ON THE MINORANT PROPERTIES IN $C_{p}(H)$

M. Déchamps-Gondim, F. Lust-Piquard and H. Queffelec

Abstract

We improve in two directions a recent result of B. Simon about the minorant property in $C_{p}(H)$; the methods also allow us to extend a result of H. Shapiro and to obtain an apparently new result on matrices with positive entries.

Introduction. Let H be a complex Hilbert space, which will always be the space l^{2} of square summable sequences or the space l_{n}^{2} of all n-tuples of complex numbers with the hermitian norm, equipped once and for all with an orthogonal basis $\left(e_{i}\right)_{i \in I}$ (I finite or countable). Let $K(H)$ be the set of all compact operators of H; if $C \in K(H)$, put $|C|=\sqrt{C^{*} C}$ and let $\mu_{1}(C), \mu_{2}(C), \ldots, \mu_{i}(C)$ be the eigenvalues of $|C|$, rearranged in decreasing order; if $1 \leq p<\infty$, put

$$
\|C\|_{p}=\left(\sum_{i \in I}\left(\mu_{l}(C)\right)^{p}\right)^{1 / p}=\left(\operatorname{Tr}|C|^{p}\right)^{1 / p}=\left[\operatorname{Tr}\left(C^{*} C\right)^{p / 2}\right]^{1 / p}
$$

(where for $A \in K(H), \operatorname{Tr} A \stackrel{\text { def }}{=} \sum_{l \in I}\left\langle A e_{l}, e_{l}\right\rangle$ is the trace of A whenever it exists).

Let $C_{p}(H)$ be the set of all $C \in K(H)$ such that $\|C\|_{p}<\infty,\left(C_{\infty}(H)\right.$ $=K(H)$ and $\|C\|_{\infty}=\mu_{1}(C)$ is the usual operator norm of $\left.C\right)$. It is well known that $C_{p}(H)$, with the norm $\left\|\|_{p}\right.$, is a Banach space ([11]).

For $C \in K(H)$, we put

$$
c_{\imath \jmath}=\left\langle C\left(e_{J}\right), e_{\imath}\right\rangle=\operatorname{Tr}\left(C \cdot\left(e_{\imath} \otimes e_{j}\right)\right)=\hat{C}(i, j) .
$$

In the last inequality, $c_{i j}$ is considered as a Fourier coefficient with respect to the orthonormal (in the Hilbert-Schmidt sense) system $\left(e_{1} \otimes e_{j}\right)_{(i, J) \in I \times J}$ and this allows us to keep the analogy with the commutative case ([3], [4]) in the definitions below (recall that $e_{\imath} \otimes e_{J}$ is the operator of rank one defined by:

$$
\left.\left(e_{j} \otimes e_{J}\right)(x)=\left\langle x, e_{i}\right\rangle e_{J}\right)
$$

Definition 1. If $A, B \in K(H)$, we say that A is a minorant of B if $\left|a_{i j}\right| \leq b_{i j}$ for $(i, j) \in I \times J$, that is if $|\hat{A}| \leq \hat{B}$. We say that $C_{p}(H)$ has the minorant property, and we abbreviate this to (m)-property, if

$$
A, B \in C_{p}(H) \quad \text { and } \quad|\hat{A}| \leq \hat{B} \Rightarrow\|A\|_{p} \leq\|B\|_{p}
$$

We introduce a slightly different definition, the role of which appears in the third part of this paper (Theorem 3).

Definition 2. We say that $C_{p}(H)$ has the positive minorant property, and we abbreviate this to (m^{+})-property, if

$$
A, B \in C_{p}(H) \quad \text { and } \quad 0 \leq \hat{A} \leq \hat{B} \Rightarrow\|A\|_{p} \leq\|B\|_{p}
$$

We will begin by giving a survey a results already known about the (m)-property. The first questions is: for which p does $C_{p}(H)$ have (m)? It is well known, and simple to prove, that if $p=2 k, k$ an integer, $C_{p}(H)$ has (m) : if $A, B \in C_{p}(H)$ and $|\hat{A}| \leq \hat{B}$, then

$$
\left|\widehat{A^{*} A}\right| \leq \widehat{\hat{B}^{*} B}, \quad\left|\widehat{\left(A^{*} A\right)^{k}}\right| \leq\left(\widehat{\left.B^{*} B\right)^{k}}\right.
$$

and

$$
\|A\|_{p}^{p}=\operatorname{Tr}\left(A^{*} A\right)^{k} \leq \operatorname{Tr}\left(B^{*} B\right)^{k}=\|B\|_{p}^{p}
$$

It is also obvious that $C_{\infty}(H)$ has (m).
In ([8]), V. Peller proved that $1 \leq p<\infty, p \neq 2 k, k$ an integer, $C_{p}\left(l^{2}\right)$ does not have (m). The answer for $C_{p}(H)$ is then analogous to the answer for the commutative case of L^{p}-spaces that has already been considered and solved by G. H. Hardy-J. Littlewood ([7]) and R. P. Boas ([2]). It follows from V. Peller's result that there must exist some n for which $C_{p}\left(l_{n}^{2}\right)$ does not have (m), if $p \neq 2 k, k$ an integer; but the proof, which relies on the theory of Hankel operators ([9]) and on ([11]) does not provide an estimate for n. In ([12]), B. Simon gives a simple proof (which relies only on [2]) that (m) fails for $C_{p}\left(l^{2}\right)$ if $p \neq 2 k$, and his proof gives an explicit n for which (m) fails for $C_{p}\left(l_{n}^{2}\right)$. More prescisely, B. Simon introduces the following definition.

