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WITH REAL RANK ZERO AND THEIR

CORONA AND MULTIPLIER ALGEBRAS. PART I

SHUANG ZHANG

We first prove that every σ-unital, purely infinite, simple C*-
algebra is either unital or stable. Consequently, purely infinite simple
C*-algebras have real rank zero. In particular, the Cuntz algebras <fn

(2 < n < +oo) and the Cuntz-Krieger algebras <fA 9 where A can be
any irreducible matrix, contain abundant projections. This includes
an answer for a question raised by B. Blackadar in [5, 2.10]. We
then prove that the corona and multiplier algebras associated with
many interesting C* -algebras have real rank zero. As special cases,
we consider the multiplier and corona algebras associated with certain
simple AF algebras, the stabilizations of type II i and type III factors,
the Cuntz algebras and certain Cuntz-Krieger algebras, the Bunce-
Deddens algebras and some irrational rotation algebras. A recent
result of L. G. Brown and G. K. Pedersen in [12, 3.21] is included as
a special case. In particular, K\{sf) = 0 , where sf is a σ-unital,
purely infinite simple C*-algebra, if and only if the generalized Weyl-
von Neumann theorem holds in M(stf

Introduction. 3?{J%f) and 3£ denote the algebra of all bounded
operators and the algebra of all compact operators on a separable
Hubert space %?, respectively. The well-known classical Weyl-von
Neumann theorem asserts that every self-adjoint operator in £?(%?)
can be written as a sum of a bounded self-adjoint diagonal operator
and a compact operator. If %? is replaced by a Hubert C*-module
%?st associated with a C*-algebra $/, we denote the C*-algebra of
bounded operators on fa whose adjoint exists by ,S?{fa) and de-
note the norm closure of operators of 'finite rank' by 3£ (%?<#) Then

is a closed ideal of &{fa),

ϊ* M{sf ®X) and 3?{fa) = sf <g>X as C* -algebras,

(see [23]). It is desirable to see whether a generalized version of the
Weyl-von Neumann theorem still holds in &{fa). This problem
can be more generally formulated in the multiplier algebra M(3S)
of a non-unital C*-algebra 38 (may not be stable). Even more gen-
eral, one can consider a similar problem in certain C*-algebras with
respect to their closed ideals ([26]). We say that a generalized
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Weyl-von Neumann theorem holds in M{β), if every self-adjoint
element x of M{β) can be written in the form:

oo oo

x = ΣλiPi + a, where ]Γpx? = 1 and μ z } e /°°(i?)

i.e., a sum of a self-adjoint element α of 3§ and a diagonal self-
adjoint element Σ £ i A;/?, of M{β) with respect to a sequence of
mutually orthogonal projections {/?*} of ^ (x is said to be quasidi-
agonal). The structure of M{β) would be clear if the generalized
Weyl-von Neumann theorem holds. However, many aspects of the
multiplier algebras of simple AF algebras have not been well under-
stood yet.

It was pointed out ([37, §3]) that the generalized Weyl-von Neumann
theorem holds in M{β) if and only if M(β) has the (FS) property:
Self-adjoint elements with finite spectrum is norm dense in the set of
all self-adjoint elements. Hence, if the Weyl-von Neumann theorem
holds in M{&), then 3$, as a closed ideal of M{β!), must have
the (FS) property. Moreover, *K\{£B) = 0' is one additional necessary
condition in case 38 is stable ([37, 3.2]). Recently, L. G. Brown and
G. K. Pedersen proved ([12, 2.6]) that a C*-algebra sf has the (FS)
property if and only if stf has real rank zero (i.e., RR(sf) = 0) and
again if and only if RR(sf ® J£) = 0. Hence, the generalized Weyl-
von Neumann theorem holds in M{3B) if and only if RR{M[β)) =
0.

In this article we will be concerned with cr-unital, simple C*-alge-
bras of real rank zero. In the first section, we give a structural descrip-
tion for purely infinite, simple C*-algebras. We prove, Theorem (1.2),
that every cr-unital, purely infinite, simple C*-algebra is either stable
or unital. Consequently, every purely infinite, simple C*-algebra has
the (FS) property, and hence has real rank zero by [12, 2.6]. As a
by-product, the above general result includes an answer for a question
raised by B. Blackadar in [5, 2.10] concerning the structure of projec-
tions in the Cuntz algebras ffn (2 <n < +oo). The motivation of the
above description comes from two aspects: one is the importance of
purely infinite, simple C*-algebras in the theory of simple C*-algebras
in which many problems are still open. For example, it is even not
known whether the direct sum of two finite projections is still finite.
Another is that the corona algebras of many simple C*-algebras, and
hence their nonzero hereditary C*-subalgebras, are purely infinite and
simple.
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In the second section, we consider C*-algebras whose corona alge-
bras are either simple or have a unique nontrivial closed ideal. First,
if M{si)/si is simple, then M(si)/si is purely infinite by [38, §1].
It follows from Theorem (1.2) that RR(M(ji)/si) = 0. Then us-
ing the lifting from the corona algebra to the multiplier algebra we
conclude that RR{M{si)) = 0 if and only if every projection in
M{si)/si lifts to a projection in M{si) (this condition is equivalent
to *Kι(s/) = 0' in case si = si ® X [37, §2]). In particular, in case
si is a σ-unital, purely infinite, simple C*-algebra, we conclude that
RR(M(s/®Jgr)/s*<&%r) = 0 ([40, 3.3]), and that RR{M{sf®Jf)) = 0
if and only if K\(si) = 0. More specifically, if si is a type III factor,
or if sf = <9n (2 <n < +oo), then RR(M(si ® X)) = 0. But the
generalized Weyl-von Neumann theorem does not hold in M{si ®3?)
if si is the Calkin algebra or if si = &A where det(7 - A) = 0 and
A is an irreducible matrix (since K\{si) Φ 0 [15, 4.5]). If si is a
separable, non-unital, simple AF algebra with continuous scale (such
a C*-algebra is 'very finite' [24]), in particular if si is a nonunital, fi-
nite matroid algebra, then RR(M(si)) = 0. Secondly, if there is only
one nontrivial closed ideal J^ between si ®3Zr and M(si ®X), we
prove that both M(ssf ®3f)jJb and Jb/si ®X are purely infinite
and simple, and hence RR{M{si ®X)IΛ) = RR(Λ/^ Θ ^ ) = 0.
Using the lifting again, we conclude that RR{M(si ® X)) - 0 if
K\{$f) = K\{^) = 0. This result has covered many interesting C*-
algebras with real rank zero. For example, if si is a simple AF al-
gebra with a unique trace (up to multiples), in particular if si is a
separable matroid algebra, then RR(M(si ®3P)) = 0. (The above
two general results have included [12, 3.21].) The same conclusion
holds if si is a type II i factor. If si is a Bunce-Deddens alge-
bra, then RR(M{si ® JΓ)/j/ ®X) = 0 but RR(M(si ®X)) φ 0,
where M{si ® t%

r)/ji ® 3£ has a unique nontrivial closed ideal.
If an irrational rotation algebra S^Q has real rank zero (at least a
dense subset of irrational numbers satisfy this condition, see [14]),
then M(siβ ® 3?)lsiθ ® 3£ has a unique nontrivial closed ideal de-
fined by the unique trace on siθ. Since Kχ(siθ) Φ 0, it follows that
RR(M(siθ®Jer))φ0.

