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ALGEBRAIC COMPACTNESS OF ULTRAPOWERS
AND REPRESENTATION TYPE

C. U. JENSEN AND B. ZIMMERMANN-HUISGEN

It is shown that for certain clases of Artin algebras infinite rep-
resentation type is equivalent to the existence of a module M all of
whose ultrapowers MN/^ fail to be algebraically compact.

1. Introduction. As is well known, an Artin algebra R is of finite rep-
resentation type, i.e., R admits only finitely many isomorphism classes
of indecomposable right or left modules, if and only if R has right pure
global dimension zero (combine [1] with [5] or [13]). The latter condi-
tion means that all right i?-modules are pure-injective or, equivalently,
algebraically compact; in particular, it of course entails algebraic com-
pactness of all non-trivial countable ultraproducts of right i?-modules.
(Call an ultraproduct countable if it extends over a countable index
set, non-trivial if the corresponding ultrafilter is non-principal.)

Let us leave this "extreme" case. How do the non-trivial countable
ultraproducts of i?-modules reflect higher pure global dimensions of
the ground ring?

The situation where R is countable is exceptional on that score:
namely, non-trivial countable ultraproducts of i?-modules are always
algebraically compact in that case (a short proof can be found in the
appendix; see also [4, Theorem 42.1] and [6, Remarque 7.12]). On
the other hand, if R is an uncountable Artin algebra of a pure global
dimension exceeding 0, then "usually" there exist non-trivial count-
able ultraproducts of finitely generated modules which fail to be alge-
braically compact (see [8] for precise statements). Interestingly, this
conclusion can be translated back to a stronger condition on the pure
global dimension of R; namely, it rules out the values 0 and 1.

The picture for ultrapowers is quite different in that arbitrary ul-
trapowers of finitely generated modules over an Artin algebra are al-
gebraically compact (see the appendix for details). Any case of fail-
ure of algebraic compactness for a non-trivial countable ultrapower
MN/3r thus involves a non-finitely generated module M over an un-
countable Artin algebra of infinite type. In fact, for Artin algebras R
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which are either
(A) commutative, with all local direct summands uncountable or
(B) group algebras over uncountable fields

we show the equivalence of the following two statements:
(1) R is not of finite representation type.
(2) There exists an ^ -generated i?-module M such that for all filters

F o n N the reduced power MN/<9~ fails to be algebraically compact.
Individual steps of our arguments, e.g. a computation of pure-injective
envelopes and some general observations concerning ultrapowers of
direct sums, should be of independent interest and applicable in dif-
ferent contexts.

In an appendix we assemble a few staples on ultraproducts, the
majority of which are known. In particular, their specializations to
R = Z have been widely used and can be found in [4]. Even though the
more general statements are easy extensions of the latter, we include
them for convenient reference.

Terminology and a few facts in the background. Recall that a right
i?-module M is called algebraically compact if every finitely solvable
system of linear equations

iel

where (r/7) /€/jGt/ is a column-finite matrix over R and all ra7 belong
to M, has a global solution in M1. According to [10, Theorem 2] this
property is equivalent to pure-injectivity of M (i.e. injectivity with
respect to pure inclusions). A pure-injective envelope of M is a pure
inclusion MCE such that E is pure-injective and does not contain a
non-zero submodule TV with NnM = 0 and M —• E/N pure.

Finally, given a family (Λf/)/e/ of modules and a filter & on /, con-
sider the submodule U(^) of the direct product ΠieI Mi consisting
of those elements (x/)/e/ for which {/ e I\xι = 0} belongs to &. The
quotient Y\ieI MijU(SF) is abbreviated by Y\ieI Mij^ and called a re-
duced product (modulo 9Γ). If A// = M for all / e /, we simplify the
notation further to Mι jSF and call M1jSF a reduced power. In case 9*
is an ultrafilter on /, we say that JlieI MijSF is an ultraproduct resp.
M11^ is an ultrapower; we use the qualifier non-trivial for ultraprod-
ucts resp. ultrapowers to indicate that the corresponding ultrafilter is
non-principal. The residue class of an element m = (m/)/G/ e Y\ieI Mi
in ΠiςzjMil^ we denote by [m] or [mz ]/e/.
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2. Ultrapowers over commutative artinian rings. Throughout this
section, R denotes a commutative artinian ring with Jacobson radical
/ . The present goal is to prove the following