Definition 3. If $1 \leq p<\infty, p \neq 2 k, N(p)$ denotes the smallest integer n such that $C_{p}\left(l_{n}^{2}\right)$ does not have (m).
B. Simon proved in ([12])
(i) $N(p) \leq 2[p / 2]+5$
(ii) $N(p) \geq 3$ if $p \geq 2$
(where $[x]$ is the greatest integer v such that $v \leq x$) and he remarked that it would be interesting to know the precise value of $N(p)$.

This paper will be divided into three parts. In the first part, we improve (i) to show that

$$
\begin{equation*}
N(p) \leq[p / 2]+2 \tag{I}
\end{equation*}
$$

(Equivalently, if $p<2(n-1), C_{p}\left(l_{n}^{2}\right)$ does not have (m)). We give a simple and explicit counter example (Theorem 1, α) whereas in ([2]) and ([12]) the methods are variational. Our counter example, in its variational version (Theorem $1, \beta$) extends to the non commutative case a result of H . Shapiro ([10]). It is also possible to formulate β in terms of the minorant property for some Banach space of operators $C_{\varphi}(H)$, where φ is an Orlicz function: we refer to ([4]) for this.

In the second part, we improve (ii) to show that

$$
\begin{equation*}
N(p) \geq 4 \quad \text { if } p>4 \tag{II}
\end{equation*}
$$

(equivalently, $C_{p}\left(l_{3}^{2}\right)$ has (m) if $p>4$; because of (I), it has not (m) if $1 \leq p<4, p \neq 2$). It follows from (I) and (II) that

$$
N(p)=[p / 2]+2 \text { if } 1<p<6, p \neq 2,4
$$

We conjecture that this is the correct value of $N(p)$ for all $p, p \neq 2 k$. Equivalently, we conjecture that $C_{p}\left(l_{n}^{2}\right)$ has (m) if $p \geq 2(n-1)$.

In the third part, using the Gâteaux-differentiability of the C_{p}-norm, we prove that the $\left(\mathrm{m}^{+}\right)$property is equivalent to the following:

$$
\text { if } B \in C_{p}(H) \quad \text { and } \quad \hat{B} \geq 0, \quad \text { then }\left(B^{*} \widehat{B)^{p / 2-1}} B^{*} \geq 0 \quad\right. \text { (Theorem 3). }
$$

In particular, from this result and from (II) we derive the following fact: if B is a (3×3) matrix with positive entries, for $\alpha \geq 2$ the matrix $\left(B^{*} B\right)^{\alpha}$ has positive entries. An analogous result, with a more direct approach, was obtained by B. Virot (Theorem 5).

In view of these results, it would be interesting to know if the $\left(m^{+}\right)$ property is actually weaker than (m). We know no case in which $\left(m^{+}\right)$ holds and not (m). What we know about $\left(m^{+}\right)$is collected in Theorem 4.

Part I. We shall prove the following theorem.

Theorem 1.

(α) Let $1 \leq p<\infty, p \neq 2 k$. Then $N(p) \leq[p / 2]+2$ (equivalently, if $p<2(n-1), C_{p}\left(l_{n}^{2}\right)$ does not have $\left.(m)\right)$.
(β) More generally, let φ be a strictly increasing C^{∞} convex function on R^{+}, vanishing at zero and $\psi(t)=\varphi(\sqrt{t})$. Suppose that some derivative of ψ is negative at some point of $] 0, \infty[$, and let n be the smallest integer such that this happens; then, there exists A and B in $K\left(l_{n}^{2}\right)$ such that $|\hat{A}| \leq \hat{B}$, but $\operatorname{Tr}[\varphi(|A|)]>\operatorname{Tr}[\varphi(|B|)]$.

Before giving the proof, we shall make some comments: another way to formulate (β) is the following: if for all $A, B \in K\left(l^{2}\right)$ such that
$|\hat{A}| \leq \hat{B}$, we have: $\operatorname{Tr}[p(|A|)] \leq \operatorname{Tr}[\varphi(|B|)]$ (provided both members are finite) then all the derivatives of ψ must be positive on $] 0, \infty[$ and so, by the classical result of Bernstein ([13]), φ must be of the form:

$$
\varphi(t)=\sum_{n \geq 0} a_{n} t^{2 n}, \quad \text { with } a_{n} \geq 0 \text { for all } n \geq 0
$$

So, (β) is the extension in the operator case of the result of Shapiro ([10]).
Proof of Theorem $1(\alpha)$. Let $n=[p / 2]+2, U$ be the unitary permutation operator of l_{n}^{2} defined by.

$$
U\left(e_{1}\right)=e_{2}, \ldots, U\left(e_{n-1}\right)=e_{n}, U\left(e_{n}\right)=e_{1} .
$$

Let S be the symmetry operator defined by $S\left(e_{1}\right)=-e_{1}, S\left(e_{i}\right)=e_{i}$ if $2 \leq i \leq n$. (Any operator S such that $S\left(e_{i}\right)=\varepsilon_{i} e_{i}, \varepsilon_{i}= \pm 1, \varepsilon_{i} \cdots \varepsilon_{n}=-1$ would also work.)