In the third section we first point out that the classical Weyl-von
Neumann theorem holds if and only if Kx (X) = 0 and RR{&) = 0.
The proof involves only C*-algebraic techniques, neither using the
fact that ^f{^) is a von Neumann algebra nor using any techniques
arising from the underline space %? at all. This provides new in-
sights into the Weyl-von Neumann theorem. Secondly, we give a full
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description for all hereditary C*-subalgebras of M{si ® SP) in case
si is purely infinite and simple. As a consequence, K\(si) = 0 if and
only if every essentially unital, non-unital, hereditary C*-subalgebra
of M{sf ®J^) has an approximate identity consisting of projections.
In addition, we provide a way to construct a sequence of purely in-
finite simple corona algebras starting with one purely infinite simple
C*-algebra.

In the fourth section, we prove that if si is a purely infinite, simple
(not necessarily unital) C*-algebra, and p is an infinite projection
of si , then K\{si) is isomorphic to the group U(pjip)/Uo(pjip),
where U{psip) is the unitary group of psip and U$(psip) is the
path component of U(psfp) containing its identity p. This slightly
extending a result of [15] where si is assumed to be a unital, purely
infinite, simple C*-algebra.

All notations in this paper are standard. We shall denote the Murray-
von Neumann equivalence of two projections p and q in a C*-
algebra si by 'p ~ q' (i.e., there exists a partial isometry v in si
such that υv* = p and υ*υ = q). 'p < q' means that p is equiv-
alent to a subprojection of q. ' < ' naturally induces a partial order
'<* on the semigroup of equivalence classes of projections in si , de-
noted by D(si). The equivalence class of a projection p is denoted
by [p]. {eiji i, j > 1} denotes the set of matrix units of 3ί. We
reserve the notation π for the canonical quotient map from M(s/)
to

1. Purely infinite, simple C*-algebras. A C*-subalgebra 3S of a
C*-algebra stf is said to be hereditary if Ό < a < b e & and b e
sf* implies 'a e £&\ An equivalent condition is that 3S = 3* Π
^ * , where ^ is a closed left ideal of J / ([29, 1.5.2]). Another
equivalent condition is that {3§s£3&Y = 3S, where {3§st3&Y is the
C*-subalgebra of $f generated by those elements with the form b\ab2
with b\,bι € 3? and a e s/ . In particular, every closed ideal is a
hereditary C*-subalgebra. We denote the hereditary C*-subalgebra
(xsfx*Y of si generated by a nonzero element x of M(si) by ^
or her(x).

A C*-algebra si is said to be purely infinite, if every nonzero hered-
itary C*-subalgebra contains an infinite projection ([15, 1.5] and [38]),
where we call a projection infinite if it is Murray-von Neumann equiv-
alent to a proper subprojection of itself. Equivalently, si is purely in-
finite if and only if six contains an infinite projection for any nonzero
positive element x of si .
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Well-known examples of purely infinite simple C*-algebras are the
Calkin algebra and type III factors (all are nonseparable). Separa-
ble examples include the Cuntz algebras &n (2 < n < oo) and the
Cuntz-Krieger algebras @A,iί A is an irreducible matrix ([15], [16]
and [18]). We will see from this article that many corona algebras
are also purely infinite and simple. Since purely infinite simple C*-
algebras, especially the Cuntz algebras, have proved their importance
in the theory of simple C*-algebras, of course further classification
and description for these C*-algebras are desirable. It turns out that
such a C*-algebra si either has a unit or is stable (i.e., si = si®J^).
As a consequence, purely infinite simple C*-algebras have real rank
zero, and hence contain abundant projections.

1.1. LEMMA ([11, 4.23]). Suppose that si is a o-unital C*-algebra.
If there exists a full projection p in M(sf) such that sip is stablef

then there exists a partial isometry u in M(si) such that uu* = p
and u*u= 1. Consequently, si = si

Our main theorem in this section is stated as follows:

1.2. THEOREM, (i) If si is a a-unital, purely infinite, simple C*-
algebra, then either si is unital or si is stable. Consequently, six is
either unital or stable for every nonzero positive element x in si .

(ii) Suppose that si is a simple C*-algebra (may not be σ-unitaΐ).
Then si is purely infinite if and only if RR(si) = 0 and every nonzero
projection of si is infinite.

Proof, (i) Suppose that si is not unital. By Lemma (1.1), it suffices
to show that there exists a nonzero projection p in M(si) such that
sip is stable.

Let a be a strictly positive element of si with ||α|| = 1. Since si
is not unital, 0 is a limit point of the spectrum σ(ά) of a. We define
a sequence of continuous functions as follows:

fn(t) =

l

wι ~" Wz+1

0

where εn \ 0. Set en = fn[d). Then {en} is an approximate identity
of si such that emen — en if m > n. Consider her(̂ 2w+2 -
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n > 1. We can assume that her(e2«+2 - ^in) Φ {°} for n > 1. Set
rn = £r(e2 e )(̂ 2/1+2) > the spectral projection of 2̂«+2 in «^** over
the open interval (£2̂ +2 > ^2«+i) Then rrt is an open projection of
si such that her(rw) c her(e2«+2 — £2/1) Moreover, it is easily verified
by construction that r r trm = 0 if n Φ m, and rn(e2n+2 - ein) =
(e2n+2 ~ eln)rn = rn for n > 1.

Since J / is purely infinite, we can choose a nonzero projection qn

in her(rw) for n > 1 (of course, #„ is infinite). Then qn < rn, and
hence

Similarly, (̂ 2̂ +2 - ^2«)ί« = ίw Since stf is purely infinite and sim-
ple, using a routine argument for infinite simple C*-algebra (see [5,
3.12.1], for example), we find a nonzero subprojection pn of qn such
t h a t Pn ~ P \ = Q\ f o r n > 2 . S e t

n=\

Since {̂ 2«} is also an approximate identity of si, it is routine that
p is a projection in M(si). In fact, for every element b in si ,

0

if n —• 00. It is obvious that J ^ is stable. Since J / is simple, Lemma
(1.1) applies, and hence si is stable.

It is easy to check that six is purely infinite and simple for any
nonzero positive element x in si . Hence, s/x either has a unit or

(ii) If x is any nonzero positive element, then six is σ-unital. By
(i), six is either unital o r ^ = six ® ̂ . If ^ has a unit, then the
unit is a projection of si . If J^c = J^c ® ̂ , then six = ^ J / ^ ® ^
where p is any nonzero projection of sfx ([9, 2.8]), and hence six

has an approximate identity of projections. It follows that si has
the (HP) property, or equivalently has the (FS) property ([5, 2.7] and
[27]). Thus, RR{si) = 0 by [12, 2.6]. Of course, every nonzero
projection of a purely infinite C*-algebra is infinite. The direction 'if
is trivial. We have completed the proof.