THEOREM 1. Suppose that R is a commutative artinian ring all of
whose local direct summands are uncountable. Then the following state-
ments are equivalent:

(1) R is not a principal ideal ring.
(2) There exists an ^-generated R-module M such that, for each

filter y on N, the reduced power MN/3r is not algebraically compact.
(3) If M is the direct sum 0 i ? / / , where I runs through all ideals

between J and J2, then MN/Sr is not algebraically compact for any
filter & on N.

The commutative rings of finite representation type being precisely
the artinian principal ideal rings, the implications "(2) => (1)" and
"(3) =>• ( l ) " follow immediately from our introductory remarks. The
road for a proof of "(1) => (2) and (3)" will be smoothed through a
series of lemmas. We emphasize the fact that our argument does not
use the continuum hypothesis (by adopting it, we could significantly
simplify our proof).

Since we will not lose generality on that account, we will assume
for the rest of this section that R is local.

LEMMA 2 {Warfield [11]). IfR is uncountable and not a principal
ideal ring, then R/J is uncountable, and there exists an ideal I with
J2 C I c J such that J/I has R/J-dimension 2.

Proof. R/J is uncountable, since each of the quotients Jn/Jn+ι is
finite dimensional over R/J, and

\R\ = U\Jn/Jn+ι\

where / is the Loewy length of R. By [11, pp. 451/52], R contains an
ideal / as required. D

Given any quotient R/I of i?, every non-algebraically compact R/I-
module is, a fortiori, not algebraically compact as an i?-module. In
proving Theorem 1 we may thus, in view of Lemma 2, restrict our-
selves to dealing with the situation where J2 = 0 and the dimension
of / over R/J is 2. Moreover, we will assume from now on that i?,
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and hence also R/J, is uncountable. Let K c R\J be a set of repre-
sentatives for R/J, i.e. {a + J:aeK} = R/J and a + J φ β + J for
a,β e K, a Φ β, and let k C K be a subset of cardinality N1# Next
pick an i?//-basis x,y for /, and set Ma = R/(x—yά) for aek. Note
that, for each a, the i?-module Ma has length 2 and radical MaJ = yi?,
where j ; denotes the residue class of y in Λfα. (For notational conve-
nience, we will denote all residue classes by bars; it should be clear
from the context which quotient we will be considering.) In the sequel,
we will inspect the module

aek

under a magnifying glass.

LEMMA 3. The canonical inclusion M = @aek Ma c Πaek Ma is a
pure-injective envelope ofM.

Proof. Set E = Πaek Ma. Since each Ma is algebraically compact
over R (compare e.g. [14]), the same is true for E. Thus E contains as
a direct summand a pure-injective envelope B of M, say E = B ® C.

In order to see that E = B, we will first verify that EJ C B. Start
by observing that each element of £ / has the form (yβ(a))aek E
ΠαG^ΛfQ for some family (β(a))aek of elements of Λλ Then, fixing
such a family (β(a))aek> consider the following system of equations
in the unknowns ξ and ηa, a G fc, with right-hand sides in M:

ξ + ηQ(x - ya) = eayβ(a), aek,

where ea G M is the element carrying 1 in the αth slot and 0 elsewhere.
This system is finitely solvable in M: In fact, given a finite subset F c
fc, the elements £ = ΣφeF eφyβ(φ) and ι/α = ΣφeF\{a} eφβ(φ)γ(a-φ),
where y(α - φ) G AT is such that (a - φ) γ(a - φ) = 1 (mod/),
constitute a solution of the finite subsystem indexed by F. Since B is
algebraically compact and M c B, the global system has a solution £,

(ηa)aek i n -S But the nature of our system implies ζ = (yβ(a))aek,
whence EJ c B.

Because E = B Θ C, we deduce C / = 0, meaning that

C c

Thus C = 0.
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The following construction and lemma apply not only to our present
setting, but are clearly independent of the nature of the Ma (in fact,
one can substitute arbitrary right modules for the Ma).

