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HOLDER CONTINUITY OF THE GRADIENT
AT A CORNER FOR THE CAPILLARY PROBLEM

AND RELATED RESULTS

GARY M. LIEBERMAN

It is well-known that solutions of the capillary problem are smooth
when the boundary and contact angle are smooth. Using fairly deep
methods which are specific to the capillary problem, Simon and Tarn
have proved the smoothness of the solution at a corner. Here the
smoothness is considered in the context of general nonlinear boundary
value problems. The primary tool is a maximum principle argument.

Let Ω be a bounded domain in R2 with unit inner normal γ, let K
and φ be positive constants with φ < π, and consider the problem

div((l + \Du\2)-x'2Du) = KU in Ω,

(l + \D\2yι/2D φ on<9Ω.

When dΩ is sufficiently smooth, it is well-known that (0.1) has a
unique, smooth solution. Specifically, dΩ e C 2 α implies u e C 2 ε (Ω)
for some ε > 0 by [7], [27] (in fact ε = a by [15, Lemma 2']) while
dΩ e CλΛ implies u e Cx'^ for any β < 1 by [7], [20], [27]. If
φ is suitably restricted, (0.1) has a unique solution (in an appropri-
ate weak sense) even for nonsmooth domains (see [5], [6]). Under
various hypotheses, this solution may be unbounded [3] or bounded
but discontinuous [12]. Our interest here is with circumstances un-
der which u will be C 1 : We assume that dΩ is the union of finitely
many smooth curves which meet at an angle θ in the range (0, π). If
θ > \2φ - π\ (which is easily seen to be necessary for (0.1) to have
a C ι solution), Simon [25] has shown that u e C 1 . We improve this
result by showing that u e Cl€ for some computable ε and by con-
sidering more general differential equations and boundary conditions.
Moreover our method rests on a simple application of the maximum
principle, and we can prove regularity results in more than two di-
mensions. A related argument was used by Miersemann [23] (in two
dimensions) when the quantity KU in (0.1) is replaced by a constant
to prove C u regularity in a corner. His method does not readily ex-
tend to (0.1) but ours includes his situation. The biggest differences
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between the two approaches are that we use essentially only the ellip-
tic structure of (0.1) to produce an auxiliary mixed boundary value
problem while Miersemann uses the divergence structure of (0.1) to
produce a Dirichlet problem.

We begin in §1 with a related C 1 regularity result for nonlinear
boundary value problems in Lipschitz domains and an application to
free boundary problems. Although the results of this section do not
bear directly on the capillary problem, the method of proof is rele-
vant because it demonstrates a key point: introduction of a nonlinear
combination of derivatives of the solution via a variant of Giusti's
barrier construction for the Dirichlet problem [10]. Next we intro-
duce an auxiliary boundary value problem in §2 in order to study a
general nonlinear boundary value problem for uniformly elliptic equa-
tions modelled on the capillary problem in a corner with a gradient
bound. In §3, we consider the two-dimensional capillary problem in
a corner for which gradient estimates were proved by Korevaar [13].
We show that his conditions for a gradient bound imply also Holder
continuity of the gradient, and a strong result for weak solutions of
certain nonlinear boundary problems in divergence is proved using
the perturbation argument of Giaquinta and Giusti [8]. In the final
section, we prove Holder continuity of the gradient near an edge for
uniformly elliptic problems. Because Korevaar's gradient bound is
also valid in this case, we infer regularity for the higher-dimensional
capillary problem in a domain with edges.

An interesting comparison can be made between the proof of the
continuity of the gradient at a corner given here and the proof of the
boundedness of the gradient given by Korevaar. Here we work directly
in the corner while Korevaar approximates the corner. It might be
useful to know if Korevaar's method can be applied directly and if
our method gives uniform continuity of the gradient in approximating
domains.

1. Nonlinear boundary value problems in Lipschitz domains. Let Ω

be a bounded domain in R2 and consider the boundary value problem

(1.1) F(x,u,Du,D2u) = 0 inΩ, G(x,u,Du) = 0 on<9Ω.

