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AN INVARIANCE PRINCIPLE FOR
ASSOCIATED RANDOM FIELDS

ROBERT M. BURTON, JR. AND TAE-SUNG KIM

Applying known tightness criteria to Poisson cluster random mea-
sures, it is shown that if the total member size has a finite 2 + δ
moment, then the random measure satisfies an invariance principle.

I. Introduction. Let {Xk \ k e Zd} be a random field that is cen-
tered, stationary, associated and has a summable covariance func-
tion. C. Newman [10] showed that, when viewed as an element in
^-dimensional Skorohod space, the renormalizations of {Xk \ k e Zd}
converge to a Wiener measure in the sense of finite dimensional distri-
butions. Newman and Wright [11] showed that this may be improved
to an invariance principle if d = 1 or 2. Analogous results hold in the
case of random measures. A tightness criterion of Bickel and Wichera
[1] is applicable in the case of general d. This criterion is applied to
Poisson center cluster random measures. It is shown that if the to-
tal member size has a finite 2 + δ moment then the random measure
satisfies an invariance principle.

II. Random fields and random measures. A random field is a collec-
tion of nondegenerate random variables indexed by Zd and is denoted
{Xk \h^Zd}. All random fields in this section are assumed centered
and stationary, i.e. EIX^] = 0 and the distribution is invariant with
respect to translations of the indices by the group Zd. A random field
is associated if whenever A c Zd is a finite subset and / g: RA —• R
are coordinatewise increasing then Cov[/(X^: k e A), g{Xk: k e A)]
is nonnegative whenever the covariance is defined. Association is a
strong positive dependence property implying, in particular, nonnega-
tive correlations of the random variables Xk (if they exist). For details
concerning association see Esary, Proschan and Walkup [4],

A random field may be inteφolated and rescaled to form a random
element of ^-dimensional Skorohod space Σ)([0,1]^) by setting

[nti] [ntd]

Σ*z
jd=\

11
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where i = (t\,..., td) e [0,1]^ and [•] is the greatest integer function.
{Xk} is said to satisfy an invariance principle or functional central limit
theorem if Wn(t) converges weakly in 2)([0,1]^) to a ^-dimensional
Wiener process with some finite diffusion constant σ2. This is equiv-
alent to convergence of the finite dimensional distributions together
with tightness. The following condition arises naturally when investi-
gating invariance principles.

DEFINITION 2.1. {X^} has finite susceptibility equal to σ2 < oc if

REMARK. For fceZ^ with positive components let Sk = Σo<j<k Xj-
Assume that the covariances of the Xk are nonnegative. Then {XjJ has
finite susceptibility if and only if theTollowing expectation is bounded
in k.

E[\Sk/\k\χl2\2]<C

where \k\ = k\ kd.
The following theorem is due to Newman [10] and Newman and

Wright [11].

THEOREM 2.2. Let {X^} be an associated random field and have

finite susceptibility equal to σ2 then
(1) (Newman) the finite dimensional distributions of Wn[t) converge

to those of the Wiener process with diffusion σ2;
(2) (Newman and Wright) further if d = 1 or d = 2 then {Xk}

satisfies an invariance principle.

Whether an invariance principle holds for d > 2 is still open. A
result of Bickel and Wichura [1] allows us to conclude tightness if we
strengthen the hypothesis of finite susceptibility.

DEFINITION 2.3. {X^} has finite δ-susceptibility if there is a constant
C so that for all k with positive components

The above results may be combined to get the following.

THEOREM 2.4. Let {X^} be a centered, stationary, finite variance,
associated random field that satisfies δ-susceptibility for some δ > 0.
Then {Xk} satisfies the invariance principle.



ASSOCIATED RANDOM FIELDS 13

REMARK. The above theorem applies to models in mathematical
physics. Random variables X,Y,Z,W are said to satisfy the Lebowitz
inequality if

E[XYZW\ < E[XY]E[ZW] + E[XZ]E[YW] + E[XW]E[YZ].

A random field {X^} satisfies the Lebowitz inequalities if any four
coordinate random variables satisfy the above inequality. If {X^}
is also stationary and has finite susceptibility then it has finite in-
susceptibility with δ = 2. This computation appears in Wood [18].
Ferromagnetic Ising models often satisfy the Lebowitz inequality and
a fortiori satisfy the invariance principle. We have not been able to
find this fact in the literature.