Given M = ®aek Ma as introduced above and a filter SF on N,
consider the canonical map

aek

and the "diagonal map"

m -+ [m]neN.

Moreover, set Ua = M™/^, and denote the submodule of

consisting of the elements of countable support by f\aekUa.

LEMMA 4.

(a) The image ofΦ is contained in ΓLe£^*
(b) Δ(Af) n Ker(Φ) = 0.
(c) The inclusion Δ(Af) c MN/<$Γ is pure and so is the canonical

embedding A(M) -> (M N /^)/Ker(Φ).

Proof. Parts (a), (b) and the first statement of (c) are obvious. We
will sketch an approach to the second part of (c) which is less messy
than the straightforward one. Consider the following diagram

where Aa is the (pure) diagonal embedding Ma —> M^/^, Φ is the
monomorphism induced by Φ and can is the inclusion whose purity
is at stake. Since both of the inclusions in the top row are pure, so
is the composite, and the purity of can follows via a straightforward
computation. D

The next lemma is a variation of a variation of a motif of Chase (see
[2] for the original motif, [3] for a primary variation). Even though
the argument is closely modeled after that given in [13], we include
it for the sake of completeness. The functors in which we will later
be interested are of the form Mod-R —• Ab, X -> Π/eL(^α/)> where
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(ai)ieL is a family of ideals of R; their only crucial property in this
context is the fact that they are subfunctors of the forgetful functor
Mod-i? -> Mod-Z commuting with direct products. (A subfunctor
of the forgetful functor is a functor F:Mod-R —> Mod-Z such that
FX is a subgroup of X for each i?-module X, and f(FX) c FY
whenever f:X —> Y is an i?-module homomorphism.) For a pair of
such functors, F\ and F 2 say, we write F\ D F2 if F\X D ^ 2 ^ for all
i?-modules X.

Given i?-modules Bh I e L, we will again denote by Π/GL^/
 ΐ ' i e

submodule of the direct product consisting of all elements of countable
support. The first uncountable ordinal number we will write as Ω.

LEMMA 5. Let {Ai)ieI and (Bι)ίeL be two families of R-modules,
where |/| > Ni, and let

iei leL

be a homomorphism. Moreover, suppose that (Fτ)τ<Q is a chain of
subfunctors of the forgetful functor Mod-i? —• Mod-Z which commute
with direct products, such that Fσ D Fτ for σ < τ < Ω. Then there
exists an ordinal number p < Ω, an uncountable subset 7 c / and a
countable subset L c L such that

ie7 ' lei

Proof. Start by observing that the functors Fτ automatically com-
mute with "thinned" direct products fj.

W.l.o.g. we may assume

/ = {τ|τ is an ordinal number with τ < Ω}.

Moreover, since Π/G/Λ — Πiei^i, where each A\ is an uncountable
direct product of ^ί/'s, it is clearly enough to prove the existence of an
ordinal number p < Ω and a countable subset L of L such that

lei

Assume the contrary. Our goal is to construct an element x e Πτ<Ω Aτ

such that f(x) has uncountable support (which is incompatible with
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Pick any τo < Ω. If we denote by Pj the yth canonical projection

UleLBl -*• Bj>the f a c t t h a t

f(FτoAτo)<£

entails the existence of an ordinal τ\ with τo < τi < Ω, an element
xo G FXoAτo and an element /0 e L such that Pιof(xo) e FτoBlo\FτιBh.

Let us set out from the situation where, for some p < Ω, we already
are in the possession of ordinal numbers τv and τu+\ < Ω for all
v < p, of elements xv e FXvAXv9 and elements lv^L such that

(1) τμ < τv for μ < u9

(2) lμ φ ly for μφv,
(3) PlJ(xu)φFτ¥+ιBl¥ for u<p,

μ

(Observe that Σμ<ι/ xμ e Πτ<Ω Aτ ^s w e l 1 defined, because the τμ

are distinct.)
Suppose first that p is a limit ordinal. In this case we need to find

τp, Tp+i, xp and lp subject to the above conditions (l)-(4). Since
sup i/</? τ^+ 1 = supz/</? τv is countable we can choose τp with sup^</? τ^
< τp < Ω. Clearly, <2 = X)ί/</? ^ € Σ)τ<Ω ̂ ^ is well defined, and since
the support of f{a),

L = {leL\Pιf(a)φ0},

is countable, our assumption says

lei

Pick an element xp e FXpATp, an ordinal τp+\ with τp < τp+\ < Ω and

an element lp € L\L such that

PιJ(Xp) ϊ FXp+ιBlp

(keep in mind that i^X D FVX for any iϊ-module X, whenever z/ < //).