We have the following corollary which includes an answer of the
question [5, 2.10] raised by B. Blackadar.
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1.3. COROLLARY. The Cuntz algebras @n (2 < n < oo) and the
Cuntz-Krieger algebras @Ά > where A is any irreducible matrix, have
the (FS) property, or equivalently have real rank zero.

Concerning the matrix algebras Mn($/) over a purely infinite sim-
ple C*-algebra, we have the following proposition:

1.4. PROPOSITION. If srf is a simple C*-algebra (not necessarily
σ-unital), then the following are equivalent:

(i) J / is purely infinite.
(ii) J / ® 3? is purely infinite.

(iii) Mn(s/) is purely infinite for n > 1.

Proof. It is clear that (ii) implies (i) and (iii) implies (i).
If sf is purely infinite and simple, then RR(s/) = 0 by Theorem

(1.2). It follows from [12, 2.10] that RR(stf <g> JΓ) = 0. Let q be
any nonzero projection of sf <g> 3?. Diagonalizing the projection q
by [39], there exists a unitary u in M{stf ® X) such that uqu* is
a diagonal matrix with only finitely many nonzero diagonal entries
which are nonzero projections of J / . Since every nonzero projection
of s/ is infinite, hence uqu* is an infinite projection of srf ® X.
Thus it follows from Theorem (1.2) that J / ®<3? is purely infinite.
Hence, (i) implies (ii). Similarly, (i) implies (iii).

1.5. REMARKS. From Theorem (1.2)(i) we obtain some information
on nonzero element x of purely infinite simple C*-algebra si by
looking at the hereditary C*-subalgebra sfx . In case stfx has a unit
p, there exists an element y in J / such that xyx* = p. Hence the
restriction of x on its range is invertible. In case sfx is stable, then
sfx contains a C*-subalgebra which is *-isomorphic to X.

In particular, we give a glance at the Calkin algebra £?(%?) jX. It
follows from the spectral decomposition theory for self-adjoint oper-
ators in £f{%?) that the Calkin algebra is purely infinite and simple.
As a consequence of Theorem (1.2), the set of non-compact opera-
tors on %? are divided into three classes. One is the set of opera-
tors such that sf-ψ = β g 7 ( ^ ) / t T , i.e., the set of Fredholm operators,
where T = n(T). One is the set of operators such that there exists
an infinite dimensional and co-dimensional projection P such that
sfψ = π(P)[£?{J^)/3r]π(P) £ &{&)IX. Another is the set of op-
erators such that s/γ = \3*{%r)IX\ <g> X. For the last class, using
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[37, 2.5] repeatedly, we get a sequence of mutually orthogonal infinite
dimensional and infinite co-dimensional projections {Pn} such that
1 = Σ ^ Pn and T = C + To, where C is a compact operator, To

is a noncompact operator and the entries {7}y } of Γo with respect to
the decomposition of the identity 1 = Σ^Li Pn a r e bounded operators
such that ||Γ/7|| —• 0 as either / —• oo or -^oo.

2. Real ranks of certain multiplier and corona algebras. We begin
with a brief review on the construction of a Hubert C*-module βfa .
Staring with a C*-algebra si, one can define an si -valued inner
product on the set of bounded sequences of elements of si by

ι=l

A Hubert C*-module %?& consists of all sequences such that ({#/},
{at}) exists as an element of si . The si -valued inner product ( , •)
naturally induces a norm

ιι ιι = ικ . > 1 / 2 ι ι
on %?& . Referring to this norm, one can define bounded operators on
%?sί in a similar way as on a Hubert space %?. One can then define
the adjoint operator Γ* for some bounded operator T on βfa by

(T{ai}, {bt}) = ({at}, T{bi}) for all {at}, {ft,-} e ^ ,

where Γ* may not exist for some bounded operators. Let &{%?#) de-
note the set of all bounded operators on ^ whose adjoint operators
exist. Then - S * ( ^ ) is *-isomorρhic to M(si ®3£) as C*-algebras.
For each pair of elements x and y in ^ ^ one can define a bounded
operator of rank one by

θX9y(z)=x(y9z) for zeJ^.

Let 3^{%^) denote the closed linear span of all operators of rank
one. Then &{%&) is *-isomorphic to si ®Ή as C*-algebras. If si
is the algebra of complex numbers, then ^ is the separable Hubert
space %?. The reader is referred to [23] for more details.

More generally, we consider the pair of a C*-algebra si and the
associated multiplier algebra M(si) where si may not be stable.
Then si is a closed ideal of M(sf). We will frequently use the fact
that RR{M{sf)) = 0 if and only if M{si) has the (FS) property; and
again if and only if the generalized Weyl-von Neumann theorem holds
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in M{sf) [37, §3]. Obviously, RR(M{*/)/&) = 0 if
= 0.

The following Theorem (2.1) and Theorem (2.2) conclude that the
generalized Weyl-von Neumann theorem holds in the multiplier alge-
bras of many interesting C*-algebras.

2.1. THEOREM. Suppose that sf is a σ-unital, nonunital, simple
C*-algebra with real rank zero and M(sf)/stf is simple. Then the
following hold:

(i) RR(M(S/)/J*) = Q.

(ii) RR(M(sf)) = 0 if and only if every projection in M(sf)/sf
lifts to a projection of M(s/).

One significant consequence is that in case stf is a σ-unital (non-
unital), purely infinite simple C*-algebra, RR(M($f)) = 0 iff Kγ(sf)
= 0 (see Corollary (2.6)). It was unexpected that theJriviality of
K\(stf)> i.e., the connectedness of the unitary group of srf or equiva-
lently the triviality of KQ(M(S/)/S/) , has a lot to do with the 'amount'
of projections in M($f) (which is abundant enough so that RR(M(stf))
= 0).

2.2. THEOREM. Suppose that srf is a σ-unital simple C*-algebra
with real rank zero and M(s/ ® 3?) has only one nontrivial closed
ideal f§ strictly containing srf ®3ί. Then the following hold:

(i) RR(Λ/^ ®<%r) = 0,and RR(M(stf ®3T)/Λ) = 0.
(ii) RR(fo) = 0 if and only if every projection in Jb/sf ®Jf lifts.

(iii) RR(M(3? 0 X)/s/ ® X) = 0 if every projection in
M(s*®Jf)/Jb lifts.

(iv) RR(M(sf ® 3?)) = 0 if and only if every projection in
M(stf ®3£)lf§ lifts and every projection in Jb/tf ®X lifts.

Consequently, RR(M(^®^)/s/®^) = 0ifKl(Jr

0) = 0; RR(Λ)
= 0 ifKx(sf) = 0;and RR(M{&&&)) = 0 if Kx($f) = Kl(Jr

0) = 0.

