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AN INVARIANCE PRINCIPLE FOR
ASSOCIATED RANDOM FIELDS

ROBERT M. BURTON, JR. AND TAE-SUNG Kim

Applying known tightness criteria to Poisson cluster random mea-
sures, it is shown that if the total member size has a finite 2 + ¢
moment, then the random measure satisfies an invariance principle.

I. Introduction. Let {X, | k € Z¢} be a random field that is cen-
tered, stationary, associated and has a summable covariance func-
tion. C. Newman [10] showed that, when viewed as an element in
d-dimensional Skorohod space, the renormalizations of {X | k € Z¢}
converge to a Wiener measure in the sense of finite dimensional distri-
butions. Newman and Wright [11] showed that this may be improved
to an invariance principle if d = 1 or 2. Analogous results hold in the
case of random measures. A tightness criterion of Bickel and Wichera
[1] is applicable in the case of general d. This criterion is applied to
Poisson center cluster random measures. It is shown that if the to-
tal member size has a finite 2 + 6 moment then the random measure
satisfies an invariance principle.

I1. Random fields and random measures. A random field is a collec-
tion of nondegenerate random variables indexed by Z¢ and is denoted
{Xy | k € Z%}. All random fields in this section are assumed centered
and stationary, i.e. E[X;] = 0 and the distribution is invariant with
respect to translations of the indices by the group Z4. A random field
is associated if whenever A C Z9 is a finite subset and £ g: R4 — R
are coordinatewise increasing then Cov[ f(X;: k € A), g(Xi: k € A)]
is nonnegative whenever the covariance is defined. Association is a
strong positive dependence property implying, in particular, nonnega-
tive correlations of the random variables X (if they exist). For details
concerning association see Esary, Proschan and Walkup [4].

A random field may be interpolated and rescaled to form a random
element of d-dimensional Skorohod space D ([0, 1]¢) by setting

[nti] [nt4]
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where t = (¢1,...,t;) € [0,1]¢ and [-] is the greatest integer function.
{ X} is said to satisfy an invariance principle or functional central limit
theorem if W,(t) converges weakly in © ([0, 1]¢) to a d-dimensional
Wiener process with some finite diffusion constant a2. This is equiv-
alent to convergence of the finite dimensional distributions together
with tightness. The following condition arises naturally when investi-
gating invariance principles.

DEFINITION 2.1. {X} has finite susceptibility equal to 0% < o if
EKGZ" COV[XQ, X&] = 0'2.

REMARK. For k € Z¢ with positive components let N Eg <j<k Xj-
Assume that the covariances of the X are nonnegative. Then {X ) has
finite susceptibility if and only if the following expectation is bounded
in k.

E[|Sy/Ik|'?P1< €
where |k| = k; --- k.

The following theorem is due to Newman [10] and Newman and

Wright [11].

THEOREM 2.2. Let {Xy} be an associated random field and have
finite susceptibility equal to o* then

(1) (Newman) the finite dimensional distributions of W;(t) converge
to those of the Wiener process with diffusion o?;

(2) (Newman and Wright) further if d = 1 or d = 2 then {X;}
satisfies an invariance principle. h

Whether an invariance principle holds for d > 2 is still open. A
result of Bickel and Wichura [1] allows us to conclude tightness if we
strengthen the hypothesis of finite susceptibility.

DEFINITION 2.3. {X} } has finite 5-susceptibility if there is a constant
C so that for all k£ with positive components
ElIS/IkI'*P1 < C
The above results may be combined to get the following.
THEOREM 2.4. Let {X;.} be a centered, stationary, finite variance,

associated random field that satisfies d-susceptibility for some & > 0.
Then { X} } satisfies the invariance principle.
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REMARK. The above theorem applies to models in mathematical
physics. Random variables X, Y, Z, W are said to satisfy the Lebowitz
inequality if

E[XYZW] < E[XY]E[ZW] + E[XZ]E[YW]+ E[XW]E[YZ].

A random field {X,} satisfies the Lebowitz inequalities if any four
coordinate random variables satisfy the above inequality. If { Xy}
is also stationary and has finite susceptibility then it has finite J-
susceptibility with 6 = 2. This computation appears in Wood [18].
Ferromagnetic Ising models often satisfy the Lebowitz inequality and
a fortiori satisfy the invariance principle. We have not been able to
find this fact in the literature.

A corresponding theory exists for random measures. We let M
be the set of all nonnegative Borel measures on R? that are finite on
compact sets [i.e. Radon measures]. Let N C M be the set of counting
measures, i.e. B Borel and 4 € N implies u(B) € {0,1,2,...,00}.
There is a one-to-one correspondence between u € N and unordered
sequences {x;} of points in R? with no limit points because each such
4 must be a sum of Dirac point masses. A is a Polish space with the
vague topology and N is closed in M. Let the Borel o-fields of M and
N be # and .7 respectively.