Put $A=I+S U$ and $B=I+U$. It is clear that $|\hat{A}| \leq \hat{B}$ (in fact $|\hat{A}|=\hat{B}$) and we claim that

$$
\begin{equation*}
\operatorname{Tr}\left(A^{*} A\right)^{q}>\operatorname{Tr}\left(B^{*} B\right)^{9} \tag{1}
\end{equation*}
$$

It is easy to compute explicitly the proper values of A and B, ad therefore those of $A^{*} A$ and $B^{*} B$. (Observe that A and B are normal matrices). In fact, if one puts $\alpha=e^{i \pi / n}, \omega=\alpha^{2}, v_{k}=\sum_{j=1}^{n} \omega^{j k} e_{j}, w_{k}=\sum_{j=1}^{n}\left(\omega^{k} \alpha\right)^{j} e_{j}$ for $1 \leq k \leq n$, one has

$$
U\left(v_{k}\right)=\bar{\omega}^{k} v_{k}, \quad \text { and } \quad S U\left(w_{k}\right)=\bar{\omega}^{k} \bar{\alpha} w_{k}
$$

so that the eigenvalues of $A^{*} A$ and $B^{*} B$ are respectively $\left|1+e^{(2 k+1) i \pi / n}\right|^{2}$ and $\left|1+e^{2 k l \pi / n}\right|^{2}$, the corresponding eigenvectors being, respectively, w_{k} and $v_{k} 1 \leq k \leq n$. But we shall use a different presentation.

In order to prove (1), observe that

$$
\begin{align*}
A^{*} A=2(I+V) \quad \text { and } \quad & B^{*} B=2(I+W) \tag{2}\\
& \text { with } V=\frac{S U+(S U)^{*}}{2}, W=\frac{U+U^{*}}{2} .
\end{align*}
$$

It is easy to check the following relations:

$$
\begin{align*}
\operatorname{Tr} U^{k} & =\left\{\begin{array}{ll}
0 & \text { if } k \not \equiv 0(n), \\
n & \text { if } k=0(n),
\end{array} \quad\right. \text { and } \tag{3}\\
\operatorname{Tr}(S U)^{k} & = \begin{cases}0 & \text { if } k \not \equiv 0(n), \\
(-1)^{\rho} n & \text { if } k=\rho n .\end{cases}
\end{align*}
$$

Moreover, by the binomial formula, we have:
(4) If $l \geq 1$,

$$
V^{\prime}=\sum_{\substack{|k| \leq \leq \\ k \equiv \leq 1(2)}} a_{k l}(S U)^{k} \quad \text { and } \quad W^{\prime}=\sum_{\substack{|k| \leq \leq \\ k \equiv l(2)}} a_{k l} U^{k}
$$

where $a_{k l}$ are strictly positive coefficients. Put, for $l \geq 1$,

$$
C_{l}=(1 / l!) q(q-1) \cdots(q-l+1)
$$

and note that:

$$
\begin{equation*}
\sum\left|C_{l}\right|<\infty \tag{5}
\end{equation*}
$$

$\left(\left|C_{l+1} / C_{l}\right|=1-(q+1) / l+O\left(1 / l^{2}\right)\right.$, so that $\left|C_{l}\right|=O\left(l^{-q-1}\right)$ when l tends to infinity),
(6) $C_{1}>0, \ldots, C_{n-1}>0, C_{n}<0$, and $\operatorname{sign} C_{n+\Gamma}=(-1)^{r+1}$ if $r \geq 0$.

Using (5) and the fact that $\operatorname{Max}\left(\mid V\left\|_{\infty},\right\| W \|_{\infty}\right) \leq 1$, we can write:

$$
\begin{equation*}
(I+V)^{q}-(I+W)^{q}=\sum_{l=1}^{\infty} C_{l}\left[V^{l}-W^{l}\right] \tag{7}
\end{equation*}
$$

Taking the traces of both members, and taking account of (3) and (4), we get:

$$
\begin{align*}
\operatorname{Tr}(I+V)^{q}-\operatorname{Tr}(I+W)^{q} & =\sum_{\substack{l \geq 1}} C_{l} \sum_{\substack{|k| \leq l \\
k \equiv l(2)}} a_{k l}\left[\operatorname{Tr}(S U)^{k}-\operatorname{Tr} U^{k}\right] \tag{8}\\
& =\sum_{\substack{r \in Z \\
k=(2 r+1)}} \sum_{\substack{l \geq|k| \\
l \equiv k(2)}}(-2 n) a_{k l} C_{l}
\end{align*}
$$

The indices l which appear on the right-side of (8) are all of the form:

$$
\begin{aligned}
l & =|k|+2 l^{\prime}=|2 r+1| n+2 l^{\prime}=\left(2 r^{\prime}+1\right) n+2 l^{\prime} \\
& =n+2 l^{\prime \prime} \quad \text { with } l^{\prime \prime} \geq 0
\end{aligned}
$$

