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HOLDER CONTINUITY OF THE GRADIENT
AT A CORNER FOR THE CAPILLARY PROBLEM
AND RELATED RESULTS

GARY M. LIEBERMAN

It is well-known that solutions of the capillary problem are smooth
when the boundary and contact angle are smooth. Using fairly deep
methods which are specific to the capillary problem, Simon and Tam
have proved the smoothness of the solution at a corner. Here the
smoothness is considered in the context of general nonlinear boundary
value problems. The primary tool is a maximum principle argument.

Let Q be a bounded domain in R? with unit inner normal p, let x
and ¢ be positive constants with ¢ < 7, and consider the problem

div((1 + |Du?>)""?Du) = ku in Q,

0.1
(0-1) (14 |Dul?>)""2Du -y =cos¢ on dQ.

When 9Q is sufficiently smooth, it is well-known that (0.1) has a
unique, smooth solution. Specifically, dQ € C%* implies u € C%¢(Q)
for some ¢ > 0 by [7], [27] (in fact ¢ = o by [15, Lemma 2']) while
9Q € CV! implies u € CV# for any B < 1 by [7], [20], [27). If
¢ is suitably restricted, (0.1) has a unique solution (in an appropri-
ate weak sense) even for nonsmooth domains (see [S5], [6]). Under
various hypotheses, this solution may be unbounded [3] or bounded
but discontinuous [12]. Our interest here is with circumstances un-
der which u will be C!: We assume that dQ is the union of finitely
many smooth curves which meet at an angle 6 in the range (0, 7). If
0 > |2¢ — | (which is easily seen to be necessary for (0.1) to have
a C! solution), Simon [25] has shown that « € C!. We improve this
result by showing that u € C!¢ for some computable ¢ and by con-
sidering more general differential equations and boundary conditions.
Moreover our method rests on a simple application of the maximum
principle, and we can prove regularity results in more than two di-
mensions. A related argument was used by Miersemann [23] (in two
dimensions) when the quantity xu in (0.1) is replaced by a constant
to prove Cl¢ regularity in a corner. His method does not readily ex-
tend to (0.1) but ours includes his situation. The biggest differences
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between the two approaches are that we use essentially only the ellip-
tic structure of (0.1) to produce an auxiliary mixed boundary value
problem while Miersemann uses the divergence structure of (0.1) to
produce a Dirichlet problem.

We begin in §1 with a related C! regularity result for nonlinear
boundary value problems in Lipschitz domains and an application to
free boundary problems. Although the results of this section do not
bear directly on the capillary problem, the method of proof is rele-
vant because it demonstrates a key point: introduction of a nonlinear
combination of derivatives of the solution via a variant of Giusti’s
barrier construction for the Dirichlet problem [10]. Next we intro-
duce an auxiliary boundary value problem in §2 in order to study a
general nonlinear boundary value problem for uniformly elliptic equa-
tions modelled on the capillary problem in a corner with a gradient
bound. In §3, we consider the two-dimensional capillary problem in
a corner for which gradient estimates were proved by Korevaar [13].
We show that his conditions for a gradient bound imply also Holder
continuity of the gradient, and a strong result for weak solutions of
certain nonlinear boundary problems in divergence is proved using
the perturbation argument of Giaquinta and Giusti [8]. In the final
section, we prove Holder continuity of the gradient near an edge for
uniformly elliptic problems. Because Korevaar’s gradient bound is
also valid in this case, we infer regularity for the higher-dimensional
capillary problem in a domain with edges.

An interesting comparison can be made between the proof of the
continuity of the gradient at a corner given here and the proof of the
boundedness of the gradient given by Korevaar. Here we work directly
in the corner while Korevaar approximates the corner. It might be
useful to know if Korevaar’s method can be applied directly and if
our method gives uniform continuity of the gradient in approximating
domains.

1. Nonlinear boundary value problems in Lipschitz domains. Let Q
be a bounded domain in R? and consider the boundary value problem

(1.1)  F(x,u,Du,D*u)=0 inQ, G(x,u,Du)=0 ondQ.