We need the following two technical lemmas in order to prove the
above theorems. We denote the canonical mapping from M(sf ®J£)
to M{sf ®3f)/^0 by φ and denote the identity of M(sf ®X) by
1® 1.

2.3. LEMMA. Suppose that srf is a C*-algebra satisfying the hy-
potheses of Theorem (2.2). If p is a projection in M(srf ®^Γ) but not
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in fo, then φ{\ Θ 1) < φ(p) in M(stf ®3?)jf§, and hence φ(p) is
an infinite projection.

Proof. If sf has enough traces to preserve the order of
then the techniques of comparing projections would work [38, 24].
However, it is not known whether there is any trace on such a C*-
algebra. Hence, we have to use the following technical construction.

Since J / is σ-unital and simple, srf®X = rstfr®3£ for any
nonzero projection r of J / ([9, 2.8]). Hence, we assume that J / has
a unit from now on.

Since p generates M(sf ®5?) as a closed ideal, by [40, 2.3] there
is an integer n>\ such that [1 ® 1] < n[p].

If n = l , then 1(8)1 <p. It follows that φ{l®l)<φ{p). If n = 2,
then there are two projections p' and p" in M(s/ <8> 5f) such that
p' ~p, p" ~p, p"p' = 0 and 1 Θ 1 <p'+p". It follows that

p / + p / / ~ 1® 1.

Take an isometry VQ G M{$f ® 3?) such that

V0VQ = p'p" and V^VQ = 1 ® 1.

Since RR{stf) = i?i?(j/ ®«^) = 0 ([12, 2.6]), every hereditary C*-
subalgebra of s/ ® ^ has an approximate identity consisting of pro-
jections ([5, 2.7] and [27]). By [37, 1.2] there are sequences of mutually
orthogonal projections {//} and {fj'} in stf ®3? such that

E fi = t δp'vo and f ) ^ = t J/1%, where yj - ^ Vi > 1.
ι = l ι = l

Clearly, {J2"=i(f! + f")} constitutes an approximate identity of sf ®
JΓ consisting of projections, while {Y^L\ 1 ® en} is another approx-
imate identity consisting of projections. By an argument of G. A.
Elliott in [21] there exist two subsequences {%} and {m^} of inte-
gers and a unitary υ in M(sf (8) 3£) such that

l ® en < v

L/=l

It is clear for any fixed k that

(where«0 =
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Diagonalizing rj as in [39, 3.3] or [42, 1.1] with respect to the direct
sum

we have

rι~rn+ rn, where [rn] <[rn]<
i=nk+l

< Σ fi
i=nk+\

Since

Σ w+>r.

there is a projection rj 2 such that

ϊl

Diagonalizing r'12 with respect to

Σ r, + Σ Λ

we have

r'n - r2i + r22, where [r22] < Σ Λ

< Σ ft

and

and

Then 2[r22] < [̂ 21] + t rii] Proceeding in this way, for any / > 1 we
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can find projections {r[, r'2, . . . , ή, S[} in sf ®^ such that

ή ~ rn for 1 < j < 1, 5/ ~ rn,

i

7=1

I

7=1

L

nk+2l

j=nk+\

-

<lή]< "<[rf2\<[Λ},

and

Obviously, /[ί/]<Σ{= 1[r;.].
Proceeding recursively, we can find a subsequence {n'k} and write

the identity 1 <g> 1 = Σ/=i 1 ® ea a s a s u m ° f t w 0 terms:

k=ι k=l

where k[sk] < [rk] (since rk has a form £ j = i rj.), <

and < Y^J γ
f . It is routine to show that

< and 5 *
A : = l k=l

If Po = ΣΓ=i sk is a projection of Jfr, then 0( 1 ® 1) = 0(ΣΓ=i rk) Z
φ{p') ~ φ(p).

If po is not in ^ 6 , then by [40? 2.3] again we have [1 ® 1] <

m[p0] By construction, m[ΣΓ=m+i ^ ] < [ΣΓ=m+i ^ ] J t follows

that φ{\ ® 1) < 0(ΣΓ=m+i ̂ ) £ 0(P;) ~ ^(P)
If n > 2, we choose an integer m such that 2m > n. Then [1 ® 1] <

2m[p]. Repeating m times the above argument for n = 2, we will
reach φ(l®l)<φ(ρ). The details are left to the reader.

REMARK. Actually, under the same hypotheses as in Lemma (2.3)
we can prove a stronger conclusion: Every projection p in M(sf ®SP)
not in β) is equivalent to 1 ® 1. Since it takes more room for the
technical details and also it is beyond the need of this article, we
decided to give the proof elsewhere.

2.4. LEMMA (cf [12, 3.14] and [42, 2.3]). Suppose that 33 is a
C*-algebra and J" is a closed ideal of 3§. Then RR(β) = 0 if and



C*-ALGEBRAS WITH REAL RANK ZERO 181

only if RR{^) = 0, RR{β I<J) = 0 and every projection in
lifts to a projection in 3§.

Proof. We give the following different proof for the direction 'if,
since this proof contains new information about the lifting from 3S jS
to SB.

Assume that RR(β jJ") = 0 and RR(J^) = 0 and every projection
of J ' / c / lifts to a projection in £%. Let x be a self-adjoint element
in 38 and δ a positive number. We show that x can be approximated
in norm by positive elements with finite spectra.

Since RR{βΊ*f) = 0, there exist real numbers {£;} and mutually
orthogonal projections {/?;} in &l<y such that ||JC - Σhzi tiPiW < δ >
where x means the image of x in 3S jJ?. Since every projection of
£$ 1^ lifts, the projections {/?z} lift to mutually orthogonal projec-
tions {pt} in 3S ([37, 2.5]). But ||x - Y%LX tiPi\\ may not be small.
We adjust the element ΣΊ=\ UPi so that ||x - Σ/Li UPΛ can be arbi-
trarily small and hence RR(£B) = 0. By [1, 4.3], there is a self-adjoint
element α in / such that

m

χ -
• a

Set po = 1 -Σ)/=i Pi Then /?o is a projection in J^. Since RR(J^) =
0, for 0 < i < m we can choose an approximate identity {p/(A|): A/ G
Λ/} of pi^fpi consisting of projections. Then

m
/} G Λo x Λi x x *m

constitutes an approximate identity of <y. Set go = Y^L\Pi{λi) for
some {λi} such that ||(1 - go)a\\ < δ. Then

m

(1 -
ϊ = l

m

1=1

and hence

m

(1 -q0) \x-J2tiPi
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Thus

x -
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m
(ί - go) [ x - (l-qo) <2δ.

m

<6δ.<2\\{\-go)xgo\\

Since RR(^f) = 0, there is a self-adjoint element f$ in
a finite spectrum such that ||#o *<7o — fs\\ < δ.