By definition of L we have Pιpf(Σv<p

χv) = 0 and, in view of the

inclusion {lv\v < p} c L, we know that /p is distinct from all the

preceding /^'s.
The case where /> = μ + 1 is a successor ordinal can be treated like

that of a limit ordinal, the only discrepancy being that τp = τμ+\ is
already present in the successor case.
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By transfinite induction we thus obtain elements τv, xv, lv with the
properties (l)-(4) for all v < Ω, and our construction permits the
formation of the infinite sum x = J2u<Ω χv ^ Πτ<Ω ̂ τ We will reach
a contradiction to f(x) G Π/eL^/ by showing that Pιμf(x) φ 0 for all
v < Ω. In fact, we have

PιJ(x)=PιJ ί Σxμ I +PιJM +PιJ
\μ<v /

where

°' PιJ(x») £ ̂  A , and

(the latter holds because Σμ>ι/xμ G ̂ + , (Π τ <Ω^τ)) This completes
the proof of the lemma. D

Proof of Theorem 1. We only have to establish that (1) implies (2)
and (3) and, as indicated above, it suffices to show this for the case
where J2 = 0 and J/J2 has Rf/-dimension 2. It is thus enough
to prove that, for M = ζ&aek Ma and any filter & on N, the reduced
power MN/<SΓ fails to be algebraically compact. Preserve the complete
notational set-up preceding Lemmas 3 and 4.

Let & be given, and assume that MN/<9r is algebraically compact.
Since the inclusion M ~ Δ(Af) c MH/Sr is pure by Lemma 4,
the reduced power MHj^ contains a pure-injective envelope E
of Δ(Λf). Using Lemma 4 again, we observe that A(M) is pure in
(^+Ker(Φ))/Ker(Φ) = Έ/(ΈriKeτ(Φ)), and thereforeJnKer(Φ) - 0.
Consequently, Φ maps E onto an isomorphic copy E which is con-
tained in fla^Ua, where Ua = M^/^. In view of Lemma 2, E is
isomorphic to Πaek Ma9 which yields an embedding

aek a£k

We will prove this to be impossible by showing that the full direct
product Y\aek Ma is "algebraically too thick" to fit into the "thinned
product" Y[aekUa. In order to make Lemma 5 applicable, consider a
well-ordering of /c, say

k = {aτ\τ<Ω},
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where Ω again stands for the first uncountable ordinal number, and
introduce the functors

iy.Mod-i?-+Mod-Z, A-> f]{A(x -yay))

for τ < Ω. Note that these functors satisfy the prerequisites for an
application of Lemma 5, whence the latter yields an ordinal number
p < Ω, an uncountable subset k of k, and a countable subset L of k
such that

aek

Next observe that

0 for σ < τ,

MaσJ for σ > τ,

where / = (x,y) is the Jacobson radical of i?, and deduce that the
intersection on the right-hand side of the above inclusion vanishes.

Since L u {ατ |τ < p} is a countable subset of /c and k C k is un-
countable, there exists moreover an element γ e k, γ φ. Lu{α τ | τ < /?}.
In particular, our construction thus yields

MyJ S f(MyJ) = f(FpMy) C f ] tf/.

Write f(Mγ) in the form zR with z = (za)aek e Πα€^^a» an (^
the following annihilator computation:

Ann(z) = (x - yy) = f] Ann(zα) = Ann(zj;).
aek

(While the first two equalities are obvious, the last follows from
the fact that each Ann(zα) is one of (Λ: - ya) or / or R and that
(JC - ya) Π (x - yγ) = 0 for a Φ γ, because a φ γ (mod/).) This
entails Ann(zy) ^ /, whereas, on the other hand, zJ = f(MγJ) c

s ^ o w s zyJ = 0 (because γ φ L), a contradiction. D

3. Ultrapowers and pure global dimension of group algebras. With

the aid of a few harmless reduction steps we can extend the "com-
mutative results" of the preceding section to group algebras. Given
an uncountable field K of positive characteristic p and a finite group
(?, let KG be the corresponding group algebra. "Module" will mean
unitary right module.
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THEOREM 6. The following statements are equivalent:
(1) KG is not of finite representation type.
(2) There exists an ^{-generated KG-module M such that, for each

filter SF on N, the reduced product MN /SFfails to be algebraically com-
pact.

