1 +> / 3 .

The known solutions to (*) together with the corresponding values of n are
listed below.

TABLE 1

Values of n for which the transform of S4 is not invertible

X

0

0

±1
±1
+ 2
+ 2
±3
±3
+ 6
+ 6

±91
+ 91

y

3

- 3

3

- 3

9

- 9

21

- 2 1

87

- 8 7

20283
-20283

n

2

0

3
1

8

2

17

3

66

8

15043
1521

The curve of (*) can be birationally transformed to Weierstrass normal
form:

u2 = 4P3 - 5Ίv + 53.

This elliptic curve has at least 18 rational points (derivable from the table)
and so must have rational points of infinite order. Presumably, the only
integer points on (*) are given in Table 1 but we have not been able to
show this.

The following theorem shows that for many sets S, χs(x) = 0 for
some xy so the transform is not one-to-one.

THEOREM 1. Let ^ 2 / = { S c Z£: \S\ = 2t}. Then, the proportion of
sets S in ίflt such that χs(x) — 0 for some x tends to 1 as k tends to infinity
uniformly in t.for t = o(2k//2).
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We require a preparatory lemma which gives another way to decide

when χs(x) is zero.

LEMMA 2. Let S = {si}i=1 ιsι where st = (sΆ9...9sik). Let the col-

umns of the matrix (slJ) be cj91 < j < k. Then for x = (xl9... 9xk)9

χs(x) = 0 if and only if ,

REMARKS. The proof of the lemma follows at once from the defini-

tions. The lemma implies that instead of checking for χs(x) = 0, one can

check if there is a word of weight \S\/2 in the vector space (over Z 2 )

spanned by the columns of the matrix (s^).

Proof of Theorem 1. Let

hi hi ' ' *

S2t,k_

be a random 2t X k matrix with entries stJ that are independent, identi-

cally distributed (iid) with p(su = 1) = p(su = 0) = 1/2. Let cl9c2,...9ck

be the columns of the matrix. For z e Z£ define Xz == Σ^ / : z ==1}c/ where the

sum is taken coordinate-wise modulo 2. It is easy to see that the {X z} z G Z$

are pairwise independent random vectors. For fixed z Φ 0, the coordinates

of Xz are iid coin-tossing. Define

1 iίH(Xz) = t,

0 otherwise.

Thus, the Wz are pairwise independent and, for z Φ 0, the central limit

theorem for coin-tossing implies that

ύ (Λ Ω ί *\

(2.1) P{WZ = 1]p ^ - i j - , V a r ( ^ ) =
vt yt

where θx(t)9 Θ2(t) tend to positive constants as t tends to infinity. Let

zΦO

Thus 5 counts the number of times a vector in the column space of

has weight t. Using (2.1) and the pairwise independence yields

(2.2) ^
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Now Chebyshev's inequality gives

P{(S- μ)2> a} <σ2/a2.

It follows from this and (2.2) that P{ S > 0} tends to 1 as k tends to
infinity, uniformly in t when 0 < t < 2k.

To complete the argument, observe that the probability that the rows
(sιV... ,sik) are all distinct is

, -ΐ
This tends to 1 for t = o(2k/2). The theorem follows. D

As noted above, if χ^ has a zero, χSc has a zero. Thus the theorem
implies that most sets of cardinality 2k — 2ί, for 0 < It «: 2k/1 are not
sets of uniqueness for the Radon transform.

R. Chen, A. M. Odlyzko and L. A. Shepp have recently shown that
Theorem 1 can be strengthened to hold uniformly in 0 < 2t < 2k.

Similar theorems can be proved on other Abelian groups. For exam-
ple, on X = ZΛ, with Y taken as all translates of a fixed subset S with
\S\ = k, the transform is one-to-one for most sets S as n and k tend to
infinity. Peter Frankl has sharper results for general Abelian groups.

The final result of this section shows that, at present, there is no
reasonable algorithm to apply to a set S c Xk which decides if the Radon
transform, based on translates of S, is unique. We will argue that the
following problem is JVP-complete.

Problem 1. Input: A subset S c Z^.
Property: Every function/: Zk -> R is determined by the
Radon transform

The result implies that any polynomial-time algorithm (in k and \S\) for
Problem 1 could be used to provide polynomial-time algorithms for
solving literally thousands of problems that have also been shown to be
NP-complete. For background on JVP-completeness see Garey and John-
son (1978).