We are interested in the behavior of solutions of (1.1) near the bound-
ary under various hypotheses on F, G, and Q. For example, in this
section we assume G to be continuous while later sections consider
discontinuous G.
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To state our hypotheses, we introduce some notation. We write S?
for the set of all 2 x 2 real, symmetric matrices and I' = Q x RxR? x S2.
A typical element of I' is written as X = (x, z, p,r). Subscripts and
superscripts are used to indicate partial derivatives, components of
vectors and tensors, and enumeration of quantities; the usage should
be clear from the context. For example

x' = ith component of x, p; = jth component of p,

oF oF

=50 =3
_OF _, OF . OF
F’_ax"’ F—_ap," F _Brij'

Also we use d to denote the distance function:

d(x) = yg}at;) |x - |,

and, for xo € 9Q and R > 0, we define
Qr={xe€eQ:|x-xy] <R}, Zp={x€0Q:|x—x| <R}

Our basis hypotheses are that there are positive constants o < 1,
p > 1, po, 1, o such that

(1.2a) E1> < FUEE; < plEP,
(1.2b) |F(x, z, p,0)| < uod®™",
(1.2c) |Fx| + DI |Fz| + 7| |Fp| < 1d®7% + pplr|?

for all X € T and ¢ € R2. If we also suppose that there are positive
constants v and v; such that

(1.33) |G(x, z,p) - G(x', 2", ) S v(Ix = x| + |z = Z')* + v|p - D'l

and a unit vector g(x, z) such that

(1.3b) liminf S 2P +100) = G(x2p)

t—0+ t

for all (x, z, p) and (x', z’, p’) in Q x R x R2, we can prove stronger
versions of the results in [19].

THEOREM 1.1. Let 9Q € C%!, let u € COY(Q)NW,32(Q) and suppose

loc
|u| + |Du| < K. Suppose also that u is a solution of (1.1) for functions

F and G satisfying (1.2), (1.3) as long as |z| + |p|, |Z'| + |p'| < K + 1.
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Then there are positive constants y = y(u) and a, C depending also on
K, Q, vy, u, uy such that

(1'4) Iull,a;ﬁm + sup diSt(Ql’ ZR)I_H-UlulZ,y;Q’
Q’CCQR/z

§C<u0+u1+u+R‘“%scDu>.

R

Proof . As in [19], we introduce a mollification of the function g =
G(xg, u(xp), -). Because of an invalid assertion in that work (namely,
that condition (1.3b) could be replaced by the inequality |G,| > 1),
we state this mollification explicitly. Let ¢ be a nonnegative C%(R?)
function with ¢({|p'| > 1}) = {0} and [, ¢ =1, and set

mp.0) = [ &(o+10)0(p")dp

for |p| <K, |t| £ 1. Then

h(p.0) =g(p). |hp(p.0)l, |h(p.0)| S vy,

ID*h(p,t)] < Cvi/t,  |hp(p 1) 2 1.
We also set M = supg, |g(Du)| and note that
M <y on‘:: Du.
Next we infer from [22] that there are positive constants d and C

and a function w € C°(Q) N C2(Q) such that

FiD;w<—d’°2,  0<w<Cd’inQ

Then for L, a nonnegative constant and f a nonnegative C°[0, co] N
C?(0, 00) function to be further specified, we set

v(x) = h(Du, f(W)) + v|x|* + M|x|?R™2 + Lo f(w),
Q' =Qrn{f<1}, W=p+u+v

A simple calculation shows that v > 0 on 0 Q* if Ly > (1 + K)vy, and
also there are constants ¢y and ¢; such that

‘ 2
FUD,']'V <o ID;I +c (i +do? +MR—2) — (Lo +ht)f'd6—2
oD . ' 2 (/)?
+ FUDiwDjw | (Lo + he) f" + 1 (1 + (Lo + ht) )T

With f; and ¢ positive constants to be chosen, we take
f=f0w€, Ly=14v+vK
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and we set
|Dv|?

QV = FijD,'jV - C()'—“f——.
It follows that
Qv <d%2(c) (W + MR™%) —¢efy) +efuw* 2 FUD;wDw((c; + 1)e — 1).
Hence for
.= 1

T 1+ ¢’
we have Qv < 0 in Q*. Then the maximum principle implies that
v > 0 in Q*. The proof of [19, Theorem 1] allows us to infer (1.4)
with o = de. O

fo=2(+c)(1 + c;)( + MR™%),

A slight modification of Theorem 1.1 is necessary when
(1.5) G(x,z,p) =|p| - g(x 2).

COROLLARY 1.2. Suppose in Theorem 1.1 that conditions (1.3) are
replaced by (1.5),

(1.6a) lg(x. z) — g(x', 2')| S v(lx = x| + |z = 2/|%),

(16b) ]Dul > Do in QR

for some positive constant py. Then (1.4) holds with C depending also
on po.