Set hδ = fδ + Σ?=i UiPi - Λ(A, )). Since /*, Λ - Λ(* i ) , Pi -
Piih), ... , and pm - pm(λm) are mutually orthogonal, it is clear
that h$ has a finite spectrum. It follows from the above estimates
that

I * -

2.5. Proof of Theorem (2.1) α/ιrf Theorem (2.2).

. Since J / is simple such that RR{sf) = 0, M(A)/A is purely
infinite by [38, 1.3] no matter si is stable or not. If M{sf)/s/ is
simple, then RR{M{ssf)/sί) = 0 by Theorem (1.2). By Lemma (2.4),
RR(M{s/)) = 0 if and only if every projection in M{s/)lsf lifts.
Hence, Theorem (2.1) is clear.

Now we prove Theorem (2.2). By [38, 1.3] again, we see that
J^jsf ®3?\% purely infinite and simple. It follows from Theorem
(1.2) that RR(Jo/£f ®JT) = 0. By Lemma (2.4), RR{Λ) = 0 if
and only if every projection in ^/sf ® 3? lifts. To prove
RR(M(sf ®3Γ)/Λ) = 0, by Lemma (2.3) and Theorem (1.2), it
suffices to prove that M{sf ®3?)lf§ is purely infinite and simple.
By definition, it is sufficient to prove that for any nonzero positive
element x in M(s/ ® ̂ )/Jb there exists an infinite projection p
in the hereditary C*-subalgebra of M{sf ®3?)lf§ generated by x.
Let x be a positive element in M(sf ® X) not in f§ such that
φ{x) = x. Since every hereditary C*-subalgebra of M{sf Θ X) is
the closed linear span of its projections ([38, 1.1]), there is a projection
p in xM{sf ® J ) x not in ^ . By Lemma (2.3), φ(p) is an infinite
projection. Thus, (i) and (ii) are clear.
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To prove (iii), we consider the following short exact sequence:

where we use the natural isomorphism

Since RR(M(sf &&)/*%) = 0 and RR(Jfr/jtf ®X) = 0, it follows
from Lemma (2.4) that RR(M(sf ®3Γ)jstf ®JT) = 0 if and only
if every projection in M($/ Θ 3T)Ub lifts to a projection in
M ( J / ® JΓ)/j/ ® ̂ . If p is any projection in M(sf ® ^ " ) / ^ o ,
then p lifts to a projection p in M ( J ^ ® ^ ) by hypothesis. Clearly,
p lifts to a projection π(p) in M{$f Θ ^ ) / J / ® « ^ . Hence, (iii) is
clear.

It follows from (ii) that RR(Jo) = 0 if every projection of Jύ/<%? ®
3t lifts. It then follows from Lemma (2.4) that RR(M{stf ®3f)) = 0
if, in addition, every projection in M(sf ® <%r)IJb lifts. Since the
projection lifting holds whenever K\ is trivial ([37, §2]), the conse-
quences are clear. This completes the proof.

Theorem (2.1) and Theorem (2.2) have included many interesting
C*-algebras. Let us first state a corollary and then provide some spe-
cific examples.

2.6. COROLLARY. Suppose that srf is a σ-unital, purely infinite,
simple C*-algebra. Then the following hold:

(i) RR(M{sf <g> JT)/J/ Θ J f) = 0.
(ii) RR(M(s/&&)) = 0 ifandonlyifKx(stf) = 0. In other words,

the generalized Weyl-von Neumann theorem holds in 2"{%^) if and

Proof. Note if stf is non-unital, then sf is automatically stable
by Theorem (1.2). We state the result in the form of stabilization to
include the cases that s/ is unital.

By [40, 3.3], the generalized Calkin algebra M(s/ ® 3£)j$t <g> 3£
is purely infinite and simple. It follows from Theorem (1.2) that
RR{£/) = 0 and RR(M{sf &&)/&&&) = 0. By [37, §2], Kλ{sf) =
0 if and only if every projection in M{srf ®3P)jsrf ®X lifts. Now
Theorem (2.1) implies the equivalence between 'K\(J^) = 0' and
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2.7. EXAMPLES, (i) If 2 < n < oo, then RR(M(@n ®Jί)) = 0 (of
course RR(M(@n ®3£)l@n ® ^ ) = 0, too).

(ii) If A is an irreducible matrix such that det(/ — A) = 0, then

RR(M(&A ® 3T)I&A <S> JΓ) = 0 but RR(M(@A ® Jf)) ^ 0.

(iii) If & is the Calkin algebra, then RR(M(W®3?)jsrf ® Jf) = 0
but RR(M(&®JP))φO.

(iv) If j / is a type III factor, then RR(M(si ®3ΐ)) = 0.

In fact, @n (2 < n < oo) and ^ , if 4̂ is an irreducible matrix,
are purely infinite and simple ([15]). It is well known that the Calkin
algebra and a type III factor are purely infinite and simple. Hence,
it follows from Proposition (1.4) that the stabilizations of these C*-
algebras are purely infinite and simple, too. It follows from Corollary
(2.6) that the generalized Calkin algebras associated with these C*-
algebras have real rank zero.

It was proved ([15]) that Kx(0n) = 0 for 2 < n < oo and Kλ(0Λ) φ
0 when det(J - A) = 0. It is well known that Kx (&) is the group of
integers and the K\ of a type III factor is trivial. Thus, (i)-(iv) are
clear from Corollary (2.6).

Theorem (2.1) and Theorem (2.2) have also included many 'finite'
C*-algebras in the sense of having trace(s). Using the terminology
in [24], we say that si has a continuous scale if every trace on si
extends to a finite trace on M(si) and ϊ(τ) = lim^oo τ(en) is con-
tinuous on the state space Su of Ko(si), where u is an order unit
of KQ(S/) and {en} is a sequential increasing approximate identity of
si consisting of projections (the existence of such {en} is guaranteed
by [37, 1.2]).

2.8. EXAMPLE. If si is a σ-unital, nonunital, simple AF-algebra
with a continuous scale (in particular, if si is a finite matroid alge-
bra), then RR(M{si)) = 0 [12].

In fact, sinceK\(si) = 0, then it follows from [10] or [37, §2]
that every projection in M(sf)/sf lifts. By [38, 1.1] and [24, §2],
M'(si))'si is purely infinite and simple. Hence the conclusion follows
from Theorem (1.2) and Theorem (2.1).

A (quasi)trace τ on si is said to be order-preserving if τ(p) < τ(q)
implies [p] < [q], where p and q are two projections of si . Each
trace τ on si extends to a trace on M(si ®J^) whose values can be
+oo, still denoted by τ . Let fτ be the closed ideal of M(si
generated by all projections whose trace values are not +oo.
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2.9. PROPOSITION (cf [40, 3.6]). If si is a unital C*-algebra with
real rank zero and an order-preserving (quasi) trace τ, then every
projection in M(sf <g> 3£) but not in βτ is equivalent to the identity
1 ® 1, and hence βτ is the unique nontrivial closed ideal of M{si ®3?)
strictly containing sf ® X.