We will find it convenient to use the language of coding theory. A
code is a vector space over Z 2 . Vectors in a code are called codewords. The
weight of a codeword, W(v), is the number of ones in υ. If M is a binary
matrix, (M) denotes the code generated by the rows of M. The length of
F e ( M) is the number of columns of M.
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With this notation, Lemma 1 provides a second problem clearly
equivalent to Problem 1:

Problem 2. Input: A binary matrix T with distinct columns.
Property: The vector space T over Z 2 generated by the
rows of T contains a vector V with weight (V) =
i length (F).

The following problem has been shown to be JVP-complete by
Berlekamp, McEliece, and Van Tilborg [1]:

Problem 3. Input: A binary matrix A and a nonnegative integer /.
Property: There is a binary vector x with weight t such
that xA = 0.

If C is a code, the dual code to C is the set of all binary vectors
orthogonal to every codeword in C where the dot product modulo 2 is
used. Problem 3 says that the dual code to the code generated by the
columns of A contains a codeword of weight t. Given a matrix M whose
columns are used to generate a code, it is easy to construct a matrix Mf

whose rows generate the dual code using the Gram-Schmidt algorithm.
The size of Mr is polynomially bounded by the size of M'. Thus, the
following problem in iVP-complete.

Problem 4. Input: A binary matrix B and a nonnegative integer t.
Property: The code generated by the rows of B contains
a codeword of weight t.

In what follows, we will show that Problems 2 and 4 are polynomially
equivalent. The differences between the problems are that Problem 4 has a
free variable t in its input while in Problem 2 the matrix has distinct
columns. The following proof is due to Rob Calderbank and Peter Shor.

THEOREM 2. Problems 2 and 4 are polynomially equivalent.

Proof. Clearly any algorithm that solves Problem 4 can be used to
solve Problem 2 after computing the number of columns of the input
matrix T.

Conversely, we will now construct a matrix Γ, given B and t, such
that the dimensions of T are polynomially bounded by the dimensions of
B, T has distinct rows, and such that the algorithm for Problem 2 applied
to T provides an answer to Problem 4.
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The construction uses two special codes:

^—a 2-weight code—has length n = 22r~Ύ - 2 r~\ with 2t"~1

(2-3) codewords. It has the property that the only weights that occur
areO,

wi = 22r 2 — and

Calderbank and Kantor [3] discuss this code. It follows from this
work that Sexists for any r > 2. Further, ^can be generated by the rows
of an r — 1 by n matrix C with distinct columns.

£f— the simplex code—has length 2r. It is generated by an r X 2 r

matrix S having as columns the distinct binary r-tuples (arranged

in lexicographically increasing order). It has the property that

each nonzero codeword has weight 2r~ι. The simplex code is

discussed in Mac Williams and Sloane (1977). For example,

when r = 3, the generator matrix is

(2.4)

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
1
0

1
1
1

Note that if t columns of Sf are removed to form a matrix S\ then each
nonzero codeword of the code generated by the rows of S' has weight
contained in [2r~1 - r,2r~1].

Now, suppose we are given a matrix B with rows of length b and a
nonnegative integer t < b. We may assume that none of the rows of B are
all zero. We first argue that without loss of generality we may assume

0 0 0
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t < b/2. If t > b/2, construct a new matrix Bf from B as shown in Fig. 1.
Thus B' has b' = 2b columns and one more row than B. Furthermore, ( B')
has a codeword of weight t if and only if (B) has a codeword of weight t,
since any sum of rows containing the last row of B' has weight > b > t.
Hence, by passing to a new matrix if necessary, we may assume t < b/2.

Next, form a matrix D by adjoining at most m = [(Iogi)/(log2)]
rows to the top of B so as to make all the columns of D distinct. The
matrix B we put on top of B has the form

B —

0
0

0
0

0
0

0
1

0
0

1
0

0 •••
0 •••

1 •••
1 •••

m

Let r be determined by b< T~2 < 2b. From (2.3), n = 22ί"1 - 2r~\
Set ε = b - 2t. Notice that

(2.5)
b- ε rsr-2

Form the matrix T as shown in Figure 2.

τ:

D <

0

0

%

B

s1

0

C

0

FIGURE 2
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It will now be shown that T has a codeword of weight half its length if
and only if B has a codeword of length t. Let v be a codeword in T. The
weight of v is

W(v) = WD(v) + Ws,(v) + Wc{v)

where WD{v) denotes the weight of the portion of v formed from the first
b rows arising from Z>, etc.