By (6), $C_{l}<0$, so the right-hand side of (8) is a sum of positive terms and

$$
\operatorname{Tr}(I+V)^{q}>\operatorname{Tr}(I+W)^{q}
$$

In view of (2), this implies (1), and (α) is proved.
(β) We shall need the following relations, which are obvious consequences of (3) and (4)
(9) $\quad \begin{cases}\operatorname{Tr} V^{l}=\operatorname{Tr} W^{l}=0 & \text { if } 1 \leq l \leq n-1, l \text { odd, } \\ \operatorname{Tr} V^{l}=\operatorname{Tr} W^{\prime}=a_{0 l} & \text { if } 1 \leq l \leq n-1, l \text { even, } \\ \operatorname{Tr} V^{n}-\operatorname{Tr} W^{n}=-4 n 2^{-n}<0 . & \end{cases}$

Let n be as in the hypotheses of $(\beta), \xi$ be a positive number such that $\psi^{(n)}(\xi)<0, U, S, I$ as before, $a \geq 0$ and $b \geq 0$ such that $a^{2}+b^{2}=\xi$ with
$b \downarrow 0$ and $a \uparrow \xi$, and put:

$$
A=a I+b S U, \quad B=a I+b U
$$

(so that A and B belong to a neighborhood of ξI). It is clear that $|\hat{A}| \leq \hat{B}$, (in fact, $|\hat{A}|=\hat{B}$) and we claim that

$$
\begin{equation*}
\operatorname{Tr}\left[\psi\left(A^{*} A\right)\right]>\operatorname{Tr}\left[\psi\left(B^{*} B\right)\right] \quad \text { for } b \text { small enough. } \tag{10}
\end{equation*}
$$

In order to prove (10), observe that

$$
\begin{equation*}
A^{*} A=\xi I+2 a b V \quad \text { and } \quad B^{*} B=\xi I+2 a b W \tag{11}
\end{equation*}
$$

V and W, being normal operators, can be diagonalized so that the following symbolic Taylor formulas are valid:

$$
\begin{aligned}
& \psi\left(A^{*} A\right)=\sum_{l=0}^{n-1} \frac{(2 a b)^{l}}{l!} \psi^{(l)}(\xi) V^{n}+O\left(b^{n+1}\right) \\
& \psi\left(B^{*} B\right)=\sum_{l=0}^{n-1} \frac{(2 a b)^{l}}{l!} \psi^{(l)}(\xi) W^{l}+\frac{(2 a b)^{n}}{n!} \psi^{(n)}(\xi) W^{n}+O\left(b^{n+1}\right)
\end{aligned}
$$

Subtracting and taking traces, we get in view of (9):
(12) $\operatorname{Tr}\left[\psi\left(A^{*} A\right)\right]-\operatorname{Tr}\left[\psi\left(B^{*} B\right)^{-}\right]=-4 n 2^{-n} \frac{(2 a b)^{n}}{n!} \psi^{(n)}(\xi)+O\left(b^{n+1}\right)$.

Since $\psi^{(n)}(\xi)<0,(12)$ proves (10) for b small enough.
Part 2. We shall prove the following theorem:
Theorem 2. Let $p \geq 4, A$ and B two (3×3) matrices such that $|\hat{A}| \leq \hat{B}$. Then $\|A\|_{p} \leq\|B\|_{p}$.

Equivalently, $N(p) \geq 4$ if $p \geq 4, p \neq 2 k$.

We shall need the two following lemmas, the first of which plays a fundamental role in the theory of C_{p}-spaces.

Lemma 1 ([6],[11]). Let $a_{1} \geq \cdots \geq a_{N} \geq 0$ and $b_{1} \geq \cdots \geq b_{N} \geq 0$. Let φ be an increasing convex function on $[0, \infty[$. Suppose that

$$
\sum_{1}^{k} a_{j} \leq \sum_{1}^{k} b_{j} \quad \text { for } k=1, \ldots, N
$$

Then, $\Sigma_{1}^{N} \varphi\left(a_{j}\right) \leq \sum_{1}^{N} \varphi\left(b_{j}\right)$.

Lemma 2. Let $0<\alpha_{1}<\cdots<\alpha_{n}$ be positive exponents, and let $P(x)$ $=a_{0}+a_{1} x^{\alpha_{1}}+\cdots a_{n} x^{\alpha_{n}} a$ "polynomial" with real coefficients a_{i}, not all zero. Put

$$
V=\#\left\{i / a_{i} a_{i+1}<0\right\}, \quad Z=\#\{x>0 / P(x)=0\}
$$

Then $Z \leq V$.
Lemma 2 is a generalization of the well-known theorem of Descartes for polynomials; a sketch of the proof can be found in ([1]), but the slavish imitation of Descartes's proof is quicker.

Proof of Theorem 2. Let A and B be two (3×3) matrices such that $|\hat{A}| \leq \hat{B}$. Let us denote by $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$ (resp. $\mu_{1} \geq \mu_{2} \geq \mu_{3}$) the eigenvalues of $A^{*} A\left(\right.$ resp. $\left.B^{*} B\right)$ rearranged in decreasing order. Let $q=p / 2>2$ we claim that

$$
\begin{equation*}
\sum_{1}^{3} \lambda_{i}^{q} \leq \sum_{1}^{3} \mu_{i}^{q} \tag{13}
\end{equation*}
$$

To prove (13), we may as well assume that

$$
\begin{equation*}
\sum_{1}^{3} \lambda_{i}=\sum_{1}^{3} \mu_{i} \tag{14}
\end{equation*}
$$