Proof. Now take h(p.t) = (|p|* + p3t?)'/? — g(xo,u(xp)). Then
hp = (|p)*+ p3t*)~'/?p, and hence || > 1/2. The proof is completed
in the same way as for Theorem 1.1. o

Corollary 1.2 provides an alternative proof of the regularity of the
free boundary in the following situation. Let I be a smooth Jordan
curve and look for a domain Q, a curve I'*, and a function u such that

0Q=TuIl", I'nI™=g,
Au=0inQ, u=1lonl, u=0 and |Du/=1onT™

(Obviously more general problems can be considered.) It is well-
known that I'* is Lipschitz and the boundary condition implies that
|Du| is bounded away from zero near I'*. From Corollary 1.2 we see
that u is C1? near I'* and hence that I™ € C1¢. The theory of free
boundary problems shows that I'™* is actually analytic; see [11, Chapter
V]. We content ourselves with results involving smoothness of Du and
D2y only.

(1.7)
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CoOROLLARY 1.3. Suppose, in addition to the hypotheses of Theorem

1.1, that G, is continuous with

(1.8) |Gp(x, 2, p) = Gp(x, 2, p')| < vilp = P'"

forsome n > 0. Then (1.4) is valid with 6 = min{e, 6(Q, u)}. Moreover

if0Q is C! or if Q is convex, then o = o.

Proof . The bootstrap argument of [19, Theorem 2] shows that we
can take ¢ = min{1,d/a} in Theorem 1.1. When dQ € C! or Q is
convex, [24] shows that we can take J € (o, 1). O

COROLLARY 1.4. In addition to the hypotheses of Theorem 1.1, sup-
pose that

(1.9a) |F(x, z, p,0)| < o,

(1.9b) |Fxl + |Fz| + 7| |Fp| < d®™ + pa|r P,

0Q e Cl, and G € C1*(0Q x R x R?) with

(1.10)  IDG(X)| <,  IDG(X)-DG(X') < volX - X'|°
Then there are positive constants y = y(c, u) and C, depending also on

K, Q, u, o, 1, t2, vy and v,, such that u € C*?(Qg,,) and

(1.11) |D2u|o;gk/z +R7'[D2u]y;gk/z <C (1 + (‘)ISC Du/R) .

Proof. Let p be the regularized distance of [16], so that
(1.12) p>0, p/d<C d/p<C |D*p|<Cd*! inQ
and |p|; o < C. Now extend G to a C!*(R x RxR?) function satisfying

(1.10) (with possibly different, but controlled, constants v;, v,), let

G (X, t) be the mollification of G from [19, Lemma 3], and set
M =sup|G(x,u, Du)|, g(x)= G(x,u, Du, p)/(1 + M/R).
Qp

From Corollary 1.3 and (1.12) we infer that
g=0 onZXg  |FUD;g|<cdf™! inQp

for any g € (0, ). It then follows from Dirichlet problem results [18,
Sect. 5] that g € Cl'?(Q3R/4) with

|Dg|0;gsn/4 + R_yIDgl}’;Q:RM S C
As in [19, Theorem 3], this estimate leads to (1.11). o
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2. Nonlinear boundary value problems in corners. We now study
(1.1) when 9Q is smooth except at isolated points and G is suitably
discontinuous at those points. Specifically we let o < 1 and 6y < 7 be
positive constants and suppose that, in the terminology of the previous
section, X; consists of two C1® curves X! and £? which meet only at
the origin in an angle 6. Writing p; for the inner unit normal to Q
on X! and b’ for the restriction of G to I'; = (Z/\{0}) x R x R2, we
suppose that

(2.1a) b,-7;>1 onTj
(2.1b) b' e C(Iy),
ab! .
(2.1c¢) det 5—17(/\’,-) >¢ for X; eI'; with | X| — X;| < &,
J
(2.1d) |bi(X) — b'(X")| < v1|X — X'| for X and X' in T;.

Note that (2.1d) follows from the smoothness of the b’s and the func-
tional independence of 51(0, z, -) and b%(0, z, -); however, this quantifi-
cation will be useful later. In addition, an obvious necessary condition
for solutions of (1.1) to be C! at 0 is that

(2.2) there is p* € R? such that b'(0, u(0), p*) = b*(0, u(0), p*) = 0.