We are interested in the behavior of solutions of (1.1) near the bound-
ary under various hypotheses on F, G, and Ω. For example, in this
section we assume G to be continuous while later sections consider
discontinuous G.
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To state our hypotheses, we introduce some notation. We write S2

for the set of all 2 x 2 real, symmetric matrices and Γ = ΩxRxR 2 xS 2 .
A typical element of Γ is written as X = (x, z, p, r). Subscripts and
superscripts are used to indicate partial derivatives, components of
vectors and tensors, and enumeration of quantities; the usage should
be clear from the context. For example

xι = ith component of x, Pj = jth component of p,

π _ d F T7 - d F

t r ~ dr ' t z ~ dP
dF_ , dF ij=dF_

1 dxif a pi9 an/

Also we use d to denote the distance function:

d(x) = inf IJC — vL

and, for xoedΩ and R > 0, we define

ΩR = {xeΩ: \x-xo\ < R}, ΣR = {xedΩ: \x-xo\ < R}.

Our basis hypotheses are that there are positive constants α < 1,
μ>l, μ^ μu μ2 such that

(1.2a) \ξ\2 < FVξiξj < μ\ξ\2,

(1.2b) \F{x,z,p,0)\<tod"-1,

(1.2c) \FX\ + \p\ \FZ\ + \r\ \FP\ < μxd«-2 + μ2\r\2

for all X e Γ and ξ e R2. If we also suppose that there are positive
constants v and v\ such that

(1.3a) \G(x, z, p) - G(x', zf, p')\ < u{\x - x'\ + \z - z'\)α + vx\p- p'\

and a unit vector σ(x,z) such that

(1.3b) ιimMG(x,Z,p + tσ)-G(X,z,p) >
v J to+ t

for all (x, z, p) and (x't z
1, p1) in dΩ x R x R2, we can prove stronger

versions of the results in [19].

THEOREM 1.1. LetdΩ e C α i , letue C α i ( Ω ) n ^ c

2 ( Ω ) αndsuppose
\u\ + \Du\ < K. Suppose also that u is a solution of (I. I) for functions

F and G satisfying (1.2), (1.3) as long as \z\ + \p\, \zf\ + \p'\ <K+l.
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Then there are positive constants γ = γ(μ) and σ, C depending also on
K, Ω, v\, μ, μi such that

(1.4) Mi σQ + sup disttΩ',!*) 1

Ω'ccΩΛ / 2

Ί + III +v + R-σoscDu).

Proof. As in [19], we introduce a mollification of the function g =
(/(JCQ, W(XO)> •)• Because of an invalid assertion in that work (namely,
that condition (1.3b) could be replaced by the inequality \GP\ > 1),
we state this mollification explicitly. Let φ be a nonnegative C2(R2)
function with φ({\p'\ > 1}) = {0} and /R2 φ=ί9 and set

h(p,t)= ί
JR2

tpf)Φ(pf)dpf

for |p| <K, \t\ < 1. Then

h(p,0) = g(p), \hp{p,t)\, \ht(p,t)\<vh

\D2h{p,t)\<Cvx/t, \hp{p,t)\>\.

We also set M = suρΩ/? \g(Du)\ and note that

M < v\ osc Du.
Ω*

Next we infer from [22] that there are positive constants δ and C
and a function w e C°(Ω) n C2(Ω) such that

FijDijW < -dδ-2, 0 < w < Cdδ in Ω.

Then for L o a nonnegative constant and / a nonnegative C°[0, oo] Π
C2(0, cx)) function to be further specified, we set

v(x) = h(Du, f(w)) + v\x\a + M\x\2R~2 + Lof(w),

Ω* = Ω* Π{/< 1}, μ' = μo + μι+u

A simple calculation shows that v > 0 on <9Ω* if LQ > (1 + K)v\, and
also there are constants CQ and c\ such that

cx(μf + d*-2 + MR-2) -

DjW [(Lo + ht)f"

With fo and ε positive constants to be chosen, we take

f = fow
ε, Lo= 1+vχ
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and we set

It follows that

Qv <dδε-2{cx{

Hence for

we have Qv < 0 in Ω*. Then the maximum principle implies that
v > 0 in Ω*. The proof of [19, Theorem 1] allows us to infer (1.4)
with σ = δε. D

A slight modification of Theorem 1.1 is necessary when

(1.5) G{x,z,p) = \p\-g{x,z).

COROLLARY 1.2. Suppose in Theorem 1.1 that conditions (1.3) are
replaced by (1.5),

(1.6a) \g(x, z) - g{x', z')\ < I/(|JC - x'\a + \z - z'\«),

(1.6b) \Du\>p0 inΩR

for some positive constant p$. Then (1.4) holds with C depending also
on p0.