A corresponding theory exists for random measures. We let M
be the set of all nonnegative Borel measures on R^ that are finite on
compact sets [i.e. Radon measures]. Let N c M be the set of counting
measures, i.e. B Borel and μ £ N implies μ{B) e {0,1,2,...,oo}.
There is a one-to-one correspondence between μ e N and unordered
sequences {x/} of points in R^ with no limit points because each such
μ must be a sum of Dirac point masses. M is a Polish space with the
vague topology and TV is closed in M. Let the Borel σ-fields of M and
N be Jί and JV respectively.

DEFINITION 2.5. A random measure X is a measurable map from a
fixed probability space (Ω, &9 P) to (M, Jί). X is called a point random
field if P[XeN]= 1.

If X is a random measure and B is a Borel subset of R^ then X{B)
denotes the mass the random measure gives to B. All random mea-
sures will be assumed to be stationary, i.e. with a translation invariant
distribution. The most well known random measure is the Poisson
point random field with parameter p. X has this distribution if when-
ever B\,..., Bn are disjoint bounded Borel sets then X(B\),..., X(Bn)
are independent Poisson random variables with respective parame-
ters p\B\\,...,p\Bn\ where | | denotes Lebesgue measure. M has a
partial ordering defined by μ < v if for each bounded Borel set 2?,
μ(B) < v(B). See Kallenberg [6] for a more complete discussion of
random measures.

DEFINITION 2.6. A random measure X is associated if whenever
F, G: M —> R is measurable and increasing with respect to the partial
ordering on M then Cov[F{X), G(X)] is nonnegative whenever the
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covariance is defined. It follows from work of the first author and
Waymire [2, 3] that X is associated if and only if the family of random
variables {X(B) \ B bounded Borel} is associated.

DEFINITION 2.7. If X is a random measure we define the λ-renormal-
ization of X to be the signed random measure Xχ where Xχ[B) =
λ-dl2[X{λB) - E[X(λB)]]. We consider Xλ as a random element of
2)([0,1]^) by setting Xλ{t) = Xλ{[0,t\) where [0,t] is the rectangle

DEFINITION 2.8. X satisfies the invariance principle with parameter
σ2 if as λ —• oo, Xχ converges weakly to the d-dimensional Wiener
measure on 33 ([0,1]^) with diffusion constant σ2.

DEFINITION 2,9. Let / be the unit cube in R^ and X be associated.
X has finite susceptibility a1 if

kezd

X has finite δ-susceptibility if there is a constant K < oo depending
only on δ and X so that for all rectangular boxes B D I we have

(*) E[\X(B) - E[X(B)]\2+δ] < K\B\M'2.

It would be a more pleasing definition to require (*) in Definition 2.9
to hold for all rectangular boxes B but this is asking too much. For ex-
ample such a condition is untrue in the case where X is a Poisson point
random field for any δ > 0. A simple argument using Chebyshev's in-
equality allows us to extend the invariance principle for associated
random fields to random measures.

THEOREM 2.10. Let X be a stationary associated random measure
with finite δ-susceptibility for some δ > 0. Then X satisfies the ^vari-
ance principle.

III. Cluster random measures. In this section we apply Theorem
2.10 to Poisson center cluster random measures. These have been
used as models of infinite divisibility and self-similarity [14,15] as well
as models of natural phenomena such as storm systems and galaxies
[12, 16, 17]. These are constructed as follows. Let U be a stationary
Poisson point random field with parameter p. Let ^ = { ^ 1 ^
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be a collection of iid random measures with E[Vχ_(Rd)] — ξ < oo. Then
we say that X is a cluster process with centers U and members V if

X(B)=

x: U(x)>0

for each bounded Borel set B. We denote X by [U, V]. It is natural to
hope that moment conditions on V will imply moment conditions on
X regardless of the "shape" of V in R^. This is made precise in the
following theorem.

THEOREM 3.1. Let X = [U,V] as above. Let B be a rectangular box
in Rd and 0 < δ < 2; then there is a constant K depending only on δ
and \B\ so that

(1) E[\X{B)\^δ] < KE[(V,(Rd))2^].

(2) IfE[(Vχ(Rd))2+δ] < oo then X has finite δ-susceptibility.

The first part of the next theorem appears in joint work of the first
author and Waymire [2] and the second part is immediate from the
first part of Theorem 3.1.