The possible values of these sub weights are:

(2.6) 0 < WD{v) < b,

Ws\v) = 0 or 2r-2-e < Ws,{v) < 2r~2,

Wc(v) = 0 or Wc(v) ^

The length of E is n + 2r~ι - ε + b.
If

W(v) = \ length(.) = I + T-2 + ^ ,

then we cannot have Wc(v) < n/2 — 2r~2. For then,

W(v) < b + 2^2 + § - 2^2 < I + 2^ 2 + b-~-.

Therefore it must be that Wc{v) = n/2 + 2r~2. But this together with
(2.6) and the definitions imply that Ws>(v) = 0. Thus, none of the rows of
S' can be used to form *>, and only rows intersecting B are involved.
Therefore, W(v) = \ length(^) implies

Conversely, if there is v e (5) of weight ί then certainly (Γ) con-
tains a codeword of weight

n - 2

REMARK. Theorems 1 and 2 combine to leave us in the following
interesting situation. On the one hand, most sets S of even order are not
sets of uniqueness. On the other hand, there is at present no effective way
to decide uniqueness.

3. Inversion Formulas for Nearest Neighbor Transforms on Z*.
When the Radon transform / *-* f is one-to-one, there is still the question
of developing an explicit inversion formula. In this section, inversion
formulas are given for the transform based on balls and shells of radius 1.
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THEOREM 3. Given f: Zjm+ι -* R, let

/(*) = Σ f(y)
y:H(x,y) = l

Then

f(y) = Σ β
x: H(x, y) is odd

where

(-1)*2 4 '"2k

(2m - 1) (2m - 2k + 1)

THEOREM 4. Given f: Zjm -> R, fef

Proof of Theorem 3. For 0 < k < 2m + 1, define

(3.1) g(*):- Σ /(x),

By counting how often each/(x) occurs when computing g(k) we have

the relation

(3.2) g(k) = (k + ΐ)g(k + 1) + (2m - Λ + 2)g(k - 1)

for 0 < k < 2m + 1

where by definition g( — 1) = g(2m 4- 2) = 0.

Note also that

g(0)=/(0).

We will derive an expression for/(0) in terms of f(x). The corresponding

expression for/(jc) follows after shifting everything by x. We proceed by

solving the linear system (3.2) for g(0). A matrix for (3.2) appears as

shown in Fig. 3. Thus, for example,

g(2m + 1) = 0 g(2m + 1) + 1 g(2m) + 0 g(2m - 1),

g(2m) = (2m + l)g(2m + 1) + 2g(2m - 1), etc.
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2m-i 1 0

FIGURE 3

The system can be inverted by following the shaded path as follows:

g{2m + 1) = g(2m) so g(2m) = g(2m + l)

g(2m - 1) = 2mg(2m) + 3g(2m - 2)

sog(2m - 2) = | g ( 2 m - 1) - ψg(2m + 1).

Continuing in this way, we obtain

(2m - l)(2m + ]

fg(5)

2m

(2m - 3)(2m - l)(2m -

/ -xm 2 4 6

1-3-5

where

(2m + 1)

i m

csrπj&A.<*)ιe* + i>

(-1)*2 4

g(2m + 1)

2k

(2m - 2k + l)(2m - 2k + 3) (2m - 1) '

Finally, recalling the definition of g in terms of/,

1 V Λ [H(x)-l

H(x)oάά x

= g ( 0 ) = fix)- a
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2m 2m-i 2m-2 * 2 1 o

337

2m

2m-2

2m

1

1

2m-i

2

2m-2

3

1

1 2m

FIGURE 4

Proof of Theorem 4. For 0 < k < 2m, define g(k) and g(k) by (3.1).
These functions satisfy

(3.3) g(k) = (* + l)g(* + 1) + g(fc) + (2m - & 4- l )g(* - 1)

for 0 < A: < 2m

where by definition g( -1) = g(2m 4- 1) = 0.
Again /(0) = g(0), and we need only solve for g(0), since the general

case follows by shifting. The matrix for (3.3) appears as shown in Fig. 4.
Now, when solving for g in terms of g, all the terms contribute, rather
than only those of odd weight as in Theorem 3. The result is

8(0)- 2w
g(0)

2m-I •f(3)

2 4
(2m - 3)(2m - I)

2 4
(2m - 3)(2m - 1) f(5) + D

REMARKS. It is instructive to compare the formula of Theorems 3 or 4
to the result of direct use of the Fourier inversion theorem. Arguing as in
§2,

f(x)=f*k(x) vithk(x) = I1 if f {x ) = l>
{0 otherwise.