DEFINITION 2.5. A random measure X is a measurable map from a
fixed probability space (2, 7, P) to (M, #). X is called a point random
field if P[X € N] = 1.

If X is a random measure and B is a Borel subset of R? then X (B)
denotes the mass the random measure gives to B. All random mea-
sures will be assumed to be stationary, i.e. with a translation invariant
distribution. The most well known random measure is the Poisson
point random field with parameter p. X has this distribution if when-
ever By, ..., B, are disjoint bounded Borel sets then X (B)),..., X(By)
are independent Poisson random variables with respective parame-
ters p|By|,..., p|By| where | - | denotes Lebesgue measure. M has a
partial ordering defined by u < v if for each bounded Borel set B,
u(B) < v(B). See Kallenberg [6] for a more complete discussion of
random measures.

DEFINITION 2.6. A random measure X is associated if whenever
E G: M — R is measurable and increasing with respect to the partial
ordering on M then Cov[F(X), G(X)] is nonnegative whenever the
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covariance is defined. It follows from work of the first author and
Waymire [2, 3] that X is associated if and only if the family of random
variables {X(B) | B bounded Borel} is associated.

DEeFINITION 2.7. If X is a random measure we define the A-renormal-
ization of X to be the signed random measure X; where X;(B) =
A~4/2[X (AB) — E[X(AB)]]. We consider X, as a random element of
D ([0, 1]9) by setting X;(z) = X;([0,¢]) where [0,¢] is the rectangle
[0, #1] x --- x [0, 24].

DEFINITION 2.8. X satisfies the invariance principle with parameter
o? if as A — oo, X; converges weakly to the d-dimensional Wiener
measure on D ([0, 1]¢) with diffusion constant o2.

DEFINITION 2.9. Let I be the unit cube in R? and X be associated.
X has finite susceptibility o? if

> CovlX(I), X(I + k)] = 0.
keZ4

X has finite 6-susceptibility if there is a constant K < oo depending
only on é and X so that for all rectangular boxes B D I we have

() E[|X(B) — E[X(B)]|**°] < K|B|'**2.

It would be a more pleasing definition to require (%) in Definition 2.9
to hold for all rectangular boxes B but this is asking too much. For ex-
ample such a condition is untrue in the case where X is a Poisson point
random field for any d > 0. A simple argument using Chebyshev’s in-
equality allows us to extend the invariance principle for associated
random fields to random measures.

THEOREM 2.10. Let X be a stationary associated random measure
with finite d-susceptibility for some 6 > 0. Then X satisfies the invari-
ance principle.

III. Cluster random measures. In this section we apply Theorem
2.10 to Poisson center cluster random measures. These have been
used as models of infinite divisibility and self-similarity [14, 15] as well
as models of natural phenomena such as storm systems and galaxies
[12, 16, 17]. These are constructed as follows. Let U be a stationary
Poisson point random field with parameter p. Let V' = {Vx | x € R}
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be a collection of iid random measures with E[V(R¥)] = & < co. Then
we say that X is a cluster process with centers U and members V' if

X(B)= Y Vi(B-x)
x: U(x)>0

for each bounded Borel set B. We denote X by [U] V']. It is natural to
hope that moment conditions on V' will imply moment conditions on
X regardless of the “shape” of V' in R?. This is made precise in the
following theorem.

THEOREM 3.1. Let X = [U V] as above. Let B be a rectangular box
in R? and 0 < & < 2; then there is a constant K depending only on ¢
and |B| so that

(1) E[|X(B)|**°] < KE[(Vx(R?))2*].

(2) If E[(V(R?))?+9] < 0o then X has finite &-susceptibility.

The first part of the next theorem appears in joint work of the first
author and Waymire [2] and the second part is immediate from the
first part of Theorem 3.1.

THEOREM 3.2. Let X = [U V] as above.
(1) X is associated.
(2) If E[(Vx(R9))?+9] < oo then X satisfies the invariance principle.

We note that the second part of Theorem 3.2 improves a theorem
of Ivanoff [5] where it was assumed that 6 = 4 and that the V" was a
point random field with cumulant density functions.