In fact, the extreme points of the parallelotope of R^{9} defined by $\left|x_{i j}\right| \leq b_{i j}$ are the points $\left(x_{i j}\right)$ such that $\left|x_{i j}\right|=b_{i j}, 1 \leq i, j \leq 3$; so that one has a convex combination $a_{i j}=\sum_{k} \lambda_{k} a_{i j}^{(k)}$, with $\left|a_{i j}^{(k)}\right|=b_{i j}$ for all i, j, k. If $A^{(k)}$ is the element of $K\left(l_{3}^{2}\right)$ defined by $\left\langle A^{(k)}\left(e_{j}\right), e_{i}\right\rangle=a_{i j}^{(k)}$, we then have $A=\Sigma \lambda_{k} A^{(k)}$. For the operators $A^{(k)},(14)$ holds because, for every k,

$$
\sum_{i} \lambda_{i}^{(k)}=\sum_{i, j}\left|a_{i j}^{(k)}\right|^{2}=\sum_{i, j} b_{i j}^{2}=\sum \mu_{i}
$$

(If $\lambda_{1}^{(k)} \geq \lambda_{2}^{(k)} \geq \lambda_{3}^{(k)}$ are eigenvalues of $A^{(k)^{*}} A^{(k)}$.) If we are able to deduce the result when (14) holds, we have: $\left\|A^{(k)}\right\|_{p} \leq\|B\|_{p}$ for all k, and then

$$
\left\|A_{p}\right\|_{p} \leq \sum \lambda_{k}\left\|A^{(k)}\right\|_{p} \leq \sum \lambda_{k}\|B\|_{p}=\|B\|_{p}
$$

So, in the following, we shall assume that (14) holds.
Suppose that (13) is false and consider the continuous function

$$
g(r)=\sum \lambda_{i}^{r}-\sum \mu_{i}^{r}, \quad \text { so that } g(q)>0
$$

Let ν be an integer such that $\nu>q$; since $C_{4}\left(l_{3}^{2}\right)$ and $C_{2 \nu}\left(l_{3}^{2}\right)$ have (m), we have:

$$
\begin{equation*}
g(2) \leq 0 \quad \text { and } \quad g(\nu) \leq 0 \tag{15}
\end{equation*}
$$

By the intermediate value theorem, there exists $q_{1} \in\left[2, q\left[\right.\right.$ and $\left.\left.q_{2} \in\right] q, \nu\right]$ such that

$$
\begin{equation*}
g\left(q_{1}\right)=g\left(q_{2}\right)=0 \quad\left(q_{1}<q_{2}\right) \tag{16}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\lambda_{1} \leq \mu_{1} \tag{7}
\end{equation*}
$$

In fact, $\lambda_{1}=\|A\|_{\infty}^{2}, \mu_{1}=\|B\|_{\infty}^{2}$, and $C_{\infty}\left(l_{3}^{2}\right)$ trivially has (m). We shall prove that (14) and (16) contradict Lemma 2 for some property chosen polynomial P. Let us distinguish two cases:

Case 1. $\lambda_{3} \geq 0$.
If $\lambda_{1}+\lambda_{2} \leq \mu_{1}+\mu_{2}$, (14), (17) and the application of Lemma 1 to $\varphi(t)=t^{q}$ gives us (13). So, we may assume $\lambda_{1}+\lambda_{2}>\mu_{1}+\mu_{2}$. Because of (17) we then have $\lambda_{2}>\mu_{2}$ and because of (14)

$$
\lambda_{3}=\mu_{3}+\left(\mu_{1}+\mu_{2}-\lambda_{1}-\lambda_{2}\right)<\mu_{3}
$$

Multiplying all λ_{i} 's, μ_{i} 's by the same constant, we may assume that $\lambda_{3} \geq 1$; so that if

$$
l_{i}=\log \lambda_{i} \quad \text { and } \quad m_{i}=\log \mu_{i}
$$

we have the following situation

We can write

$$
g(r)=P(x)=\sum x^{l_{t}}-\sum x^{m_{t}} \quad \text { with } x=e^{r}
$$

In view of the preceding picture, let us rewrite:

$$
P(x)=x^{l_{3}}-x^{m_{3}}-x^{m_{2}}+x^{l_{2}}+x^{l_{1}}-x^{m_{1}}
$$

with the notations of Lemma 2, we have $V=3$ and $Z \geq 4$, in fact, due to (14) and (16), P vanishes at $1, e, e^{q_{1}}, e^{q_{2}}$. This proves (13) by contradiction.

Case 2. $\lambda_{3}=0$.
By (18) $\mu_{3}>0$ and as before we may assume $\mu_{3}>1$, we then consider $\mathbf{Q}(x)=-x^{m_{3}}-x^{m_{2}}+x^{l_{2}}+x^{l_{1}}-x^{m_{1}}$, and have $V \leq 2, Z \geq 3$, which again proves (13) by contradiction.

Part 3. First, recall the following lemma on the Gâteaux-differentiability of the norm in normed spaces E with strictly convex dual E^{\prime}.