The proof will be based on the following two lemmas.

LEMMA 7. Let S c R be a ring extension such that R is finitely
generated and free as a left S-module and contains S as an S - S-
bimodule direct summand. Then the following are true:

(a) The functor - ®s i?:Mod-S —> Mod-i? commutes with arbitrary
reduced products {modulo filters).

(b) Let M be a right S-module. If the R-module M ®s R is alge-
braically compact, then the same is true for the S-module M.

Proof. Part (a) is trivial. For part (b) observe that if M ®$ R is
algebraically compact as an i?-module, then M ®$ R is a fortiori al-
gebraically compact as an S-module. Moreover, the hypothesis forces
M to be a direct summand of the latter S-module. D

LEMMA 8 (well-known). A finite p-group P is either cyclic or contains
a normal subgroup N such that P/N = Z/(p) x Z/(p). D

Proof of Theorem 6. "(2)=>(1)" is clear by the remarks in the intro-
duction.

Assume (1), and let P stand for a Sylow /?-subgroup of G. Since KG
is a finitely generated and free left AΓP-module, Lemma 7 shows that
it suffices to find a ^ΓP-module M with the properties under (2). The
group P being non-cyclic by [9], Lemma 8 provides us with a normal
subgroup N of P such that P/N = l/(p) x Z/(p). Next observe that
K(P/N) = KP/ω(N) where ω(N) is the ideal of KP generated by
the augmentation ideal of KN. It is therefore enough to secure an
Nrgenerated module M over the ring K(l/(p) x Z/(p)) with MH/SΓ

failing to be algebraically compact over the latter ring. But, since this
ring is commutative and not of finite representation type [7], Theorem
1 yields such a module M. D

4. Appendix. Some "essentially" known algebraic compactness re-
sults. Here R denotes an arbitrary ring with identity, and "i?-module"
stands for "unitary right i?-module."
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Given an infinite cardinal number N, call an i?-module M N-algebra-
ically compact in case every finitely solvable system of equations

iei

where (η7)/G/jGc/ is a column-finite i?-matrix, m7 G M and | / | <
has a global solution in M1.

Call M N-presented if there exists an exact sequence

For N > max(|i?|,K0), every N-generated i?-module is clearly N-pre-
sented. Moreover, again letting N > max(|i?|,N0), every i?-module is
the union of its N-presented pure submodules. (In fact, given an i?-
module M and m e M, set Mo = mR and construct an ascending
sequence MQ C M\ C MI Q of submodules of M with \Mn\ < K as
follows: Given Mn, pick a solution m^ in M1 for each finite system
(s) which is solvable in M and has the form

(s)
iei

with Tij G R and ntj G Mn. Define Mn+\ to be the submodule of M
generated by Mn and the elements of M involved in the m^ e Λf(N).
Then U = \JneN Mn is a pure submodule of M with m G U and

Using the well-known equivalence of algebraic compactness and
pure-injectivity [10, Theorem 2], we will give a direct, very elementary
argument for the fact that for any infinite ring R and any i?-module
M, algebraic compactness of M follows from |i?| -algebraic compact-
ness. In fact, in view of the above comments, this is an immediate
consequence of the following theorem.

THEOREM A [6, Theoreme 7.11]. Suppose that N is an infinite car-
dinal number such that every R-module is the union of its ̂ -presented
pure submodules. Then every ^-algebraically compact R-module is al-
gebraically compact.

A proof will result from the second of the following two lemmas.

LEMMA B. Suppose that M is an ̂ -algebraically compact R-module
and that A C B is a pure inclusion of R-modules such that B/A is
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^-presented. Then every map in HomR(A,M) can be extended to one
inHomR(B,M).