Fourier transforming, and using k(y) = (2m -f 1 — 2H(y)) leads to
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Now the Fourier inversion theorem gives

Equating coefficients with the formula in Theorem 3 gives an identity for

inverse sums of the Krawtchouk polynomialsp\m+ι(v) = (2m 4- 1 — 2v)\

i „ (-ir
(3-5)

2w + 1 - 2H(y)

(0 if H(z) is even,

Of course, the coefficients oίf(z) on the right side of (3.4) provide an

explicit inversion, but the forms presented in Theorems 3 and 4 are easier

to think about. As an example, let us investigate the stability of the

inversion: To compute/(0), values oίf(y) are needed for all vectorsy9 not

just vectors y which are close to zero. Examining the coefficients βm{k)

one sees that the largest weight in the inversion is on points furthest away,

the next largest weight on points distance one away, the relative size of the

weights continue alternating back and forth to the center.

We should point out here that J. A. Morrison [17] has recently given a

very thorough discussion of the problem of inverting /: Z£ -> R for the

general case that

/(*) - Σ «* Σ f(y),
k = 0 y:H(x,y) = k

for arbitrary constants ak. He derives explicit inversion formulas for/by

first expanding the corresponding linear combination of Krawtchouk

polynomials (which occur in the Fourier inversion formula) by partial

fractions and then applying ingenious analytical techniques.

For example, for the case n Φ t2 and

/(*) = Σ f(y)
y:H(x,y) = 2

it can be shown that the inversion formula (for/(0)) can be written in the

form
m

/(o) = Σ ckg(k)



THE RADON TRANSFORM ON Z * 339

where

* ( * ) - Σ f(χ)
H(x) = k

and

c2r = τ = 7 = /
y/i sin(vW ) '0

/ cos(v^x)cos"~20c sin2rx dx.
' 0

4. Other Groups. Versions of the Radon transform can be intro-
duced in other groups or homogeneous spaces. Indeed, this was Gelfand's
original motivation for studying generalizations of the classical transform.
In this section we show how the relations between Radon transforms and
Fourier analysis carry over to non-commutative groups. We carry out the
analysis carefully for the nearest neighbor transform on the symmetric
group with the Cayley distance as a metric. This defines the distance
between two permutations as

d(πl9 π2) := the minimum number of transpositions required
to bring πx to π2.

This metric is discussed in Knuth ([14], p. 134), Diaconis and Graham [6]
and Diaconis ([5], §8). It is shown that the Cayley distance is bi-invariant
d(πιη, π2η) = d(ηπv ηπ2) = d(πl9 τr2). The distance is easy to compute
because of a relation discovered by Cayley: d(πly π2) = n — number of
cycles in π^1. Our analysis will show that the nearest neighbor trans-
form based on the Cayley distance is only one-to-one for certain small
values of n.

Let G be a finite group. Let d(gv g2) be a bi-invariant metric on G.
The nearest neighbor transform takes a function/: G -> R into

ω - Σ /(*).
s:d(s,t)<l

Similarly, one can define transforms based on averaging over larger balls
or shells. If Sf = {(s: d(id9 s) < 1)} then clearly

A wide variety of bi-invariant metrics is described in Section 8 of Diaconis
[51.

The first lemma relates uniqueness of nearest neighbor transforms to
the representation theory of G. A convenient reference for the elementary
facts of group representations is Serre [19].
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LEMMA 3. Let G be a finite group. Let S be a subset of G. For f: G —> R
define

Rt) = Σ /(*).
s&S t

The transform f -* f is one-to-one if and only if for every irreducible
representation p of G, the matrix

is invertible.

Proof. If Xs is the indicator function of the set S, then

(4.1) /(/)- Σf(rt)- Σxs(r)f(rt)

Thus,

(4.2) /(p) = χsAp)f(p)

so that if χ5-i(p) is invertible then/can be determined from (4.2), the
known transform of/, and the Fourier inversion formula (Theorem 7.2 of
Serre [19]).