Proof. Now take h(p,t) = {\p\2 + Pp2)ι/2 - g{xo,u{xo)). Then
hp = (\p\2+plt2)~χ/2p, and hence \hp\ > 1/2. The proof is completed
in the same way as for Theorem 1.1. α

Corollary 1.2 provides an alternative proof of the regularity of the
free boundary in the following situation. Let Γ be a smooth Jordan
curve and look for a domain Ω, a curve Γ*, and a function u such that

9Ω = Γ u Γ f ΓnΓ* = 0,

Au = 0 in Ω, u = 1 on Γ, w = 0 and \Du\ = 1 on Γ*.

(Obviously more general problems can be considered.) It is well-
known that Γ* is Lipschitz and the boundary condition implies that
\Du\ is bounded away from zero near Γ*. From Corollary 1.2 we see
that u is Clσ near P and hence that Γ* e Clσ. The theory of free
boundary problems shows that Γ* is actually analytic; see [11, Chapter
V]. We content ourselves with results involving smoothness of Du and
D2u only.
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COROLLARY 1.3. Suppose, in addition to the hypotheses of Theorem
1.1, that Gp is continuous with

(1.8) \Gp{x, z, p) - Gp(x, z, p')\ <vx\p- p'ψ

for some η > 0. Then (1.4) is valid with σ = min{α, δ(Ω, μ)}. Moreover
ifdΩ is C 1 or ifΩ is convex, then σ = a.

Proof. The bootstrap argument of [19, Theorem 2] shows that we
can take ε = min{l,<J/α} in Theorem 1.1. When dΩ e C 1 or Ω is
convex, [24] shows that we can take δ e (α, 1). •

COROLLARY 1.4. /« addition to the hypotheses of Theorem 1.1, sup-
pose that

(1.9a) \F(x,z,p,0)\<μ0,

(1.9b) l/y + |F Z | + \r\ \FP\ < μιd
a~ι + μ2\r\\

dΩ e Cι>a, and G e Cha{dΩ xRxR2) with

(1.10) \DG{X)\ < ι/l9 \DG(X) - DG(X')\ < v2\X - X'\a.

Then there are positive constants γ = γ(a, μ) and C, depending also on
K, Ω, μ, μ0, μh μ2, v\ and vlt such that u e C2'γ(ΩR/2) and

(1.11) \D2u\0,nRll + W[D2u]γ.ΩR/2 < C ( l + osc Du/R^j .

Proof. Let p be the regularized distance of [16], so that

(1.12) p>0, p/d<C, d/p<Q \D2p\<Cda~ι in Ω

and \p\\fa < C Now extend G to a C l α ( i? xRxR 2 ) function satisfying
(1.10) (with possibly different, but controlled, constants vu ι/2), let
G(X, t) be the mollification of G from [19, Lemma 3], and set

M = sup \G{x, uy Dύ)\, g{x) = G{x, u, Du, p)/{\ + M/R).

From Corollary 1.3 and (1.12) we infer that

£ = 0 on!*, \FiJDijg\<cdβ-χ in ΩR

for any β e (0, a). It then follows from Dirichlet problem results [18,
Sect. 5] that g e Cι^(Ω3R/4) with

As in [19, Theorem 3], this estimate leads to (1.11). D



CAPILLARY PROBLEM 121

2. Nonlinear boundary value problems in corners. We now study
(1.1) when dΩ is smooth except at isolated points and G is suitably
discontinuous at those points. Specifically we let a < 1 and θQ<πbe
positive constants and suppose that, in the terminology of the previous
section, Σi consists of two C l α curves Σ1 and Σ 2 which meet only at
the origin in an angle ΘQ. Writing y, for the inner unit normal to Ω
on Σ' and b' for the restriction of C? to Γ, = (Σ'\{0}) x R x R2, we
suppose that

(2.1a) δj y / > l onΓ, ,

(2.1b) b'eC^iΓi),

dbl

(2.1c) > ε for Xi G Γ, with \XX - X2\ < ε0,

(2.Id) \bι{X) - b^X')] <v\\X- X'\ for X and X' in iy

Note that (2. Id) follows from the smoothness of the 6's and the func-
tional independence of bι(0, z, •) and b2(0, z, •); however, this quantifi-
cation will be useful later. In addition, an obvious necessary condition
for solutions of (1.1) to be C 1 at 0 is that

(2.2) there is p* e R2 such that bι(0, κ(0), p*) = b2(0, κ(0), p*) = 0.