Lemma 3 ([5]). Let E be a complex normed space, and $b \in E, b \neq 0$; assume that the norm is smooth at b, that is to say: there exists a unique $\tilde{b} \in E^{\prime},\|\tilde{b}\|=1,\langle\tilde{b}, b\rangle=\|b\|$. Then, the norm in E is Gâteaux-differentiable at b; more precisely,

$$
\forall c \in E, \quad \lim _{\substack{t \in R \\ t \rightarrow 0}} \frac{\|b+t c\|-\|b\|}{t}=R[\langle\tilde{b}, c\rangle]
$$

Observe that the lemma is applicable when the norm of E^{\prime} is strictly convex, a fortiori when it is uniformly convex; if $E=C_{p}(H), 1<p<\infty$, $E^{\prime}=C_{p^{\prime}}(H)$ is uniformly convex by the Clarkson-McCarthy inequalities ([11]), so that Lemma 3 may be applied to $C_{p}(H)(1<p<\infty)$. If $B \in C_{p}(H)$, and $\|B\|_{p}=1$, we easily compute:

$$
\begin{equation*}
\tilde{B}=\left(B^{*} B\right)^{p / 2-1} B^{*} \tag{20}
\end{equation*}
$$

(This has a meaning even when $1 \leq p<2$, and B is not injective by putting $\tilde{B}(x)=0$ if $\underset{\tilde{B}}{ }(x)=0$.) It is clear that $\langle\tilde{B}, B\rangle=\operatorname{Tr} \tilde{B} B=1\|B\|_{p}$ and to check that $\|\tilde{B}\|_{p^{\prime}}=1$, use a polar decomposition of B and the invariance of the C_{p}-norm under multiplication by a unitary operator; by extension, in the following \tilde{B} will always be given by (20), even when $\|B\| p \neq 1$.

Theorem 3. Let $1<p<\infty$
(1) the following are equivalent:
(a) $C_{p}(H)$ has $\left(m^{+}\right)$
(b) $B \in C_{p}(H)$ and $\hat{B} \geq 0 \Rightarrow \hat{\tilde{B}} \geq 0$. (In particular $\overline{\left(B^{*} B\right)^{p / 2}} \geq 0$).
(2) In particular, if B is $a(3 \times 3)$ matrix such that $\hat{B} \geq 0$, then

$$
\left(B^{*} B\right)^{\alpha} \geq 0 \quad \text { for } \alpha \geq 2
$$

Proof. (a) $\Rightarrow(\mathrm{b})$. Let $B \in C_{p}(H)$, with $\hat{B} \geq 0$; we may assume that $\|B\|_{p}=1$; let $C \in C_{p}(H)$, with $\hat{C} \geq 0$; first, it is clear that \tilde{B} has real entries ($B^{*} B$ can be diagonalized by the real orthogonal group); besides, if $t \geq 0$, we get from (a):

$$
\|B\|_{p} \leq\|B+t C\|_{p}
$$

so that by Lemma 3

$$
\lim _{\substack{\geq \\ t \rightarrow 0}} \frac{\|B+t C\|_{p}-\|B\|_{p}}{t}=\mathscr{R}[\operatorname{Tr} \tilde{B} C]=\operatorname{Tr} \tilde{B} \geq 0
$$

Testing this with the operators of rank one $C=e_{i} \otimes e_{j}$, we get (b).
(b) \Rightarrow (a). Let $B, C \in C_{p}(H)$ with $\hat{B} \geq 0, \hat{C} \geq 0$, let us prove that $\|B\|_{p} \leq\|B+C\|_{p}$. Observe that, if $0 \leq t_{0} \leq 1$

$$
\left[\frac{d}{d t}\|B+t C\|_{p}\right]_{t=t_{0}}=\operatorname{Tr}\left[\left(\widetilde{B+t_{0} C}\right) C\right] \geq 0 \text { by }(\mathrm{b}),
$$

so that the function $t \rightarrow\|B+t C\|_{p}$ is increasing.
(2) follows trivially from (1) and from Theorem 2.

In view of Theorem 3, the property $\left(m^{+}\right)$is of interest: it is quite simple to verify that the properties (m) and $\left(m^{+}\right)$are equivalent in $C_{p}\left(l^{2}\right)$ (Theorem 4(c) below), but in the finite-dimensional case and if $p>2$, we do not know if $\left(m^{+}\right)$is weaker than (m). We shall prove the following results about (m^{+}):

Theorem 4.

(a) If $1 \leq p<2, C_{p}\left(l_{2}^{2}\right)$ does not have (m^{+}).
(b) If n is even, $n \geq 4, C_{p}\left(l_{n}^{2}\right)$ does not have (m^{+}) if $1 \leq p<n-2$, $p \neq 2 k$.

If n is odd, $n \geq 5, C_{p}\left(l_{n}^{2}\right)$ does not have $\left(m^{+}\right)$if $1 \leq p<n-3$, $p \neq 2 k$.
(d) If $p \geq 2$ and $C_{p}\left(l_{n}^{2}\right)$ has $\left(m^{+}\right)$, then $A, B \in K\left(l_{n}^{2}\right)$ and $\mid \hat{A} \exists \leq \hat{B}$ implies the following

$$
\begin{cases}\|A\|_{p} \leq\left(2^{p}-1\right)^{1 / p}\|B\|_{p} & \text { if } \hat{A} \text { is real, } \\ \|A\|_{p} \leq 2\left(2^{p}-1\right)^{1 / p}\|B\|_{p} & \text { if } \hat{A} \text { is complex. }\end{cases}
$$

Proof. (a) Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
1 & 1 \\
1 & d
\end{array}\right] \quad \text { for } d>0
$$

We shall prove that $\|A\|_{p}>\|B\|_{p}$ for d small enough (depending on p); the eigenvalues of B are:

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}\left(d+1+\sqrt{d^{2}-2 d+5}\right) \quad \text { and } \\
& \lambda_{2}=\frac{1}{2}\left(d+1-\sqrt{d^{2}-2 d+5}\right) .
\end{aligned}
$$

Since B is symmetric, we have $\mu_{1}(B)=\left|\lambda_{1}\right|=\lambda_{1}$ and $\mu_{2}(B)=\left\|\lambda_{2}\right\|=-\lambda_{2}$ for d small enough, so that:

$$
\begin{aligned}
2^{p}\|B\|_{p}^{p} & =\left(d+1+\sqrt{d^{2}-2 d+5}\right)^{p}+\left(-d-1+\sqrt{d^{2}-2 d+5}\right)^{p} \\
& =f(d)
\end{aligned}
$$

and we claim that $f^{\prime}(0)<0$ if $p<2$. In fact:

$$
\frac{1}{p} f^{\prime}(0)=\left(1-\frac{1}{\sqrt{5}}\right)(1+\sqrt{5})^{p-1}-\left(1+\frac{1}{\sqrt{5}}\right)(\sqrt{5}-1)^{p-1}
$$

so that $f^{\prime}(0)<0$ iff $(\sqrt{5}+1)^{p-2}<(\sqrt{5}-1)^{p-2}$, which is equivalent to $p<2$.
(b) the proof is similar to a proof of ([10]).

We shall first examine the case n even; put $m=n / 2, q=p / 2$. We then have $q<m-1$ and we may clearly assume $q>m-2$. By (b) of Theorem 3, it suffices to find an ($n \times n$) matrix B such that $\hat{B} \geq 0$, and such that $\left(B^{*} B\right)^{q}$ has some negative entry: this will be the case if $\operatorname{Tr}\left[\left(B^{*} B\right)^{q} C\right]<0$ for some C with positive entries; we shall take:
$B=\sqrt{1-r^{2}} I+r U$, where U is as in Theorem 1 and $0<r<1$,
$C=U^{m}$,
$B^{*} B=I+\rho W$ where $\rho=2 r \sqrt{1-r^{2}} \rightarrow 0$ when $r \rightarrow 0$, and where W is as in (2). Observe that if $C_{l}=(1 / l!) q(q-1) \cdots(q-l+1)$ for $l \geq 1$, we have $C_{m}<0$ and

$$
\begin{equation*}
\left(B^{*} B\right)^{q}=I+\sum_{l=1}^{m-1} C_{l} \rho^{l} W^{l}+C_{m} \rho^{m} W^{m}+O\left(\rho^{m+1}\right) \tag{21}
\end{equation*}
$$

When one computes $W^{\prime} C$ for $0 \leq l \leq m-1$, only the following powers of U appear:

$$
m, \quad m \pm 1, \quad m \pm 2, \ldots, m \pm(m-1)
$$

In view of (3), we then have:

$$
\begin{equation*}
\operatorname{Tr} W^{\prime} C=0 \quad \text { if } 0 \leq l \leq m-1 \tag{22}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\operatorname{Tr} W^{m} C=2^{-m+1} \operatorname{Tr} I=n 2^{-m+1}>0 \tag{23}
\end{equation*}
$$

(21), (22), (23) give:

$$
\begin{equation*}
\operatorname{Tr}\left[\left(B^{*} B\right)^{q} C\right]=n 2^{-m+1} \rho^{m} c_{m}+O\left(\rho^{m+1}\right) \tag{24}
\end{equation*}
$$

and the right-hand side of (24) is negative for r small enough. The case n odd is treated in a similar way: just put $m=(n-1) / 2, B$ as before, and $C=U^{m+1}$.
(c) A close examination of ([12]) shows that in fact $\left.C_{p}\right)\left(l^{2}\right)$ has $\left(m^{+}\right)$ iff $p=2 k$ or $p=\infty$ so that $C_{p}\left(l^{2}\right)$ has $\left(m^{+}\right)$iff $C_{p}\left(l^{2}\right)$ has (m). One can also argue directly as follows: if $C_{p}\left(l^{2}\right)$ has $\left(m^{+}\right)$, then trivially: $|\hat{A}| \leq \hat{B}$ implies $\|A\|_{p} \leq 4\|B\|_{p}$. But it follows from the tensor product argument of ([12]) that if, for a certain constant M

$$
|\hat{A}| \leq \hat{B} \quad \text { implies }\|A\|_{p} \leq M\|B\|_{p}
$$

then $C_{p}\left(l^{2}\right)$ has (m); so we conclude that $\left(m^{+}\right)$is equivalent to m) for $C_{p}\left(l^{2}\right)$.
(d) It is enough to deal with the case \hat{A} real; put $A^{+}=\left(a_{i j}^{+}\right)$, $A^{-}=\left(a_{i j}^{-}\right)$, we have $A=A^{+}-A^{-}$and $0 \leq A^{+}+A^{-} \leq \hat{B}$. By the ClarksonMacCarthy inequality ([1]) for $p \geq 2$

$$
\left\|A^{+}-A^{-}\right\|_{p}^{p}+\left\|A^{+}+A^{-}\right\|_{p}^{p} \leq 2^{p-1}\left|\left\|A^{+}\right\|_{p}^{p}+\left\|A^{-}\right\|_{p}^{p}\right| .
$$

So that using $\left(m^{+}\right)$twice we get:

$$
\left\|A^{+}-A^{-}\right\|_{p}^{p} \leq\left(2^{p}-1\right)\left\|A^{+}+A^{-}\right\|_{p}^{p} \leq\left(2^{p}-1\right)\|B\|_{p}^{p} .
$$

Let us now explain Virot's result, which is as follows:
Theorem 5 (B. Virot). Let E be a positive-definite (3×3) matrix with positive entries, f a real positive function on $[0, \infty[$ such that $f(t)$ is convex and $f(\sqrt{t})$ concave; then $f(E)$ has posiitve entries; in particular, E^{α} has positive entries if $\alpha \geq 1$.