Conversely, if for some p0, χ s-i(p 0) is non-invertible then there is a
nonzero vector vQ such that X5~i(Po)̂ o = 0 Define j function/through its
Courier transform at irreducible representations as/(p) = 0 if p Φ p0, and
/(p 0) isA the projection along the direction of v0. With this choice
Xsι(P)f(P) = 0 f°Γ a ^ irreducible representations. Thus, the associated
function/is a non-zero function with/ = 0. D

The next lemma records a key fact that allows analysis of nearest
neighbor transforms based on bi-invariant metrics: the Fourier transform
of χ r i is a computable constant times the identity. This lemma is also at
the heart of Diaconis and Shahshahani [7]. For a proof, see Theorem 7 of
Serre [19].

LEMMA 4. If f: G —> R is constant on conjugacy classes, so that
f(sts~ι) — f(t), then for any irreducible representation p of dimension d with
character x,

f(p) = cl where c = -jΣf(g)xP(g)-
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COROLLARY 1. Let Sx = {77 e Sn: d(id, π) = 1}, S+

</(/</, TΓ) < 1} w/zere rf w £/*e Cay ley metric. Then
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5 Λ :

and

with

where χ p ( τ ) w /Λe character of the irreducible representation p β/ the

transposition τ and dp is the dimension of the irreducible representation.

Proof. Because the Cayley metric is bi-invariant, both χs and χs+ are

constant on conjugacy classes. The result now follows from Lemma 3. D

COROLLARY 2. The nearest neighbor transform based on

one-to-one for any n > 3.
is not

Proof. The irreducible representations of the symmetric group are

indexed by partitions of n. Partitions are often represented by their Young

diagrams; thus 3, 2, 1, 1 is represented by the diagram shown in Fig. 5.

The conjugate partition is defined by forming the transpose of the

diagram. Theorem 6.6 of James [13] implies that if λλ and λ 2 are conjugate

partitions and τ is any transposition, then

X λ l (
τ ) = -Xλ 2 ( τ )

If λλ = λ 2 then both characters are zero. Since self-conjugate partitions

exist for all n > 3, the assertion follows. D

FIGURE 5
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Analysis for Sf is more complex. We show:

THEOREM 5. The nearest neighbor transform

d(π,η)<l

with d the Cayley metric on the symmetric group on n letters is one-to-one if

and only if n e {1,3,4,5,6,8,10,12}.

Proof. In what follows, the characters and dimensions of irreducible

representations corresponding to the partition λ : λ 1 > λ 2 > > λ m >

1, Σ λ ^ = «, will be denoted χ λ ( τ ) and dλ. According to Corollary 1 we

cannot invert the transform based on S? if and only if

_

Frobenius derived an explicit formula for this expression, as discussed in

Lemma 5 of Diaconis and Shahshahani [6]. This yields that (4.3) is

equivalent to the existence of a partition satisfying

I
Make the change of variables: μ7 = λ ; - j + 1. Thus, if there are m

integers μi satisfying

μλ > μ2 > ••• > μm > 2 - m

and

If-

then the value
m

n = μλ -f + μm + Σ (y ~ l) = Mi + * + μm

does not have a one-to-one nearest neighbor transform. We break the

analysis into two cases.
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Case I. n odd. Consider the choice for m > 3,

μ1=m, μ2=l, μ3 = 0, μ, = 2 - t, 4 < t < m.

Then

M ^ ίt-i

Thus

and

Therefore, all values n = 2m 4- 1, m > 3, are eliminated.

Case II. n even. Consider the choice for m > 7,

μι = m, μ2 = 4, μ3 = 3, μ 4 = - l , μ5 = - 2 , / i 6 = - 3

and

μt = 2 - t, 1 < t < m.

Then

Mi

2

and

Thus

and

7 = 1

ί - 1
2
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Therefore, all values n = 2m + 10, m > 7, are eliminated. Furthermore
the choices shown below eliminate further values of n:

(4,1,0,-2) eliminates n = 14

(5,3,1,0, -3) eliminates n = 16

(5,4,1,0, -2) eliminates n = 18

(7,3,1, —1, —2, —3) eliminates n = 20

(6,3,2,1,0) eliminates n = 22

Also, note that μ = (1,0) eliminates n = 2.
Character tables show that indeed, for the remaining values n = 1, 3,

4, 5, 6, 8, 10, 12, we can invert. (For n < 10 the tables in James and
Kerber [13a] were used; for n = 12, the table in M. Zia-ud-Din [21] was
used.) D

Consider the weighted transform

η:ί/(η,τr) = l

Corollary 1 dealt with 5 = 0 and Theorem 5 dealt with s = 1. A similar
but somewhat more complicated argument can be given which shows that
we cannot invert for any fixed integer s once n > \s3 + O(s).
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