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L-HARMONIC FUNCTIONS
AND THE EXPONENTIAL SQUARE CLASS

CAROLINE SWEEZY

It is proved for a restricted class of second order linear differential
operators L if Lu =0 in R{*', u| s = f then if the Lusin area
integral of u, Su € L*™, f is in the exponential square class. This
extends the work of Chang, Wilson and Wolff who proved the same
result for harmonic « [3].

1. Introduction. Let

d+1
0 0
L= — lajj—
Z Bx,» ( Uax]‘)
i,j=1
be a second order differential operator in divergence form whose coeffi-

cients a;; are bounded and measurable functions on RY*!, g;; = a;;.
L is strictly elliptic, i.e., 34 > 0 such that

1 d+1
I|5|2 < Z EiaiiE; < AR

i,j=1

Then if u is a function where Lu =0 in R‘fr“ , Ulge = f, u is said
to be the L-harmonic extension of f. (Note: In what follows the
summation convention will be used. Sumsare i, j=1,2,...,d+1
unless otherwise indicated.)

As in the case L = A = the Laplacian there is a measure associated
with L, called L-harmonic measure, written dw.

There has been a considerable body of work in the last 30 years
on the extension of results for harmonic functions to L-harmonic
functions. The purpose of this paper is to extend a recent result of
Chang, Wilson, Wolff, to the L-harmonic case.

Let u be a harmonic (or L-harmonic) function; let

Ta(x) ={(v, ) €eR{'||x ~y| < at}
be the cone in RY*! over x € R? of aperture a;
u*(x) = sup )lu(y, N

(v,0er, (x
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be the non-tangential maximal function of f;

1/2
Saf(x) = ( / Vu(y, 214 dy dz)
T (x)
be the Lusin area integral of f.

In 1971 Burkholder and Gundy proved for harmonic # and 0 <
p <0

|l ~ 1Sullp- (1]

If p = oo, the correspondence is false so the question arose if
Su € L*® was there some class that f was in? Recently Chang, Wilson
and Wolff proved the following result. Let f, = @ o f 0 y)dy. Then

THEOREM 3.2 [3]. Suppose S,f € L*. Then

If = fol*
su exp (¢ <c¢
Q:culge lQl / P [ YIS, 12 ”S}’fllz 2

where ¢; > 0 and ¢, < oo depend on d and vy.

The purpose of the present paper is to prove the following extension
of their result:

THEOREM 1. If L is as above with ay. 441 =1 and agy; j =0
for j # d + 1 and surface measure is absolutely continuous with L-
harmonic measure and if Syu € L® where u|g = f, f € L*(RY),
Lu =0 and |u(y, t)HLz(dy) < c as t — oo, then there are constants
¢ and ¢y not depending on Q or f so that

el f(x) = fol?
IQI/ exp ISyfIIZQ dx <o

for all cubes Q.

Note. If the function f in Theorem 1 is smooth then the condition
that surface measure be absolutely continuous with L-harmonic mea-
sure is unnecessary since the identity in Lemma 1 will automatically
hold with respect to surface measure. However it does not seem trivial
to prove that one can find functions in Schwartz class with uniformly
bounded area integrals which converge to any L? function whose area
integral is bounded.

The proof of Theorem 1 follows the same general outline as the
Chang, Wilson, Wolff proof, but differs from it in detail and method—
necessarily since the kernel for general L is not translation invariant
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and several techniques which can be used with the Poisson kernel are
not applicable here. The idea is to get a decomposition for f(x) in
terms of integrals involving du/dy; over a cone in Rf{*‘ , split each
of these into two parts, one close to the boundary A(x) — Ap and
one farther away Q(x) — Qg . For technical convenience we replace
fo by 15> QO = 9Q. Then by Jensen’s inequality |f — fQ| cexpl?
implies |f — fp| € exp L?. Also by the proof of Lemma 2 AQ =0 so
fQ~ = QQ. Then the following adaptation of Lemma 3.3 from Chang,
Wilson, Wolff can be used on A(x).

LemMa 3.3 [3]. If A(x) has the decomposition
Ax)= D Ap(x)
1(0)<1(Q)
where the AQ satisfy
(a) 4y is supported on 30,

(b) [4p=0,
(© l4glipal**(Q) < Cfo2 |Vu(y, t)|2t'=4dydt for some a, 0 <
a<l,
then

ci|A(x)]*
IQI/ IISyfllz <<

Q(x) — QQ is shown to be in exponential square class separately
(Lemma 3).

The proof of Lemma 3.3’ is identical for L-harmonic u as the
proof of Lemma 3.3 in [3] for harmonic u.