The main result of this section is that (2.2) is sufficient. In the next
section we relate this condition to the capillary problem, but we note
here that (2.1) and (2.2) imply that Du(0) must be p* if u € Cl.

THEOREM 2.1. Let Q be as described above, let u € CO(Q)NW21(Q)
and suppose |u| + |Du| < K. Suppose also that u is a solution of (1.1)
Jor functions F and G satisfying (1.2a), (1.9), (2.1), (2.2). Then Du(0)
exists and there are constants C, a depending only on u, uo, 1y, vy, &,

&0, By such that

(2.3) |Du(x) — Du(0)| < C (l + ogslc Du) |x|°.

Proof . By considering Du — p* - x in place of u, we may assume that
p*=0. Let R <¢y/(2+ 2K) and, for ¢ as in Theorem 1.1, set

h(p.1) = / b1(0,u(0), p — Yeotpb(0') dp'.
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With f and w functions to be further specified and Ly a nonnegative
constant, we set

v(x) = h(Du, f(W)) + Lof(w).

Our analysis of v in QzN{f< 1} and on Z; and {f = 1} is essentially
the same as that in Theorem 1.1, so we focus on the situation on
2n{f<1}.

Let T = (—y3, 71) be the tangent vector to X2 and, for T to be chosen,
we introduce the operator

M* = T‘tiDi-l"J’é i
on X2. According to Corollary 1.3, u € C2(Q U Z%\{0}) and therefore
we can differentiate the equation 2 = 0 along X2 to obtain
0=>b2t"Dyu+bit-Du+b?

From the differential equation, we see that there is a symmetric matrix
(a'/) such that

€17 < @& < pl”,
a"’D;ju=—F(x,u,Du,0) on X%

We now set

b''=by-1, b2=by-p, b =by-1, bE=by-p,

o'l =altiti, o'?=altly], o® =allyiy]
and note that 522 > 0, |a!!| + |a!?| < 2u|a??|. It follows that there is
a bounded function y such that

1

2a12b12b21
= ﬁ-z— —_—aa

* 1322 232
M*v T(b'b* - b1b%) + ——

p22p12 11 o
2 T = _plip2l Coyri]
" b'b*| Dijut't

+ (1 +|TDy + (h + Lo) f' M*w.
From (2.1c), we have
lb“b22 _ b12b21' >&¢ on Z%z

and hence we can choose 7' with |T| < C so that the coefficient of
D;jut't/ in M*v vanishes. With this choice of T, we are ready to
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choose w. From [17, Lemma 2] there are positive constants d, C’, and
Ry and a function w, such that

FUDiiwg < —|x°72,  |x|° <wp < C'|x)° in Qg,
M*w < —|x]°"! onZ%.

If we write p, for the regularized distance to XX, it is easy to verify
that, for appropriate constants 4 and W, the functions

Wy = A/OPk exp(—Wo*)do
satisfy
FUDjjwe < —d?™!,  0<w <C"x inQ
M*w, < C"|x|°~! on X2
Hence w = (1 + 2C")wg + w; + w, satisfies
FUD;jw < —d*!,  0<w< Clx|° in Qg,
M*w < —|x]°"! on33nz}.

We now fix R = min{Ry, ¢/(2+2K)}, n € (0, 1) and, for f,, B positive
constants to be chosen, we set

f(w) = fo(1+ MR™)(w + n)?.

If fy is chosen sufficiently large (in particular so that f> 1 on |[x| = R)
and Ly, ¢y are as in Theorem 1.1, we see that

FijD,‘jV - CTODI'VD,'V< 0 mQ=Qn{f<1},

v>0 onog*=9Q"\(Z2U{0}),
M*v<0 onX*=0Q*NnI%

If we set L = FD;; — (co/ f)D;vD; and note that

ci(n)
[

we infer from [17, Lemma 2] that there are a function W and a positive
constant @, both depending on 7 such that

lel<

Lw<0, w>|x|"? inQ*
M*w<0 onZX*
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Now we fix n; > 0 and choose r so that
v+mw>0 for|x|<r
It then follows from the maximum principle that
v+mw >0 in Q"