The main result of this section is that (2.2) is sufficient. In the next
section we relate this condition to the capillary problem, but we note
here that (2.1) and (2.2) imply that Du{0) must be p* if u e C 1 .

THEOREM 2.1. Let Ω be as described above, letue Cftl(Ω)nM^J?(Ω)
and suppose \u\ + \Du\ < K. Suppose also that u is a solution of(\Λ)
for functions F and G satisfying (1.2a), (1.9), (2.1), (2.2). Then Du(0)
exists and there are constants C, σ depending only on μ, μ§, μ\, v\, ε,
βo, ΘQ such that

(2.3) \Du(x) -Du(0)\ <c(l+ osc Du\ \x\σ.

Proof. By considering Du- p* x in place of w, we may assume that
p* = 0. Let R < 8Q/(2 + 2K) and, for φ as in Theorem 1.1, set

h(p, t) = Jbι(O, κ( ), P -
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With / and w functions to be further specified and LQ a nonnegative
constant, we set

v(x) = h(Du,f(w)) + Lof(w).

Our analysis of v in ΩR n {/< 1} and on Σi and {/ = 1} is essentially
the same as that in Theorem 1.1, so we focus on the situation on

Let τ = (-y|, γ\) be the tangent vector to Σ 2 and, for T to be chosen,
we introduce the operator

M* = 7V Dt + y\Di

on Σ 2 . According to Corollary 1.3, u € C 2(ΩuΣ 2\{0}) and therefore
we can differentiate the equation b2 = 0 along Σ 2 to obtain

From the differential equation, we see that there is a symmetric matrix
(aiJ) such that

\ξ\2 < aVξiξj < μ\ξ\2,

a

ijDijU = -F{x, u, Du, 0) on Σ2.

We now set

α1» = α^τ'τΛ a12 = α f Vy£ α 2 2 = α

and note that b22 > 0, | α π | + |α 1 2 | < 2^|α2 2 | . It follows that there is
a bounded function ψ such that

M*v = -1* \τ(bnb22-bι2b21)
2 α 1 2 6 1 2 * 2 1

a22

b22bl2an
n b n

-bnb

From (2.1c), we have

\bub22-bι2b2i\>ε onΣ2

and hence we can choose Γ with \T\ < C so that the coefficient of
Djjiιτιτj in Λ/*v vanishes. With this choice of T, we are ready to
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choose w. From [17, Lemma 2] there are positive constants δ, C , and
i?o and a function w0 such that

F^DijWo < -\x\δ-2, \x\δ <wo< C'\x\δ in ΩRo,

M*w < -\x\δ~ι o n Σ | o .

If we write pk for the regularized distance to Σk, it is easy to verify
that, for appropriate constants A and W, the functions

fPk
wk=: A exp(~ Wσa) dσ

Jo

satisfy

FijDijWk < -d£~K 0<wk< C"\x\δ in Ω,

M*wk < C"\x\δ~ι o n Σ 2 .

Hence w = (1 + 2C")w0 + w\ + Wι satisfies

FijDuw < -da~\ 0 < w < C\x\δ in ΩRo,

M*w<-\x\s-{ o n Σ | n Σ | o .

We now fix R = min{i?0, ε/(2 + 2A:)}, ^ e (0,1) and, for /0, β positive
constants to be chosen, we set

If fo is chosen sufficiently large (in particular so that / > 1 on \x\ = R)
and Lo, ô are as in Theorem 1.1, we see that

FiJDijV - jDivDiV < 0 in Ω* = Ω n {/< 1},

v > 0 onσ* = (9Ω*\(Σ2u{0}),

M*v<0 o n Γ :

If we set L = F'JDij - (co/f)DivDi and note that

we infer from [17, Lemma 2] that there are a function w and a positive
constant θ, both depending on η such that

Lw < 0, w > \x\~θ in Ω*,

M*w<0 onΣ*.
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Now we fix η \ > 0 and choose r so that

v + η\W > 0 for |JC| < r.

It then follows from the maximum principle that

v + η{w > 0 in Ω*.

By sending η\ to zero, we see that v > 0 in Ω*. By sending η to zero
and modifying the argument appropriately, we see that

\bk(0,u(0),Du)\ < C{l+M)\x\δP.