Sketch of proof of Lemma 3.3'. Property (a) allows one to write
>-4p as a finite sum of sums of the form 3 , A, where each of
these sums is such that the supports of A, are disjoint for cubes of
the same length. Then it suffices to show each }:Q: A 1s exponentially
square integrable, and writing ZQ/ Ao as a dyadic martingale, prop-
erties (b) and (c) imply the dyadic square function of the martingale is
bounded by S/ . The fundamental theorem of sequential analysis can
be applied to show that any dyadic martingale whose dyadic square
function is in L is exponentially square integrable [3].

To be able to use Lemma 3.3’ one needs to get the identity for f(x)
in terms of integrals of du/0y; over the upper half plane (Lemma 1),
then to divide each integral into two parts A(x) and Q(x) and show
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Lemma 3.3’ can be applied to A(x) (Lemma 2) and that Q(x) €
expL? (Lemma 3).

So the proof of Theorem 1 depends on the following three lemmas:
since f— f5 = (f+¢)—(f+¢)y in what follows it suffices to take

fp=0.

LEMMA 1. For f and u as in Theorem 1 and K(y) a smooth
function of compact support in R?, K,(y) =t=4K(y/t) then a.e. with
respect to L-harmonic measure dw,

8u(y,t) ij aKt( )
1.1 = 27 gV ———td dt
(L) f(x) T i a5y
ou(y,t) 0K, (x —y)
WRT 57 tdydt
. D) pi (x - y)dyat,
R%! oyj j#d+1
where

Y xX—-)
Hj (x-y)= td+11K[ t }

and the integrals on the right exist as L?* functions (see proof of Lemma

1).

Note. Surface measure being absolutely continuous with L-har-
monic measure means the identity in Lemma 1 holds a.e. dx.
For future reference the integrals in (1.1) will be labeled:

ou 0K;

1= ij tdydt
R ayzzfidﬂayj Y
B du oK,
= e STReT ——Ltdydt
11 = Ou H/ dydt.

R ‘9yjj;ed+1
Now write each integral I, II, IIT as [ + fRiﬂ\ r Where R is the
“rectangle” in RZ*! with base 3Q in RY of height /(Q). Take K
supported in |x| < 4. Subdivide R into smaller “rectangles” Té",,
where Q,’ are the dyadic cubes in 3Q of side length 2-"/(Q) and

i i 1
Ty = 0k x |5 l(@)5

4 .
5 o (Q); (see Figure 1).
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Let I, be the integrand in I, II, III for J = I, II, III respectively.
Then

LeEmMMA 2. For J =1, 11, III,

/lez,iz I = 3 Ao

n=0 i, T(ll’; Q dyadic subdivisions of Q
where the Ay’ have the following properties:
(a) support Ay C 30
(b) Jge =0 )
(©) Il ll(@)1* < CfTQ |Vu(y, 0)*t'-4dydt for 0<a< 1.

And finally to deal with fR‘i“\ R:

LEMMA 3. There are constants b, and b, depending only on y, L
and d so that if Q(x) = me\R I; then for J =1, 1I, 1II

1 /eprllnm—nglz
Q1 /o 1571

Then Lemmas 2 and 3 imply the theorem.

dx < bz.

Proof of Lemma 3. It suffices to show for any cube Q, fixed, with
X, Xo € @, Ic not depending on Q or Q(x) such that
1Q0x) - Qx0)! < cllS S
Then, since exp |Q(x) — Qg < exp 2[|Q(x) — Q(x0)|* + [Q(x0) — Q%]
and |Q(xo) — Qp| < ¢[|Sfllc , Lemma 3 is true.
In the notation for I; as defined above, let
%ﬂ”z inl, j#d+1,
Gi») = | &Kyt inll, j#d+l1,
v, K®©») inlll, j#d+1
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(see (1.3) in the proof of Lemma 2 for why (9/9y;)(»’K(y)) ap-
pears in II). Then G;(y) is smooth since K is smooth and ||Gj|| ,
“VGj“oo < 00.

Also let G, ,(y) =t79G;(y/t).

Then
ou ¢
QJ(X)=/ Gj,«(x —y)a; (1) ¥, )dydt
Ri+l\R y
where soon
i — a-’\y, mi,
a;(y,t) = [ 5 D and 1L
So for J =1, II, III
|QJ(X) _QJ(X())I
Bu , b

”qu(y, t)|dydt

X — Xp

o[-

<c / 1~
Ri-H\R

<ef
RZN\RN{(y, t):ly—x,|<ct}

1/2
<cx—xl | [ (Vu(y, DR~ dydt
RIN\RN{(y , 1):ly—x,|<ct}

o 12
x [ / MVG||£°z—3]
Q)

< cllSflloot ™ I )X = Xol < cllSflleo

since |x — xo| < I(Q) for x, xp € Q. The last constant ¢ depends
onlyon K, d, ||aj||lc and y.