IV. Proof of Theorem 3.1. First two lemmas.

LEMMA 4.1. (1) If Y1, Y,,... are centered iid random variables and
E|Y;|? < oo for some p > 1 then there is a constant C depending only

on p so that
p/2

p
E <CE

n n
2% 2. Y;

(2) If Y\, Y, ... areiid random variables and E|Y;|**% < co for some
0 < 0 < 2 then there is a constant C' depending only on d so that

n 244
2. Y
i=l1

E < C'(nE|Y;|**0 + |nEYE |49/ 4 |nEY,|*+9).
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Proof . (1) is a standard square inequality attributed to Marcinkie-
wicz and Zygmund [9] (see also [13], p. 59). (2) follows from two

applications of (1). Let u = E[Y;] and ¢2 = Var[Y;] and < denote
“bounded by a constant multiple of ”. Then

2+0
+ |nu

2+4

E g E |2+6

n
> (Y- w)
i=1
1+6/2
+ |nu|2+5

n
DY
i=1
n

E|Y (Y;—p)?

i=1

E|> (Y —u)?-a%
i=1

IN?

1+4/2
+ |na.2|l+6/2 + lnﬂ|2+§

IN?

1/2+6/4

IN?

n
E|Y (Y, —p)? -
i=1
+ |n0.2|l+6/2 + ln”’2+6
n
<EY |I(Y; — p)? - g?P|/2Hor
i=1

2|1+3/2 |2+0

+ |no + |np
= nE|[(Y; — p)? = 62]|'*92 4 |na?|1+9/2 4 |nu|?*d
_2_ nE|Y, _ﬂ|2+5 + n|02|1+5/2 + lnazl”"/z + ln#|2+‘5
< nE|Y) [ + n(E[Y2)) '+
+ (nE[Y?])'¥2 4 |nEY; >+
< nE|Y; [+
+ |nEY2|"*9 + |nEY,|**°. O

LEMMA 4.2. Let V = {Vy | x € R?} be iid random measures as in
the definition of a cluster random measure. Let B C R? be a rectangle
in the nonnegative orthant with one corner at the origin and the opposite
corner at z and let B™ =\J;. < ., B+ z(k), where z(k) is the vector
with ith coordinate k;z;. Let x be chosen uniformly in B™. Then for
a>1

E|Vy(B - x)I* < 2~n e[V (R4)°].
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Proof .
1
E|Vy(B-x)"=E [ o RACEEO di]
[ 1 Z
=F / V(B — x)*dx
| 29n91B] . cn B2

<E|2dn-dip [ ( > VE(B—)_c—z(k)) d&]
B .

<2-4p~4|B|-'E / Vi(RY)® dx = 2-In~E[V;,(RY)"]. .
B

Proof of Theorem 3.1. Let X = [U V] as in the statement of the
theorem and suppose that § < 2 and that E[V(R?)?*?] < co. Let R,
be equal to the number of occurrences of U in B® so that R, is a
Poisson random variable with parameter p2¢n?|B|. Also recall that
conditioned on R, the occurrences of U inside B are independent
and uniformly distributed on B(",

246
E|X(B)*? = lim ( > B- zi))
x,€B",U(x,)>0
. 249
= lim £ B[ (v B - %)) " I Ri||
< lim E[R,E|Vx(B — x)*** + |R, EVy(B — x)?[1+%/2
+ |RnEVx(B — x)***]
g ,,IL‘EO pzdnd|B|2—dn—dE[V(Rd)2+6]
+ (pzdnd|B|)1+(5/2(2—dn—dE[V(Rd)2])1+6/2
+ (p|BIE[V (R)])**° < E[V (RY)**].

Note that the factor (p29n4|B|)!*+%/2 in the second term follows from
the fact that if R is Poisson with parameter o then E[R!*9/2] <
const.a!t%/2 for nonnegative §. This proves part (1). To see part
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(2) which is finite d-susceptibility we have a final computation.
E[|X(B) — E[X(B)]|**]
r 2+48

= lim E > W (B-x)-) Vi(B-x)

n—oo
x,€B",U(x,)>0

n—o0

< Jim £ B[SV (8- x) - BV (B-x)] | R |
+ lim E[|RuEVy (B - x,)] - ER,ElVy, (B - x)1**%].

The second term is the limit of E(|R, — ER,|**9)(E[Vy (B — x;)])**
which, by part (1) and some Poisson distribution calculations, is

< (p29n?|B|)'+9/2(2-dp—d E[V(R¥)])>*9 which goes to zero. This
leaves us with the first term which is by Lemma 4.1(2)

nlim E[RnE\Vy (B — x;) — E[Vy (B - gc_i)]lz""S
—00 = =i
+ Ry P2 EVy, (B - x,)°]| 7]
lim E[R,E|Vx (B — x,)*** + Ry¥P2|E[V; (B - x,)2|+/2)
—00 = =

IN?

g ’}Lngo pzdnd|B|2——dn—-dE[V(Rd)2+6]
+ pl+5/2|BI1+6/2(E[V(Rd)2])1+5/2
g |B|1+5/2E[V(Rd)2+5]. 0
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