Then the implicit function theorem implies that

which proves the result. D

Note that the preceding argument simplifies if we assume Du to be
continuous at 0: we can take η = 0 and W need not be introduced
at all. Note also that the smoothness of bι is crucial to the proof
of Theorem 2.1 but only the quantities ε, 6Q, and u\ enter into the
estimate. If we allow C to depend on the Cla norm of b* in (2.3),
then the bootstrap argument of [19, Theorem 2] shows that a depends
only on ι/\, μ, ε, and ΘQ. Moreover it follows from the Cι>a estimate
for bι that \D2u\ = 0 d-xl*7"1) and hence we can prove (2.3) if only
b2 is oblique; if only bι is oblique, a similar result holds. Finally the
limiting cases ΘQ = O and ΘQ = π are handled by a simple modification
of the preceding arguments.

3. The two-dimensional capillary problem. We now consider a slight
generalization of (0.1). Let Ω be a bounded open subset of R2, suppose
<9Ω is the union of finitely many C 3 curves Σι,...,ΣN, and suppose
that if Σι and Σj meet, they do so at a point xtj in an angle 0;7. We
then study solutions of

(3.1a) div((l + \Du\2)-l/2Du) + H{x,u) = 0 in Ω,

(3.1b) (1 + \Du\2)-χ'2Du γ + cosφ{x) = 0 on 0 Ω \ ( J { J C I 7 } ,

assuming

(3.2a) φeC2, HeC0Λ,

(3.2b) \φ\C2{Σl) < Φ 2 , \H\0Λ < Ho,
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(3.2c) Hz<-κ, Φ0<φ<π-Φ0

for some positive constants /c, Φ o . We also need to assume condition
(2.2). To state this condition in the present context, we set

φγ = lim φ{x)} φ2 = lim φ(x)
j

xeΣ,

and then (2.2) becomes

(3.3) / = mm {fly - (\φι - | | + \φ2 - f | )} > 0.
A straightforward calculation shows that

(3.4) bnb22 - bnb21 = -(1 + I/?!2)"1 sin0 l 7,

(3.5) T = {cosθu(l + cosφj) + cosφ{cosφ2}/ sinθijil + |/?*|2).

From [4] and [13, Theorem 4.2] it follows that u and Du are bounded
and hence Theorem 2.1 and its attendant remarks give an existence,
uniqueness and regularity theorem.

THEOREM 3.1. Under conditions (3.2), (3.3), j / Σ / e C3, then (3.1)
has a unique solution ueC1 (Ω\ LK*//})n C°Λ ( Ω ) n C 2 ( Ω ) Moreover
there is a positive constant δ determined only by the quantities 0/7, φ\
and φι such that ueCιδ and

(3.6) \Du\s < C(I, Ω, Ho, Φ 2, Φo, Φu Φi)-

The continuity of Du at each X(j was proved by Simon [25] under
much weaker hypotheses. The new elements here are the simple proof
and the explicit modulus of continuity. In [23, §4] Miersemann proves
Theorem 3.1 for constant H by introducing an auxiliary Dirichlet
problem. Because we only need Hz < 0 for a bound on \u\, our result
includes his.

Actually all of our additional hypotheses are necessary only to prove
a bound on Du. If we assume such a bound, a stronger result can
be proved although deeper methods must be used. This result will
be crucial to our higher-dimensional considerations, so we include it
here.

THEOREM 3.2. Let dΩ be the union of finitely many Cι>a curves
Σ\,..., Σ v and suppose that ifΣj and Σj meet they do so at a point Xij
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in an angle θu e (0, π). Let u e C°(Ω) n Wι 2(Ω) be a weak solution

of

div A{x, u, Du) + B{x, u, Du) = 0 in Ω,

' A(x,u,Du)-γ + ψ(x,u) = 0 ondΩ,

suppose

(3.8) Λ(Xij, u{Xij), 0) = 0, ψ{Xij, u{Xij)) = 0,

and suppose there are positive constants q > 1, μ, μo, μ\, μ^ and a
function b e Lq(Ω) such that

(3.9a) \A(x, z, p) - A(y, w, p)\ < μx(\x - y\a + \z- w | Ω )(l + \p\),

(3.9b) \ψ(x, z) - ψ{y, w) | < μ2(\x - y\a + \z- w\a),

(3.9c) \t\2

(3.9d) \B(x,z,p)\<μo\p\2

(3.9e) / bq < μlrqa

B(φΩ

for all balls B(r) centered in Ω. Then u e C 1 (Ω) and there are positive
constants C and β determined by |W|Q, Ω, μ, μ0, μ\, μ2, q such that

(3.10) \Du\β<C

Proof. To prove the estimate, we use a modification of the Cam-
panato approach to regularity [1], [2] as adapted by Giaquinta and
Giusti [8] and the author [20].