Proof of Lemma 2. Wlog Ag = 0. To prove: each of A}, J =
I, II, III has properties (a), (b) and (c):

Property (a): K has compact support in R? = support in y vari-
able of K;(x—y) lies inside a cone of aperature 4 (since supp K(y) C
{lyl <%}), so support in x variable for G; ;(x — y) lies inside 30,
if (y,1) € Tp . Thus support (in x variable) for Aé C 3Q for
J =1, II, III (see Figures 2 and 3).

Property (b): J =1, then
ou aij BKt
6y, i,j#d+1 6yj

4|1V G o |

|Vu(y, t)|dydt

Ap = tdydt.
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supp Az (x-y)

xe3Q,
— Rd

FIGURE 2

supp K, (y—xo)
d
= R
X0

FIGURE 3

So
RY RYJT

_ tdydtdx
0yi i,j#d+1 a(yj) Y

-/, _‘9”(%; ’)i’%ﬂ( 1) /Rd(—1)-————%l(<;g_x_ yf) dxtdydt
by Fubini, and for j #d + 1
R’ %I(itcix— J’j; )) ax = R’ ?91({;55)(‘ yf))d(x —¥ =0
since K is of compact support.
J=1I:
Ap = %Mtdy dt.

CIEEY
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But

OKi(x—y) _ 0 [ —ap[x=V
(1.3) S =37 |k |
_ ge—d—1g | XY —a9K[x —y/1]
= —dt K ; +1 — 5

=—dt™4" 1K

|
=

d
V| _caci~ X~V 0K
J ! Jz___:l t 8v-(v)

= _t—d—l_‘i)_(vj]((v)) = _t—d—l_a_

— J
ij aij (’U)

where v; = (x;—y;)/t and H;(v) = v;K(v). Then H; is of compact
support so

/ _a_HJ( )dx—/ = 0 —H/(v)dv=0
Rd

o0v; 6 J
N /ludx—/ / 5o /(v dxdydi =0
R’ T,
again using Fubini.
J=1III:
ou
AU = — H/ (x-y)dydt
‘91’1 ];£d+1
and

H; t(x—J/)=t_dxj—yjK[x‘y] =>/ xj—yjK[x—yJ dx=0
: t t R t

since K is radial = H; ;(x —y) is an odd function in the x variable
for y and ¢ fixed. The proof of (¢) is a straightforward computation
of the Lipschitz norm.

Proof of Lemma 1. Wlog fQ- = 0. On a domain Q whose boundary
is given by a C* function if

15) i 0
L=2 a”—]
oyi [ * 0y

where a;; ; are smooth, then the following form of Green’s theorem
holds:

ou ov
1.4 L —/ ulv =/ v —/ u
(14) /Q( Uy Q a0 Ong  Jaq Ong
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FIGURE 4
when u and v are C? functions on Q. Here
= |a , a e A — | -
(9na [ layj 28yj d“ayj

where 7 is the normal vector to dQ. 8/8n, is the co-normal deriva-
tive associated to L.
So taking

a [ 0
=2 a”—]
dy; [ 9y,

where a;; s are smooth approximations to the coefficients a;; of L
in Theorem 1 and u, = u * h, smooth approximations to the solution
u, then (f—¢) and K;(x—y) being smooth in R‘i“ , Green’s formula
(2.7) gives that

(1.5) /Q [L(u,K)](t - €) — /Q u K, L(t — &)

o (u,K;) / o(t—e)
= —(t—¢&) — urK,
0Q, ong ( ) 09, ot on,

where € is taken to be a smooth approximation to the rectangle
in RY*! of height 1, centered at (x, & + 4), which is wide enough
(width ~ % ) so the cone I'(x) intersects the flat part of the boundary
of Q. (see Figure 4).

Using integration by parts, the fact that the boundary terms in the
y; variables j # d + 1 (horizontal variables) vanish since K;(x —y)
has compact support in y for x and ¢ fixed (see Figure 5), and

€

OKi(x —y) ouy, i
1.6 / —_— Uy, ) = — H/! (x -
e [ Gt = [ G5 (x—y

where H; (x —y) =t"dx’:yjK [x:y] .



196 CAROLINE SWEEZY

supp Kt (X—)’)
x fixed

FIGURE 5

One obtains

au,aijc’)[K,(t—e)] n 6u,a,~j§_lg
Q 9y; 9y Q 9yi 9y,
314,« ]
+ | S H (x-)
Q, ayjj;édt-l-l

(1.7) (t—¢)

Letting a;; s — a;; and u, — u (1.7) holds with a;; ; replaced by a;;
and u, replaced by u. Now let ¢ — 0. The 2nd and 3rd integrals in
the left in (1.7) converge in the sense of L2(Q) since by the argument
in the proof of Lemma 2,

ou ik ~Jj
—a*G(x -y
/Rn{t>s} 0y « )

can be written as a dyadic martingale whose dyadic square function is
bounded independent of &. This implies these integrals converge as
¢ — 0 in the sense of L2(Q). The upper part, fR,m\ g > Was shown in

the proof of Lemma 3 to be bounded by ¢||Sf|co -
Now wherever lim,_,; exists it equals limak_,o for any subsequence
{¢r} . To handle the 1st term on the left in (1.7) we need