Proof. If p is a projection p of M(srf ®X) not in fτ, then τ(p) =
+oc. By [39, §4] there is a unitary u in M(sf ® 3£) such that q =
upu* = Y^iPi^eu where {/?/} is a sequence of nonzero projections
of si . Of course τ(#) = +oo. Then we can choose a subsequence
{nk} of positive integers such that τ(l ® e^) < τ(]Γ"* ,i Λ Θ en)
for each /: > 1 where (ΛQ = 0). Since τ is order-preserving, there is
a partial isometry υk in J / ® 3£ such that

"̂
and v ^ ^ < ^ px: ® ̂ // for all A: > 1.

Set ^ = ΣS=i Â: Then tϋ is a partial isometry of Af ( J / ® ^ ) such
that

ww* = 1 ® 1 and tί;*tί; < q.

Since Kx(M(s/ ®3£)) = 0 ([4]), it follows from [15] that 1 Θ 1 ~ ^ .
Of course 1 ® 1 — p.

Since RR(J^) = 0, it follows from [12, 2.10] that i?i?(j/ ® ^ ) =
0. By [40, §2] every closed ideal of M(sf Θ X) is generated by
its projections. Therefore, β is the only proper closed ideal strictly
containing stf ®X.

In [36], the author proved that if si is a σ-unital AF algebra or si
is the tensor product of a finite factor with X, then every hereditary
C*-subalgebra, and hence every closed ideal, of M{si) has a trivial
K\ -group. Combining this result with Theorem (2.2) and Proposition
(2.9), we have the following:

2.10. EXAMPLE. If si is a σ-unital, simple AF algebra with
a unique trace (up to multiples), in particular if si is a separa-
ble matroid algebra (of course the trace is order-preserving), then
RR{M(si ®3t)) = 0. Example (2.8) together with Example (2.10)
include a result [12, 3.21].

2.11. EXAMPLE. It is well known that there is an order-preserving
trace on a type II i factor Jί and hence on Jί ® 3t'. Thus,
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It was proved ([14]) that for a dense subset of irrational numbers
the corresponding irrational rotation algebras have FS (and hence have
real rank zero by [12, 2.6]). In addition, there is a unique quasitrace
τ on an irrational rotation algebra s/Θ , which is order-preserving ([6,
5.3.2] or [31]-[33]).

2.12. EXAMPLE. If S/Q is an irrational rotation C*-algebra such that
RR{stfΘ) = 0, then RR{fτjsrfe®Ή) = 0 and RR{M{^θ ® X)lfτ)
= 0 (by Theorem (2.2) and Proposition (2.9)). However,
RR(M{^Θ ® JΓ)) φ 0, since Kλ{sfΘ) φ 0 ([4] or [31]-[33]).

Here a question remains unanswered: Is RR(M(s/β ®Jf)/sfβ ®3P)
zero?

It was proved ([8], [12], [27]) that the Bunce-Deddens algebras de-
fined in [2] have real rank zero. There is a unique tracial state τ
on a Bunce-Deddens algebra ([3]), and the tracial state τ is order-
preserving ([6, 5.1]).

2.13. EXAMPLE. If 3$ is one of the Bunce-Deddens algebras, then
RR{M{β®3£)lfτ) = 0 and RR(fτl^®X) = 0 (by Theorem (2.2)
and Proposition (2.9)). Moreover, RR{M{β ® X)j3§ ®5f) = 0,
since Kx{fτ) = 0. But RR(M(β®X)) φθ, since Kx{3&) φθ.

To see the last two sentences above, we need a recent result of
L. G. Brown (via private communication) that the multiplier algebra
of a C*-algebra stably isomorphic to one of the Bunce-Deddens alge-
bras has a connected unitary group and hence has a trivial K\. Using
this fact, one can prove that K\{fT) = 0, and then every projection
in M{β®J?)lfτ lifts by [37, §2].

Now we show that J îCΛ) = 0. If r is any projection in fτ not
in <B <g> JΓ, then M{r{β ®3?)r) = rM{β ®3?)r = rfτr and rfτr
generates fτ as a closed ideal. Hence Kx(M{r(β®J?)r)) = Kλ{fτ).
Since & is simple ([2]), it follows from [9, 2.8] that r{β ®X)r is
stably isomorphic to 3S. Now applying the result of L. G. Brown
mentioned above, we conclude that K\{M{r{3§ ® Jf)r)) = 0, and
hence K\{^) = 0, as desired.

3. Relevant matters and more examples.

3.1. A new look at the classical Weyl-von Neumann theorem. The
C*-algebraic approach in the last section provides new insights into
the classical Calkin algebra

and ^ ( ^ ) iμ
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Reducing to the case sf = ^ , we see that the classical Weyl-von
Neumann theorem is equivalent to the facts that RR(JΓ) = 0 and
K\ (Jf) = 0. From this, the scene behind the Weyl-von Neumann
theorem becomes quite clear. We sketch the following purely C*-
algebraic proof without using any techniques arising from the under-
line Hubert space %? nor the fact that .Sfffi) is a von Neumann
algebra.

Outline of the proof . (Necessity): Assume that the Weyl-von Neu-
mann theorem holds (i.e., RR(^f(^)) = 0). Then RR(JP) = 0,
since J? is a closed ideal of JPffi). On the other hand, since

= 0, it follows from [37, 2.2] that every projection of
lifts to a projection in -S%T). Thus, KX(X) = 0 [37,

2.10].

(Sufficiency). By [39, §4], every projection of £?{%f) is unitarily
equivalent to a projection with a diagonal form whose off diagonal
entries are 0's and diagonal entries are either 0 or 1. Moreover, every
projection in &(βf) not in J£ is Murray-von Neumann equivalent
to the identity. Since K\{3ΐ) = 0, every projection in £?{%?)/'3?
lifts to a projection in £f(%?). It follows that every nonzero projec-
tion in £?(%?)13? is infinite. By [38, 1.1], every nonzero hereditary
C*-subalgebra of &{βf) is the closed linear span of its projections.
Hence, ^f{^)/Ji is purely infinite and simple. It follows from The-
orem (1.2) that RR(£?(jr)/3T) = 0. We conclude from Lemma (2.3)
that RR{S?{β?)) = 0. Hence, the Weyl-von Neumann theorem holds
([37, 3.1]).

A strategy often used in proving that 'RR(M(sf)) = 0' is to
show that the hereditary C*-subalgebra (xM(s/)x)~ has an approx-
imate identity consisting of projections for any positive element x of
M(s/). In case si is a σ-unital, purely infinite, simple C*-algebra,
RR(M{sf Θ JΓ)) = 0 if and only if Kx{sf) = 0 (Corollary (2.6)).
From the following theorem we will see what *K\{sf) = 0', or equiv-
alently 'RR(M(sf ® 3P)) = 0' really means in terms of hereditary
C*-subalgebras of M{s/ ® Jt). Here a hereditary C*-subalgebra 3S
of M{sf ® 3?) is said to be essentially unital if π(βl) is a unital
hereditary C*-subalgebra of M(sf

3.2. THEOREM. Suppose that stf is a σ-unital purely infinite, simple
C* -algebra. Then the following hold:
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(i) Every nonzero, σ-unital, hereditary C*-subalgebra 38 of
M(si ® X) is either stable or essentially unital

(ii) // 38 is stable, then 38 is either *-isornorphic to si®X or
*-isomorphic to M{si ® X) ® X.