We begin with a simpler boundary value problem. Write r, θ for
polar coordinates, fix ΘQ G (0, π), and for R > 0, set

ΩR = {r<R, 0<θ<θ0},

Σι

R = {0<r<R, θ = Θo}, Σ2

R = {0<r<R, 0 = 0},

ΣR=Σι

RUΣ2

RU {0}, σR = {r = R, 0<θ< θ0}.

Suppose H e C2(R\{0} x R2) n C°(R x R2) is a vector valued function
such that

#(0,0) = 0, ^-(t,p)ξiζj>\ξ\2,

\DH(t,p)\<μ, \D2H(t,p)\<±
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for all t e R\{0}, p e R2. Fix R e (0,1), let u e WX>2(Ω2R), and
set M = (I/if) \\Du\\L2^2Ry Finally, suppose v is a C1(Ω2R UΣ2R) Π
WX'2{Ω2R) solution of

(3.11a) divH{MR,Dv) = 0 in Ω2R,

(3.1 lb) H(MR, Dv) γ = 0 on Σ2R, v = u on

It follows that

H(MR,Dv)Dφ = 0

for any φ e Wι>2(Ω2R) vanishing on σ2R. By choosing φ = u - v, we
find that

/ |£v|2 < c{μ)M2R2.

Next we keep track of the way in which R and M enter into the
gradient estimates of Ladyzhenskaya and Ural'tseva [14, Chapter 10]
(cf. [9, Theorem 8.16] and [20, Lemma 4.1]) to see that

sup|Z>v| <C\M.
σR

We now set

V = γχ. H(f(w), Dv) + Lof(w), ax = γx Ht(f(w), Dv)

in ΩR, with w as in Theorem 2.1 and LQ, f to be chosen. From the
proof of that theorem, we can choose T so that, if M* = TD\ + D2,
then

Because |Γ | + \ax\ < C(μ, ΘQ) it follows that we can determine w and
constants δ, d in terms of μ, 0O

 s o

M*w<-rδ~ι onΣ | ,

aijDuw < -rδ~2

f 0 < w < c'rδ in ΩR

for

Standard regularity implies that v e W^2 and hence that v e W^2.
Thus, if /(w) > A/7?, there are nonnegative constants c2 and c$ such
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that

o + ax)f" + c3(l

We now choose Lo = (2 + C\)μ + I to find that

ΛΓv < 0 on Σ2

R, v > 0 on dMR\Σ2

R.

Finally we choose € sufficiently small and

to obtain

Qv < 0 in ΩR.

The maximum principle implies that v > 0 in ΩR. If we replace Lo by
- L o and then γx by γ2 in the definition of v, similar arguments show
that

(3.12) \Dv\<CM^R+^y£j inΩ*.

Note that this estimate, along with standard results (see [20, Lemma
4.1]), implies that (3.11) has a C1{Ω2R u Σ 2 i ? ) n W1>2{Ω2R) weak so-
lution, which is the unique W1'2(Ω2R) weak solution.

We now use (3.12) to prove an estimate for Du by using a version
of the perturbation argument of Giaquinta and Giusti [8]. By virtue
of the estimates in [20], we only need to examine Du near one of the
Xi/s. By translation and a C l α transformation, we may assume that

(3.13a) div^(jc, u, Du) + B{x, u, Du) = 0 in Ω2,

(3.13b) A(x, u, Du) γ + ψ(x, u) = 0 on Σ2.