Proof. By a standard perturbation argument, we may assume that the eigenvalues of E are distinct, let them be $\lambda_{1}<\lambda_{2}<\lambda_{3}$ one easily computes real numbers a_{0}, a_{1}, a_{2} such that:

$$
\begin{equation*}
f(E)=a_{0} I+a_{1} E+a_{2} E^{2} \tag{25}
\end{equation*}
$$

If $\Delta=\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)$, one finds in particular:

$$
\begin{aligned}
\Delta a_{1} & =\left(f\left(\lambda_{2}\right)-f\left(\lambda_{1}\right)\right)\left(\lambda_{3}^{2}-\lambda_{1}^{2}\right)-\left(f\left(\lambda_{2}\right)-f\left(\lambda_{1}\right)\right)\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right) \\
\Delta a_{2} & =\left(f\left(\lambda_{3}\right)-f\left(\lambda_{1}\right)\right)\left(\lambda_{2}-\lambda_{1}\right)-\left(f\left(\lambda_{1}\right)\right)\left(\lambda_{3}-\lambda_{1}\right)
\end{aligned}
$$

So that $a_{1}>0$ iff

$$
\frac{f\left(\lambda_{2}\right)-f\left(\lambda_{1}\right)}{\lambda_{2}^{2}-\lambda_{1}^{2}}>\frac{f\left(\lambda_{3}\right)-f\left(\lambda_{1}\right)}{\lambda_{3}^{2}-\lambda_{1}^{2}}
$$

This will be true if $f(\sqrt{t})$ is concave. In the same way $a_{2}>0$ iff

$$
\frac{f\left(\lambda_{3}\right)-f\left(\lambda_{1}\right)}{\lambda_{3}-\lambda_{1}}>\frac{f\left(\lambda_{2}\right)-f\left(\lambda_{1}\right)}{\lambda_{2}-\lambda_{1}} .
$$

This will be true if f is convex; so that under the hypotheses of Theorem 5, (25) shows that $(f(E))_{i j} \geq 0$ if $i \neq j$; we know nothing about the sign of a_{0}, but it is a priori clear, that $(f(E))_{n} \geq 0$ since $f(E)$ is a positive-definite operator; this can be applied to the function $f(t)=t^{\alpha}$ for $1 \leq \alpha \leq 2$; but, then, E^{α} has positive entries for all $\alpha \geq 1$ because $E^{\alpha}=E^{\mu} E^{\beta}$ with μ a positive integer and β a real number such that $1 \leq \beta \leq 2$.

References

[1] S. Bernstein, Leçsons sur les Propriétés Extrémales des Fonctions Analytiques d'une Variable Réelle, Paris, Gauthier-Villares, (1926), 27-29.
[2] R. P. Boas, Majorant problems for trigonometric series, J. Anal. Math., 10 (1962/63), 253-271.
[3] M. Dechamps-Gondim, F. Piquard-Lust and H. Queffelec, La propreité du majorant dans les espaces de Banach, C. R. Acad. Sci., Paris 293 (série I), 117-120.
[4] , La propriété du minorant dans $C_{\varphi}(H)$, C. R. Acad. Sci., Paris 295 (1983), 657-659.
[5] N. Dunford and J. T. Schwartz, Linear Operators, Interscience Publishers 1963.
[6] I. C. Gohberg and M. G. Krein, Opérateurs linéaires non auto-adjoints dans un espace hilbertien, Paris, Dunod, 1971.
[7] G. H. Hardy and J. E. Littlewood, Notes on the theory of series (XIX): a problem concerning majorant of Fourier series, Quart J. Math., Oxford 6 (1935), 304-315.
[8] V. Peller, Dokl. Akad. Nauk Math., 252 (1980), 43-47.
[9] _, Nuclearity of Hankel operators and Hankel operators of the class γ_{p} and projecting γ_{p} onto the Hankel operators. Leningrad preprints.
[10] H. Shapiro, Majorant problems for Fourier coefficients, Quart. J. Math., Oxford (2) 26 (1975), 9-18.
[11] B. Simon, Trace Ideals and Their Applications, Cambridge Univ. Press 1979.
[12] \qquad , Pointwise domination of matrices and comparison of C_{p} norms, Pacific J. Math., 97 (1981), 471-475.
[13] G. Valiron, Théorie des Fonctions, Paris, Masson, 1966 (p. 103).
[14] B. Virot, Communication orale.

Received May 13, 1983 and in revised form May 31, 1984.

Universite de Paris-Sud
Equipe de Recherche Associee au CNRS (296)
Analyse Harmonique
Mathematique (Bât. 425)
91405 Orsay Cedex
France