By sending #; to zero, we see that v > 0 in Q*. By sending # to zero
and modifying the argument appropriately, we see that

|b%(0, u(0), Du)| < C(1 + M)|x|°2.
Then the implicit function theorem implies that
|Du| < C(1 + M)|x|%,

which proves the result. o

Note that the preceding argument simplifies if we assume Du to be
continuous at 0: we can take 7 = 0 and W need not be introduced
at all. Note also that the smoothness of b’ is crucial to the proof
of Theorem 2.1 but only the quantities &, ¢y, and v; enter into the
estimate. If we allow C to depend on the C1'® norm of b’ in (2.3),
then the bootstrap argument of [19, Theorem 2] shows that ¢ depends
only on vy, u, &, and 6,. Moreover it follows from the C1* estimate
for b! that |D?u| = 0 (]x|°~!) and hence we can prove (2.3) if only
b? is oblique; if only b! is oblique, a similar result holds. Finally the
limiting cases 6y = 0 and 6y = 7 are handled by a simple modification
of the preceding arguments.

3. The two-dimensional capillary problem. We now consider a slight
generalization of (0.1). Let Q be a bounded open subset of R2, suppose
dQ is the union of finitely many C3 curves X;,...,Zy, and suppose
that if X; and X; meet, they do so at a point x;; in an angle §;;. We
then study solutions of

(3.1a) div((1 +|Dul>)"'?Du) + H(x,u) =0 in Q,

(3.1b)  (1+|Du)"">Du-y+cosg(x) =0 on dQ\| J{xi;},
assuming

(3.2a) peC? He(C,

(3.2b) [Plcxz,) S P2 |Hloy < Hp,
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(3.2¢) H,<-kx, ®3<¢p<n—-®d

for some positive constants x, ®,. We also need to assume condition
(2.2). To state this condition in the present context, we set

¢1 = lim ¢(x), ¢ = lim $(x)
X€EZ, X€X,

and then (2.2) becomes

. /4 /4
(3.3) 1_n;11_n{ei,-(|¢1—5|+|¢2—-2-|)}>o.
A straightforward calculation shows that

(3.4) b'b? — b'2p? = —(1 +|p*)!sin 6,

(3.5) T ={cos;;(1+cosp3)+cosg;cosp,}/sinb;;(1+|p*|?).

From [4] and [13, Theorem 4.2] it follows that ¥ and Du are bounded
and hence Theorem 2.1 and its attendant remarks give an existence,
uniqueness and regularity theorem.

THEOREM 3.1. Under conditions (3.2), (3.3), if £; € C3, then (3.1)
has a unique solution u € C'(Q\ U{x;;}) N CO1(Q)NC?(Q). Moreover
there is a positive constant 6 determined only by the quantities 0;;, ¢,
and ¢, such that u € C° and

(3.6) |Du|s < C(I,Q, Hy, @y, Py, ¢y, 92).

The continuity of Du at each x;; was proved by Simon [25] under
much weaker hypotheses. The new elements here are the simple proof
and the explicit modulus of continuity. In [23, §4] Miersemann proves
Theorem 3.1 for constant H by introducing an auxiliary Dirichlet
problem. Because we only need H, < 0 for a bound on |u|, our result
includes his.

Actually all of our additional hypotheses are necessary only to prove
a bound on Du. If we assume such a bound, a stronger result can
be proved although deeper methods must be used. This result will
be crucial to our higher-dimensional considerations, so we include it
here.

THEOREM 3.2. Let dQ be the union of finitely many CY curves
Xy, ..., X2y and suppose that if ¥; and ; meet they do so at a point x;;
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in an angle 6;; € (0,n). Let u € CO(Q) N W'2(Q) be a weak solution
of
div A(x, u, Du) + B(x,u,Du) =0 in Q,

7
(3:7) A(x,u,Du) -y +wy(x,u)=0 onoQ,
suppose
(3.8) A(xiju(x;;),0) =0, w(x;j, u(x;)) =0,

and suppose there are positive constants q > 1, u, Mg, Ui, Uy and a
Sfunction b € LI(Q) such that

(3.9a) |A(x,z p) — Ay, w, p)| < wi(lx = ¥|* + |z = w[*)(1 + | ),

(3.9b) lw(x z) —w(y,w)| < wa(lx — y|* + |z — wl|?),
84!
(3.9¢) 2 < 7= (x. z. p)EE; < plEl
op;
(3.9d) |B(x, z, p)| < polpI* + b(x),
(3.9€) / b? < pfraeat?
B(r)nQ

for all balls B(r) centered in Q. Then u € C'(Q) and there are positive
constants C and B determined by |ulo, Q, u, o, U1, U2, q such that

(3.10) |Dulg < C

Proof. To prove the estimate, we use a modification of the Cam-
panato approach to regularity [1], [2] as adapted by Giaquinta and
Giusti [8] and the author [20].