Proof. Let / e HomR(A,M). Pick bt e B, i e /, such that (bi)ieI

is a generating system of B/A\ moreover, let (rj)jej with rj G R^ be
a generating system for the relations among the b\ such that | / | < N.
Setting aj = Σieibiru> where (r/7)/G/ = η, we obtain αy G .4, and
the purity of A C B guarantees finite solvability in A of the following
system of equations:

iel

Consequently, the system

/ € /

is finitely solvable in M, and hence is globally solvable by hypothesis.
If (m/)/G/ G M7 is a solution, then there is a well-defined map g G

, M) with g|^ = / and gφi) = m7. D

LEMMA C. Suppose that M is ^-algebraically compact and that A c
B is a pure inclusion of R-modules such that every quotient module
of B/A is the union of its ^-presented pure submodules. Then every
homomorphism A -+ M can be extended to a homomorphism B —• M.

Proof. Given / G HomR(A,M), we will use a transfinite induction
to construct, for each ordinal number α, an ϋ-module Ea between A
and B and a map fa G HomR(Ea, M) extending / such that

(l)Eo = M,fo = f.
(2) Each Ea is pure in B.
(3) Ea Cji Eβ whenever Eaφ B and a < β.

(4) fβ\εa = /α whenever α < jff.
This construction will prove the lemma, because for every ordinal

a with α > \M\ we will have Ea = B.
Suppose we already have Ea and fa as desired for all a < γ, where

y > i .
In case y is a limit ordinal, the union Eγ — \Ja<γEay together with

the obvious "patchwork" extension of the fa to fγ G Hom^(£ y 5 M), is
as desired.
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Now suppose γ = β+1. In case Eβ = 2?, set Eγ = Eβ and fγ = fβ. If
Eβ ^ 5, our hypothesis guarantees the existence of a non-zero, pure,
^-presented submodule U of B/Eβ = (B/A)/(Eβ/A). Let J?y c 5 be
the preimage of C/ under the canonical epimorphism B -> B/Eβ. Then
£ y is pure in 5 (because the inclusions Eβ C B and Eγ/Eβ c 5/JE^
are both pure), £^ §j isy, and Eγ/Eβ is ^-presented. By Lemma B we
can thus extend fβ to fγ G H o m ^ i ^ M ) . D

THEOREM D (compare [4, Theorem 42.1] αms? [6, Remarque 9.12]).
Lei (Af|)/e/ ^ any family of R-modules, and let & be a filter on I
which contains a countable chain

with empty intersection. Then the reduced product Y[ieI Mij^ is NQ
algebraically compact

COROLLARY E. If\R\ < No, then every reduced product HneN Mn

of R-modules, where 9* is a filter containing all cofinite subsets ofN, is
algebraically compact. In particular, each non-trivial countable ultra-
product of R-modules is algebraically compact.

Proof of Corollary E. Combine Theorems A and D. D

Proof of Theorem D. Set M = Π/e/ M / ^ ? and consider a countable,
finitely solvable system of equations:

leL

with my = [mjj]ieι e M. For each k eN pick a solution (a^)ι€L e ML

of the first k equations, i.e.,

a\k)ηj = ntj for \<j<k.J2 \ηj
leL

If we write a^ = [a^]ieI e M, the latter equations amount to the
existence of a set F^ e SF with F^ C Fk such that for all / G Fk we
have

leL
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Set F-\ = /, and for each / e / let q(i) > - 1 be maximal with respect

to / G Fq(η. If we define an := #/(fW) € Af/ f°Γ e a °h / £ /, then

is clearly a global solution of the initial system. D

THEOREM F. IfR is an Artin algebra and M a finitely generated R-
module, then, given any index set I and any filter & on I, the reduced
power M1jSF is algebraically compact. In particular, all ultrapowers of
M are algebraically compact.

Proof. By [14, Proposition 3], M is Σ-algebraically compact, and so
is M1. Since Σ-algebraic compactness is inherited by pure submodules
[12, Folgerung 3.4], the submodule

= {me M7 |/\supp(m) e

is a direct summand of M1, whence M1' jSF = M1 /U{^) is in turn
Σ-algebraically compact. D
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