Let H be the mollification of A(0, u(0), •) described in Theorem 1.1.
Now fix R e (0,1) and let v be the solution of (3.11). From (3.12) we
infer that

(3.14)
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for any p e (0,2R). By using u - v as test function in the weak forms
of (3.11) and (3.13) we see that

ί \Du-Dv\2< ί {H(0,Du)-H(0,Dv)}{Du-Dv}

{H(O,Du)-A(x,u,Du)} {Du-Dv}

B(x,u,Du){u-v)+ / ψ(x,u)(u-v)

+ / {H(MR, Dv) - 7/(0, Dv)} {Du - Dv}.
JΩ2R

Let us write I\, I2, h, h for the integrals on the right hand side of this
equation. From the Holder estimate for u ([14, p. 467]), it follows
that there is a positive η such that

/, < CRar> ί

A simple modification of [9, Theorem 10.9] shows that

sup I v - sup u I, sup I inf u - v 1 < CMR2

and hence because /Ωz \Du\2 < C,

sup|i/-v| < CRi.

Therefore

h < CRη ί \Du\2 + μ0R
a-ι+2/<i ( ί \ u - v ^ - 1 ) )

< CRη ί \Du\2 + CRa+ι (ί\Du- Dv\Λ

by Sobolev's inequality. Also

I3<CRaη f \u-v\
JΣIR

< CRaη I \Du - Dv\ < CRaη+ι ( ί \Du- Dv\2\

and
1/2 / r \ 1/2

I4<c(f \Du\Λ R( [ \Du-Dv\A .
\JΩ2R / \JΩ2R )
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Hence

ί
Jo.

\Du - Dv\2 < CR2ar*+2 + CRη [ \Du\2.

In conjunction with (3.14), this inequality implies that

(3.15) / \Du\2
 <C\R^+ (ζ)2δε+2} ί \Du\2 + CR2aη+2.

JΩP I K K J }JΩ2R

It follows that

(3.16) / \Du\2 < C0(σ)R2σ+2

for any σ < min{ίε, aη} and R € (0,2).
For x0 e ΩJ? set B+(x0) = {x e Ω: \x - xo\ < p} and

, , 1

Now choose τ = τ(0o) £ (0,1) so that if XQ e Σ}, then

It then follows from the proof of [20, Theorem 5.1] that

\Du-{Du}p\
2<Cf

for some A G (0, α) and all /? e (0, τ(xo))? -̂ o € Σi\{0}. Combining
this inequality with (3.16) yields

\Du - {Du}p\
2 < Cp2σ+2

if also σ < λ. A similar argument shows that this inequality is valid
for any x0 e Ω 3 / 2 and p e (0,2). Then Campanato's result shows that

Ω3/2 < C

In particular \Du\ is bounded so we can repeat the preceding argument
with η = 1 to conclude

[Du]σ.Ωι < C

for σ < min{<fe,λ}. In conjunction with the Holder estimate for Du
away from the Λr, /s, this inequality proves the result. D

We note that a slight variant of the preceding proof (cf. [8] or [20,
Theorem 1.2]) shows that β = min{# a} when dA/dp depends con-
tinuously on p. In this case, C depends also on the modulus of con-
tinuity.
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Finally, by using the C 1 regularity from [25], we infer from Theorem
3.2 that bounded weak solutions of (3.1) are Cι>δ with δ determined
by θij9 φu Φi, and a if the Σ/s are Cla, if (3.3) holds, and if (3.2) is
replaced by

φ e CQ, HeL°°, Φ0<Φ<π- Φo.

4. The higher-dimensional capillary problem. Like the geometric
measure theoretical approaches of Simon [25] and Tarn [26], our meth-
od relies on special features of the two-dimensional situation although
the specific features used vary among the three approaches. Our goal
in this section is to show how to handle higher-dimensional situations.

The natural analog of a corner turns out to be an edge in the present
context. We begin by introducing a convenient shorthand notation.
We say that Ω e E{a,θx) for a € (0,1), θx G (0,π/2) if <9Ω is the
union of finitely many Cι>a surfaces Σi , . . . , Σ# such that if Σ, and Σj
meet, they do so at an (n - 2)-dimensional surface Σ / y and at each
Xjj E Σ/y, the angle between Σ, and Σ ; lies in the range (θ\, π - θ\).

THEOREM 4.1. Let Ω e E(a,θ\) be a bounded open subset ofW,
n>3. Letue C°(Ω) n Wl2(Ω) be a weak solution 0/(3.7). Suppose
that

(4.la) ψ{xu, u{xu)) = 0 for all xu e Σu

and that for any vector τtj tangent to Σy at xz ;, there is a vector Vij
normal to Σy there such that

(4.1b) A(xu, u(xu), Xij + Vij) - 7k(Xij) = 0 fork- i, j .