(iii) If & is unital then 38 is either *-isomorphic to M(si ® X)
or rsir for some projection r in si .

(iv) If 38 <£ si ® X is essentially unital but nonunital and if
K\(si) = 0, then 3$ is *-isomorphic to a hereditary C*-subalgebra of
M(si®X) of the form

pM(si®X)p p) \
\-p)j*

where p is a projection in 3$ but not in si ® X. Moreover, by
Theorem (1.2), (\-p){si®X)(1-/7) is either *-isomorphic to si®X
or *-isomorphic to rsir for some projection r in si .

Proof. Let 38 be any σ-unital, hereditary C*-subalgebra of

(i), (ii) and (iii). If 38 c si ® X, then 38 is either unital or
stable by Theorem (1.2). If 38 is unital, then 38 = rx(si ®X)rx for
some projection r\ in si ®X. By Theorem (1.2) and a standard
argument for simple C*-algebras (see [5, 3.12.1], for example), we see
that £% = rsir for some nonzero projection r in si . If 38 is stable,
then 38=si ®X. In fact, since si ®X is purely infinite and simple,
it is clear that 38 is purely infinite and simple. Since both si ®X
and 38 are σ-unital, [9, 2.8] applies.

We assume that 38 is not contained in si ®X. Set ~3B = π(3B).
Then 38 is σ-unital. Since M(si' ®X)jsί' ®X is simple and purely
infinite ([40, 3.3]), ~3B is either unital or stable by Theorem (1.2). If
38 is unital, the unit p of 38 is a projection of M{si®X) equivalent
to the identity by [40, 3.3]. It follows that 38 = M[si ®X).

If 38 is not essentially unital, then 38 is stable. We show that 38
is stable, and that 38 = M{si ®X)®X. Since 38 is σ-unital, 38 is
the hereditary C*-subalgebra of M(si®X) generated, as a hereditary
C*-subalgebra, by a single positive element x in 38 but not in si ®
X. As in the proof of Theorem (1.2), we define a sequence of positive
functions fn , and then construct an increasing sequential approximate
identity {en} of £% such that enem — en if m > n. Consider two
sequences of hereditary C*-subalgebras of 38 9 say {^n} and
as follows:
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It is clear that 3Sn and £%m are mutually orthogonal and gj, and ^m

are mutually orthogonal if nφm. Moreover, the union of the 3§n%
and the 8J,'s generates 3S as a hereditary C*-subalgebra.

We claim that either {π(3&n)} or ( π ( ^ ) } has an infinite nonzero
subsequence. Otherwise, there would exist a positive integer no such
that π((l — en)3&(l —en)) = 0. By the construction of {ew} , it would
imply that π(x) is invertible in M{sf ®3P)lsf ®3ί, and hence π{3§)
would be Af(j/ ®Jί)lsf ®3H". This contradicts the hypotheses. We
can assume that n{3Sn) is nonzero for n > 1. Hence ^ n (jLsf
for ft > 1. By [38, 1.1], there exists a projection pn in <%n\sf
for n > 1. It is obvious that /?«pm = 0 if n Φ m. Set # = Σ ^ U P«
It is routine to show that q is a projection in M(3&). It follows
from [40, 3.3] that pn ~ 1 for each n > 1. Thus # ^ # is a stable
hereditary C*-subalgebra of SB. Since ^ ^ £ srf ®3? and π ( ^ )
is simple ([40, 2.3 and 3.3]), of course q38q generates 3S as a closed
ideal. Now Lemma (1.1) applies, and hence 3$ is stable. Actually,
•# = M{sf ®3?)®3? by [40, 3.3]. We have proved (iMii) and (iii).

(iv) From now on we assume that K\(sf) = 0 and £% has the unit
p. It is clear that £§ Π ( J / ® ̂ ) is a hereditary C*-subalgebra of
J/ ® ^ , and hence 38r\{sf ®X) has real rank zero by Theorem (1.2).
Since Kx{sf) = 0, it follows from [9, 2.8] that Kx{βr\{st®3T)) = 0 .
By [37, 2.12] there exists a projection p in £% such that π(p) = p. It
is easily verified that (l-/?)^/?U/?^(l-/?)U( 1-/7)^(1-/?) C J / ® J .

Moreover, since /? is in 33 but not in J / ® ^ , we see from [40, 3.3]
that p ~ 1. On the other hand, (1 —/?)«^(1 - p) is either unital or
stable, and hence is either isomorphic to rsfr for some projection in
si or isomorphic to sf ®3£ (by (iii)). Now we clearly see that £% is
*-isomorphic to the matrix form.

The following corollary provides a new condition equivalent to

3.3. COROLLARY. If sf is a σ-unital, purely infinite, simple C*-
algebra, then the following are equivalent:

(i) RR{M{sf <g> JΓ)) = 0 {iffKx{sf) = 0,by Corollary (2.6)).
(ii) Every essentially unital non-unital, hereditary C*-subalgebra

of M(sf ® J?) has an approximate identity consisting of projections.

Proof. It is clear that (i) implies (ii). By Theorem (3.2)(i), ev-
ery non-essentially unital hereditary C*-subalgebra of M(s/ ®J^) is
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stable, and hence automatically has an approximate identity consisting
of projections. Hence, (ii) implies (i).

3.4. A sequence of corona algebras with real rank zero. Starting
with a C*-algebra sf such that RR(stf) = 0 and M(sf)/sf is purely
infinite and simple, we can construct a sequence of purely infinite,
simple corona algebras, by recursively setting

C{n)(sf) = M{C{n_x){stf) ®5?)IC{n_x){sf) ® K

with

By [38, 1.1] and [40, 3.3], for each n > 1, C(n)(sf) is a purely infinite,
simple corona algebra. Hence

RR(C(n)(s/)) = 0 for n> 1 by Theorem (1.2).

3.5. PROPOSITION. If S/ is a stable C*-algebra, then for m > 1

= K0(C(2m)(^)) = K0(sf), and

In particular, if Kχ(s/) = 0, then Kι(Ci2m)(^)) = 0; if K0{stf) = 0,
then ^ i ( C ( 2 m _ i ) ( j / ) ) = 0 for m>l;if Kx{stf) = KQ{stf) = 0, then
Kλ{C{m){sf)) = 0 for all m>\.

Proof. This follows by repeatedly applying the two well-known iso-
morphisms:

0 ( ( )j ) and

K0(sf) =

which are consequences of the six-term exact sequence of ΛMheory
corresponding to the short exact sequence:

0 -> s/ ® X -• M{sf ®3?)jsrf ®5T -> M(s/ ®X) -> 0 ([4, 9.3]).