SUBLEMMA. (i) For a.a. e,

ou
ong,

ou a,-ja[K,(t —é)]

— K;(t—e¢)|.
Q, 9Yi 9y {t—e)

S /
09,




EXPONENTIAL SQUARE CLASS 197

FIGURE 6
(i1) ey — O such that
) ou
lim 0.
8,(—»0 392’( (9 )

Proof . (i) Multiply K;(x —y)(t—¢) by a smooth bump function ¢,
of compact support in . such that ¢, =1 on the region interior to
Q. of distance n away from 9., ¢, =0 on (intQ,)° and

0oy 1 o9

- — =0 KN
Bt | TN’ By jtd+ O Supp & 11 SUPP 57
(the shaded region in Figure 6).

Then by definition of Lu = 0 on R%*!, for any smooth ¥ of
compact support in R¥*!,

00y
ot

=

6u 6‘1’_0
R oyt oy
So taking ¥ = ¢,K;(t —¢), then
0= / ’“——K
ayj [ t( )¢Vl]
ou ,a[K,( )] ou ; 6(0,,
= [ ZEgullBlZ O, o a’K(t—e
0 vt oy 1T g oy K-y
Then
c’)u ijOLKi(t —¢)] / ou ;i 0y
1.8 — 2, < —a"K,(t-¢)||=—].
(18) ‘ Q, 3)’: ay; on) = o |0yi (1 =¢) y;
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Now take the limit as # — 0. Since

0y ¢y _
lat and 3y, 0 forj#d+1

on supp K; the integral on the right approaches the boundary integral
a.e. (this means for a.a. ¢). One can see this since

/ / Bu
supp—"

= as a function of ¢ the inner integral
[ |2 29

R4 |0Yi ot

so by the Lebesgue Differentiation Theorem

lim — / /
n=01J; -y JR

exists a.e. ¢;, and equals

<cl=

5|l K, (—8)|[221] dydr < o

|a¥| |Ki(t — ¢)| dy € LL .(R)

la"] |K(t ~ &)| dy dt

dy;

| |5 1al1Kate - 2)l .
= t
For a.a. ¢
ou . O[K(t —e)] /
1.9 — g = < (t—e¢
(1.9) 0 9Vi 9y; aQ, )

is obtained by putting the above into (1.8) and taking lim,_,o since
Oy — XQ, -

Proof of (i1). On the upper part of Q. t = ¢ +% and for each region
w,

1 3
= — <
W =T |5 i< 5]

there exists a set of values for ¢ (z, ~ 1/¢; +¢;) of non-zero measure

such that
328
K (t—¢ </ /
Bna |K:(2 — &) y2s, Jut |3

1
self ][4

8k 0Q, N{r=t,}
1/2
<clet [ wp| " et

)l
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where the third inequality is by an inequality due to Di Giorgi, Nash,
and Moser which states for any ball B of radius ¢, B* concentric
with B of radius (1 +&)¢, then

1 2 2 2
(A) 51 1P <eer [ WP @411,

And because [W|~ [1/g ]! and (y,t)e W =t~ 1/g.
Then

1/2
clet [ ] (egoy
w

12
<c[sk sup [/ lu(y, t)lzdy]} sid_”/z

1/2

sup [ / Iulz] = /

sb<t LUR? Q, n{t=t,}
e) k

where ¢ depends only on L, d, K and the constant in (A). So since
ce,‘f/ 250 as g — 0, the boundary integral on {t = #;,} — 0 as
ty — 00.

One can easily pick a sequence of €2, such that (i) holds on the
boundary and (ii) holds as ¢, — 0 by the above estimate on the upper

boundary. On the lower boundary ¢ = ¢, so the factor t — ¢, = 0

(d/2)-
= CE

an, | K¢ (2 — &)l

< ce,‘f/ 2

which means the integral over the lower boundary disappears. O
So (1.7) becomes
. ou 8K, u i
1.100 lim [ —=—d’ t—¢&)+lim | — H} (x-
( ) =0 QE ayl 6y]( ) e—0 QS 0y]jgéd€|_1( y)
e o(t—e)
i e = 0

As can be easily seen

: o(t—e)
lim b0, uy, e)Ke(x —y)=g.— = f(x).

Finally writing the first integral in (1.10) as the sum of two inte-
grals (to distinguish 0K,;/0y;, j#d + 1, from 9K,/0¢t) and wrltlng
lim,_,q fQ as [gen (1.10) becomes (1.1). ]
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