We begin with a simpler boundary value problem. Write r, 6 for
polar coordinates, fix 6y € (6, ), and for R > 0, set

Qr={r<R, 0<60<6}
Th={0<r<R 0=6y), Z2={0<r<R =0}
Zr=2XRUZ2U{0}, og={r=R 0<0<6}

Suppose H € C2(R\{0} x R2)NCO(R x R?) is a vector valued function

such that SH
H(0,0)=0, Z—(tp)&g; > I¢P

Dj
u

IDH(t, p)| < . |D*H(1,p)| < ml
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for all € R\{0}, p € R%2. Fix R € (0,1), let u € W12(Qyz), and
set M = (1/R) ||Dul|1z(q,,)- Finally, suppose v is a C!(Q,z UZsg) N
W12(Q,r) solution of

(3.11a) div H(MR,Dv) =0 in Qp,

(3.11b) H(MR,Dv)-y=0 on X, V=1u oOn oyp.

It follows that

H(MR,Dv)-Dé =0
QZR

for any ¢ € W12(Q,z) vanishing on g,5. By choosing ¢ = u — v, we
find that

/ |Dv|? < c(u)M?*R2.

2R

Next we keep track of the way in which R and M enter into the
gradient estimates of Ladyzhenskaya and Ural’'tseva [14, Chapter 10]
(cf. [9, Theorem 8.16] and [20, Lemma 4.1]) to see that

sup |Dv| < | M.
ORr

We now set
v=y1-H(f(W),Dv) + Lof(w), ai=y-H(f(w) Dv)

in Qg, with w as in Theorem 2.1 and L, f to be chosen. From the
proof of that theorem, we can choose T so that, if M* = TD; + D,
then

M*v = f'(w)(Ly + a;) M*w.

Because |T'| + |a;| £ C(u, 6p) it follows that we can determine w and
constants d, ¢’ in terms of u, 6, so that

M*w < —r~! on X2,
a'Dyw < -’72, 0<w<c'r in Qg

for
. i
a’ = a—H—(MR, Dv).
ap j
Standard regularity implies that v € W,>? and hence that v € W2

Thus, if f(w) > MR, there are nonnegative constants ¢, and c3 such
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that
.. C
Qv = a’D;;v — 2|Dv?

f
ij , " 2 ()2
<a’DiwDjw (Lo + ap) f" + c3(1 + L)~

f
+ aijD,'jW[(LO + al)f’].

We now choose Ly = (2 +c;)u + 1 to find that
M*v <0 on X%, 7>0 ondMg\Z%.
Finally we choose ¢ sufficiently small and
f(w) = M(RYe + wR™%)¢
to obtain
Qv <0 in Qp.

The maximum principle implies that ¥ > 0 in Q. If we replace L by
—Lj and then y; by y, in the definition of ¥, similar arguments show
that

r\ %€
(3.12) IDv| < CM [R+(§) } in Qg.

Note that this estimate, along with standard results (see [20, Lemma
4.1]), implies that (3.11) has a C!1(Qr U Zo8) N WL2(Q,r) weak so-
lution, which is the unique W12(Q,z) weak solution.

We now use (3.12) to prove an estimate for Du by using a version
of the perturbation argument of Giaquinta and Giusti [8]. By virtue
of the estimates in [20], we only need to examine Du near one of the
X;;’s. By translation and a C Le transformation, we may assume that

(3.13a) div A(x, u, Du) + B(x,u, Du) =0 in Q;,

(3.13b) A(x,u,Du) -y +w(x,u) =0 on Z,.

Let H be the mollification of 4(0, #(0),-) described in Theorem 1.1.
Now fix R € (0, 1) and let v be the solution of (3.11). From (3.12) we
infer that

) 2 L 20e+2 / 2
(3.14) /qu)v[ sC[p + (%) ] [ 1pu
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for any p € (0, 2R). By using u — v as test function in the weak forms
of (3.11) and (3.13) we see that

/ \Du— Dv? < / {H(0, Du) — H(0, Dv)} - {Du — Dv}
Qi Qar

= {H(0, Du) — A(x,u, Du)} - {Du — Dv}

Qir
+ B(x,u, Du)(u — v) + v(x, u)(u—v)
Qor Zor
+ [ {H(MR,Dv)—H(0,Dv)} {Du— Dv}.
QZR

Let us write Iy, I5, I3, I for the integrals on the right hand side of this
equation. From the Holder estimate for u ([14, p. 467]), it follows
that there is a positive 7 such that

I< CR"”/ (1 + |Dul)|Du — Dv|.