Suppose that there are positive constants q > n/2, μt μ0, μh μ2 and a
function b e L^(Ω) such that (3.9a - d) and

(4.2) /
JB{r)

bq<
B{r)ΠΩ

hold for all balls B(r) centered in Ω. Then u e C !(Ω) and there are
positive constants C and β determined by \U\Q, Ω, μ, μ0, μ\f μ2, q for
which (3.10) holds.

Proof. We look locally near Σ / 7. For R > 0 and θ0 e (0, π) set

WR = {x = (x',x") e R2 x Rn~2: \x"\ <R, x'e ΩR},

SR = {(*', x"): \χ"\ < R, x1 e ΣR},

'R = {{x',x"):\x»\=R,
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where Σ^, σR, ΩR were defined in the proof of Theorem 3.2. We may
assume as before that u is a weak solution of

, u, Du) + B(x, u, Du) = 0 in W2,

A{x, u, Du) γ + ψ(x, ύ) = 0 on S2.

Our first step is to show that D"u is Holder continuous. Fix R e (0,2)
and let v solve

(4.3a) div^(0, κ(0), Z)v) = 0 in WR,

(4.3b) ^(0, M(0), DV) γ = 0 on SR, v = u on 5Λ U SR.

A standard difference quotient argument implies that Dkv (k = 3,...,
ή) is a weak solution of the problem

(4.4) Di{aiJDjW) = 0 in WR, a^Djwγ^O on SR

for a" = {dAi/dpj) (0, M(0),Z)V) and hence (cf. [9, Theorem 8.22])

~ ) oscZXv

for some σ(μ, θ\)>0. As in the proof of [20, (4.9)] it follows that

I \Dkv-{Dkv}p\
2<c(^Ϋ^n f \Dkv-{Dkv}R\\

Jwp

 XKJ JwR

From this estimate, it follows that D"u e Cδ if δ < min{α, σ}, with
\Du"\δ < C. Thus we may assume that

D"u = 0 on {\x'\ = 0}, Tij = 0 =» i//7 = 0,

;4* and ^ 2 are independent oϊ D"u,

and (3.9a-d), (4.2) are valid with J replacing a.
Under these assumptions, we return to (4.3). Let us set

ai(pι,p2) = A i ( O , u ( O ) , p ι , p 2 ) , / = l f 2 f

ί>2 7=1 P j

By virtue of (4.4), / e L2{WR/2) and

(4.5) / I/I2 < Ci?-2 f \D"v\2.
JWRn JWR
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Hence for almost all x" e {\x"\ < R/2}, f( ,x") e L2(ΩR/2) by Fu-
bini's theorem and v( , x") is a weak solution of

divα(Z)'v( , *")) + /(•.*") = 0 in ΩΛ / 2,

a(D'v(0,x")) γ = 0 on ΣR/2.

In addition, if M = i?-n/2||Z>w||L2(^), we have as before that \Dv\ <
CM on 5/j/2 An easy variant of the proof of Theorem 3.2 shows that
there is a positive constant >/ such that

ί < C UB-Ϋ^ + RA M2R2 + CR2 [ \f(;x")\2

By integrating this inequality with respect to x", we see that

ί \D'v\2<c\(£)2η+2 + R2]M2R2p»-2 + C ί \D"
Jwp I Λ Λ / J JwR

v\2

]wR JwR

This estimate implies that

\D'u\2 < CR2ε+n

wR

for some positive ε, and the Holder estimate for D'u follows as be-
fore. D

Theorem 4.1 applies to the capillary problem provided a gradient
bound is known. Again [4] and [13, Theorem 4.2] give the required
estimates. To state the condition on the edges, we define

ΦkiXij) = J™. Φ(χ)> k = i> h
χeΣk

and write ^/7(x/7) for the angle between Σz and Σj at xtj.

THEOREM 4.2. Let Ω G E(a,θ\) and suppose the Σ/s are C 3 . If
conditions (3.2), (3.3) are satisfied and if

(4.6) / = inf ίθijixij) - φi{xu) - | | - φj(Xij) - ?!} > 0,

there is a unique weak solution u e C^ΩXUΣy) n C α i (Ω) Π C2(Ω)
o/(3.1). Moreover there are positive constants δ and C determined by
\DU\Q, θu I, Ω, HQ, Φ o, <ί>2 such that u e Cιs and \Du\δ <C. •
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