THEOREM 3.2. Let X = [U, V] as above.
(1) X is associated.
(2) If E[(Vx_(Rd))2+s] < oo then X satisfies the invarianceprinciple.

We note that the second part of Theorem 3.2 improves a theorem
of Ivanoff [5] where it was assumed that δ = 4 and that the V was a
point random field with cumulant density functions.

IV. Proof of Theorem 3.1. First two lemmas.

LEMMA 4.1. (l)IfYι,Y2>... are centered iid random variables and
E\Y(\P < oo for some p > 1 then there is a constant C depending only
on p so that

P/2n

1=1

P

<CE
n

(2) If Y\, Y2,... are iid random variables andE\Yi\2+δ < oo for some
0 < δ < 2 then there is a constant C depending only on δ so that

t 2+δ

< C'{nE\Yx\
2+δ
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Proof. (1) is a standard square inequality attributed to Marcinkie-
wicz and Zygmund [9] (see also [13], p. 59). (2) follows from two

applications of (1). Let μ = E[Yχ] and σ2 = V a r ^ ] and < denote
"bounded by a constant multiple of". Then

1=1

<E
ι=l

<E

<E

<E

\+δ/2

1=1

n

• \nμ\2+δ

l+<5/2

1/2+^/4

i=\

<E >ιl/2+<5/4

ι=l

= nE\[{Yι - μ)2 - σ2]\ϊ+δ'2 + \nσ2\{+δl2 + \nμ\2+δ

< nE\Yx - μ\2+δ + n\σ2\x+δl2 + \nσ2\x+δl2 + \nμ\2+δ

< nE\Yι\2+δ + n{E[Y?])ι+*/2

+ (nE[Y?])ι+δ'2 + \nEYx\
2+δ

<nE\Yx\
2+δ

LEMMA 4.2. Let V = {Vχ\ xeRd} be iid random measures as in
the definition of a cluster random measure. Let B CRd be a rectangle
in the nonnegative orthant with one corner at the origin and the opposite
corner at z and let B^ = \Jk. „<£_<„ B + z_(k), where z_(k) is the vector
with ith coordinate kiZi. Let x be chosen uniformly in B^n\ Then for
a> 1

E\Vχjβ-x)\a <
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Proof.

<2-dn~d\B\-{E ί Vx(Rd)adx = 2-dn
JB ~

Ώ

Proof of Theorem 3.1. Let X = [U,V] as in the statement of the
theorem and suppose that δ < 2 and that E[V(Rd)2+δ] < oo. Let Rn

be equal to the number of occurrences of U in B^ so that Rn is a
Poisson random variable with parameter p2dnd\B\. Also recall that
conditioned on Rn the occurrences of U inside 2?M are independent
and uniformly distributed on B^n\

E\X(B)\2+δ = lim

< lim E[RnE\Vx(B - x)\2+δ + \RnEVx(B - x)2\ί+δ/2

n—*oo — —

+ \RnEVχ(B-x)\2+δ]

< lim p2dnd\B\2-dn-dE[V{Rd)2+δ]
nκx)

+ (p\B\E[V(Rd)])2+δ < E[V{Rd)M].

Note that the factor {p2dnd\B\)λ+δ/2 in the second term follows from
the fact that if R is Poisson with parameter a then E[Rι+δ/2] <
const.aχjtδl2 for nonnegative δ. This proves part (1). To see part
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(2) which is finite ^-susceptibility we have a final computation.

E[\X{B)-E[X{B)]\2+δ}

= lim E

< lim E

2+δ'

2+δ+ Yim^EWRnEW^B - *,)] - ERnE[Vx(B - j ^ l Γ + Ί

The second term is the limit of E{\Rn - ERn\
2+δ){E[Vx{B - Xj)])2+δ

which, by part (1) and some Poisson distribution calculations, is

< (p2dnd\B\)ι+δ/2(2-dn-dE[V(Rd)])2+δ which goes to zero. This
leaves us with the first term which is by Lemma 4.1 (2)

lim E[RnE\ Vx (B - xt) - E[VX (B - xt)
n—>oo ~~ι ~'

< Um E[RnE\Vx{B - ^ )|2+<5 + Rx

n

+δ'2\E[Vx{B - x ( )

< lim p2dnd\B\2-dn-dE[V(Rd)2+δ]
n+oon—+oo

D
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