2R

A simple modification of [9, Theorem 10.9] shows that

sup [v—supu|, sup <infu - v) < CMR?
Qor Qar Qir Q:r

and hence because [, |Dul?> < C,

sup |u — v| < CR".

2R

Therefore
1-(1/q)
I, < CR" / |Du|? + uoR~1+2/4 ( / lu — v;q/w—l))

1/2
< CR" / \Duf? + CRo+! ( / \Du — Dv}z)
by Sobolev’s inequality. Also
I; < CR"‘"/ lu —v|

22R

1/2
< CR"”/ |Du — Dv| < CRo™*! </ |Du — Dv|2)
QZR QZR

1/2 1/2
I,<C (/ |Du|2> R (/ |Du — Dvl2> .
Q2R QZR

and
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Hence

|Du — Dv|* < CR?**"*+2 4 CRT" / |Du?.
Qir Qor
In conjunction with (3.14), this inequality implies that

206-+2
(3.15) / |Duj> < C [Rn_,_ (ﬁ) o ]/ \Duf? + CR27+2,
Q, R Qux

It follows that
(3.16) / |Duj?* < Cy(o)R?7+2
Qg
for any ¢ < min{de, an} and R € (0, 2).
For xo € Qy, set Bf (xo) = {x € Q: [x — xo| < p} and
1
Ut, = ————— Uu.
W = B3N S
Now choose 7 = 7() € (0, 1) so that if xo € X}, then
B (x0)NZt=@.
It then follows from the proof of [20, Theorem 5.1] that
p \ 22
/ |Du—{Du},|> < C (—) / |Du—{Du},|*+ Cp?n+?
B (xo) |0l B;x1(X0)
for some A € (0,a) and all p € (0, 7(xp)), xo € Z;\{0}. Combining
this inequality with (3.16) yields
[ 1Du=Du,P < Cpo?
B} (xo)
if also ¢ < A. A similar argument shows that this inequality is valid
for any xp € Q3/, and p € (0, 2). Then Campanato’s result shows that
[Du]U;Qg/z S C

In particular |Du| is bounded so we can repeat the preceding argument
with 7 = 1 to conclude

[Du]a;ﬂ, < C
for 0 < min{de, A}. In conjunction with the Holder estimate for Du
away from the x;;’s, this inequality proves the result. O

We note that a slight variant of the preceding proof (cf. [8] or [20,
Theorem 1.2]) shows that # = min{J, o} when dA4/3p depends con-
tinuously on p. In this case, C depends also on the modulus of con-
tinuity.
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Finally, by using the C! regularity from [25], we infer from Theorem
3.2 that bounded weak solutions of (3.1) are C!% with § determined
by 6;, ¢1, 2, and « if the Z;’s are C1#, if (3.3) holds, and if (3.2) is
replaced by

peC? HelL® @y<¢<rn-o,

4. The higher-dimensional capillary problem. Like the geometric
measure theoretical approaches of Simon [25] and Tam [26], our meth-
od relies on special features of the two-dimensional situation although
the specific features used vary among the three approaches. Our goal
in this section is to show how to handle higher-dimensional situations.

The natural analog of a corner turns out to be an edge in the present
context. We begin by introducing a convenient shorthand notation.
We say that Q € E(qa, 6;) for o € (0,1), 6; € (0,n/2) if 9Q is the
union of finitely many C!® surfaces X;,...,Zy such that if £; and X j
meet, they do so at an (n — 2)-dimensional surface X;; and at each
X;j € X;j, the angle between X; and X; lies in the range (6, © — 6;).

THEOREM 4.1. Let Q € E(a, 0,) be a bounded open subset of R”,
n>3. Let u e CO(Q)nW'2(Q) be a weak solution of (3.7). Suppose
that

(4.13) l//(x,'j, u(xij)) =0 for all Xij € Z,’j

and that for any vector 1;j tangent to X;; at x;j, there is a vector v;;
normal to X;; there such that

(4.1b) A(xi,-, u(xij), Tij + V,‘j) . ))k(x,’j) =0 fork=i, J.

Suppose that there are positive constants ¢ > n/2, u, po, K1, ip and a
Junction b € L1(Q) such that (3.9a — d) and

(4.2) / bl < ”grqa—q+n
B(r)nQ

hold for all balls B(r) centered in Q. Then u € C'(Q) and there are
positive constants C and B determined by |ulg, Q, u, g, K1, o, q for
which (3.10) holds.

Proof . We look locally near X;;. For R > 0 and 6, € (0, m) set
Wr={x=(x"x")eR*xR"2: |x"| <R, x'€Qgr},
Sr={(x",x"): |x"| < R, x' € Zg},
sg={(x",x"): |x"] < R, x' € agr},

Sk={(x",x"): |x"| =R, x' € Qr},
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where Xg, gg, Qg were defined in the proof of Theorem 3.2. We may
assume as before that u is a weak solution of

div A(x, u, Du) + B(x,u, Du) =0 in W,,

A(x,u,Du)-y+wy(x,u)=0 onS,.

Our first step is to show that D"u is Holder continuous. Fix R € (0, 2)
and let v solve

(4.3a) div A(0,u(0), Dv) =0 in Wk,

(4.3b) A(0,u(0),Dv)-y =0 on Sg, v=u on sgUSk.

A standard difference quotient argument implies that D;v (k = 3,...,
n) is a weak solution of the problem

(4.4) Di(@’Djw)=0 in Wg,  a’D;wy'=0 on Sg
for a’/ = (84'/dp;) (0,u(0), Dv) and hence (cf. [9, Theorem 8.22])
p ag
ou%chv <C (E) 0u§kaV
for some a(u, ;) > 0. As in the proof of [20, (4.9)] it follows that
20+n
| D - 0en<c(8)7" [ 1D - (Dekal
W, R Wi
From this estimate, it follows that D"u € C? if § < min{a, ¢}, with
|[Du"|s < C. Thus we may assume that
D"u=0 on {]x'|=0}, T,‘j=0$ljij=0,

A' and A? are independent of D"u,

and (3.9a-d), (4.2) are valid with ¢ replacing a.
Under these assumptions, we return to (4.3). Let us set

a'(p', p?) = A'(0,u(0), p', p?), i=1,2,

=3 g—‘;(o, u(0), Dv)D;;.

i>2 j=1
By virtue of (4.4), fe LZ(WR/z) and

(4.5) / |f]*> < CR™? / |D"v|2.
WR/Z Wr
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Hence for almost all x” € {|x"| < R/2}, f(- x") € L?(Qg/;) by Fu-
bini’s theorem and v(-, x") is a weak solution of

diva(D'v(, x") + f(-x") =0 in Qg

a(D'v(0,x")) -y =0 on Zg/,.

In addition, if M = R="/2||Du||L:(w,), we have as before that |[Dv| <
CM on Sg/;. An easy variant of the proof of Theorem 3.2 shows that
there is a positive constant # such that

2n+2
/ ID'v(, X2 < C [(—’3) " +R2] M?R? + CR? /
Q, R R

Qg

1£(x")?
2
By integrating this inequality with respect to x”, we see that

2n+2
/ DY < C [(I—’;) ! +R2] M2R2p"2 4 C / ID"y[?
W, W

2
gc[(%) "+"+R2] / |Duj? + C / ID"y|2.
Wr Wr

This estimate implies that
/ |D’u|2 < CR2£+n
Wr

for some positive ¢, and the Holder estimate for D'u follows as be-
fore. O

Theorem 4.1 applies to the capillary problem provided a gradient
bound is known. Again [4] and [13, Theorem 4.2] give the required
estimates. To state the condition on the edges, we define

Ge(xij) = lim ¢(x),  k=1i}
szkJ

and write 6,;(x;;) for the angle between X; and X; at x;;.

THEOREM 4.2. Let Q € E(o, 0;) and suppose the X;’s are C3. If
conditions (3.2), (3.3) are satisfied and if
. n 4
(46) 1= inf {6,;(xi)) ~|¢i(xiy) = 5| = |85x) ~ 5]} > 0
there is a unique weak solution u € C'(Q\UZ;;) n C%(Q) N C*(Q)
of (3.1). Moreover there are positive constants 6 and C determined by
|Dulo, 61, I, Q, Hy, Dy, ®, such that u € C'° and |Du|s; < C. w
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