3.6. COROLLARY. Suppose that sf is a σ-unital, nonunital, purely
infinite, simple C*-algebra. Then

O ifK0(sf) φ 0

RR(M(C{2m)(^) ®X)) φ 0, ifKx{sf) φ 0.
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Proof. Since sf is automatically stable by Theorem (1.2), it follows
from [40, 3.3] that C(m)(sf) is purely infinite and simple, and hence
i?i?(C(W)(j/)) = 0 for all m > 1. Now the conclusion follows from
Corollary (2.6).

3.7. EXAMPLE. Since Kx{(f2) = ̂ 0(^2) = 0 ([15]),

RR(M(C{n)(&2 ® &) ®&)) = 0 for n > 1

(by Proposition (3.5) and Corollary (2.6)).

3.8. EXAMPLE. If s/ is a type III factor, then

RR{M{C{n){sf ® JT) <g> JΓ)) = 0

(since Kι(s/) = K0(s/) = 0).

3.9. EXAMPLE. If sf is a finite separable, nonunital matroid alge-
bra, then

RR{C{m)[s*)) = 0 and RR(M{C{2m-i)W *&)) = 0,

but RR(M(C{2m)(sf) ® JΓ)) φO (m > 1).
In fact, *K\{sf) = 0' follows from [21, §2]. Recursively, we have

= 0, ΛΓI(C ( 3 )(J/)) = Ko(Cm(sf)) = 0,
= 0,

Hence ^o(C ( 2 m)(^)) = Kι(C{2m-\)(^)) = 0 for m > 1. Similarly,
we have

( ) = K0(M(sf)/sf) = ̂ (C ( 2 m ) ( j/)) ^ 0 for m > 1.

4. AΓi of infinite simple C*-algebras The ^-groups of a unital,
purely infinite, simple C*-algebra sf have been described by J. Cuntz
in [15]. The #o-g r o uP of J / is identified with the set of Murray-von
Neumann equivalence classes of nonzero projections in sf, which
forms a group in this special situation. The K\ -group of stf is iden-
tified with U(s/)/Uo(sf), where U(s/) is the unitary group of si
and UQ(S/) is the path component of U(sf) containing the identity.

In this section, we give a description for the K\ -group of an arbi-
trarily purely infinite simple C*-algebra sf (not necessarily σ-unital).

We say that two unitaries u and υ are homotopic, denoted by
'u — v\ if u and v are in the same path component of the unitary
group.
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4.1. LEMMA. Assume that si is a nonunital C*-algebra with an
approximate identity consisting of projections. If u is a unitary of
si, then there exist a projection q in si and a unitary U\ + (1 - q)
homotopic to u in the unitary group of si, where u\ is a unitary
of qsi q. Moreover, if p is a projection of srf, we can choose the
projection q such that p < q.

Proof. It is clear that u can be written as λl + z for some element
z in si and a complex number λ with \λ\ = 1. Since si has
an approximate identity consisting of projections, we can choose a
projection qQ in si such that both

11(1 - Qo)p\\ and \\qouqo + λ(l - q0) - u\\

are small enough. By [21, 2.1], there exists a unitary υ in si close to
the identity in norm such that p < vq$v* . Replacing q$ by vqov* =
q, we obtain that p < q and \\quq + λ(l - q) - u\\ is small. Since
sf is nonunital, we can choose the q such that p^< q. It follows
that quq + λ(l — q) is an invertible element of si . It is clear that
quq+λ(l —q) is homotopic, in the group of invertible elements of si ,
to both u and the unitary uf occurring in the polar decomposition
of quq + λ(l - q). Clearly, u1 has the form U\ + (1 - q), and u is
homotopic to U\ + (\—q) in the unitary group of si .

4.2. LEMMA. Assume that si is a nonunital C*-algebra with an
approximate identity consisting of projections. If {u(t): 0 < t < 1} is
a path ofunitaries in si such that u(0) = 1 and u(\) = uo + (1 - p)
for some projection p in si, then there exist a projection q > p in
si and another path ofunitaries {υ(ή + (1 - q): 0 < t < 1} such that
v(0) = q and υ(l) = UQ + (q —p), where {v(t): 0 < t < 1} is a path
ofunitaries of qsi q.

Proof. Let ε be a positive number less than 1 /6. Take a subdivision
of the interval [0, 1]: 0 = t0 < h < h < * * , tn-\ < *n = 1, such
that ||tt(i/) - «(ί/_i)|| < e for i = 1, 2, . . . , n . It is clear that κ(ί, ) =
A/l + z;, where Λ,z is a complex number with |A/| = 1 and zt is
an element in si for 1 < / < n. Since si has an approximate
identity consisting of projections, there exists a projection q such
that p < q and \\qu(ti)q + /l/(l - q) - «(f/)|| < β for I < i < n.
Ύhen^qu(ti)q +ΛZ (1 - q) (1 < / < ή) are all invertible elements
of si , and hence qu{ti)q (1 < / < ή) are invertible in ^j/ή'. Since
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\\qu(ti)q-qu(ti-ι)q\\ < ||w(^)-w(ί/_i)|| < ε,the qu(U)q^ are all in the
same path component of invertible elements of qsrf q. Lctv(ti) be the
unitary of qs/q occurring in the polar decomposition of qu(t[)q for
1 < i < n. It is clear that the v(ί, )'s are in the same path component
of the unitary group of qsi q. Moreover, for 1 <^i < n, u(ti) is
homotopicto v(ti)+(ί-q) in the unitary group of si . Let {v(t): 0 <
t < 1} be a path of unitaries of qsi q joining the υ(tiYs. Since p < q,
it is clear from construction that υ(0) = q and v(l) = UQ + (q - p).

4.3. LEMMA. If S/ is a simple stable C*-algebra with a nonzero
projection, then srf has an approximate identity consisting of projec-
tions.

Proof. The conclusion follows from [9, 2.8].

Now we give a description of the ^-groups of an arbitrary purely
infinite simple C*- algebra, which slightly extends a result of [15].

4.4. THEOREM. If srf is a purely infinite simple C*-algebra (not
necessarily σ-unitaΐ), and if p is any fixed nonzero projection of srf,
then

K0(sf) = D(p^p) and Kx{sf) = U(p^p)/U0(p^p).

Here D(pstfp) is the set of equivalence classes of nonzero projections
in pstfp, which is actually a group ([15]).

Proof. First, identify si and si ® en . Then psip is identified
with ps/p ®e\\.

Since si is a purely infinite simple C*-algebra, so is si ® Sf by
Proposition 1.4. It is routine that every projection q of si ®<5? is
close to a projection in si ® Mn in norm for some n > 1, and hence
q is unitarily equivalent to a projection of si ®Mn . It follows from a
standard argument (see [5, 3.12.10], for example) that q is equivalent
to a subprojection of p. It is clear that D{si ® 3?) is bijectively
identified with D{psip). By [15, 1.4 and 1.5], K0(psfp) = D(psip).
Since D{si ®X) is identified with D{psip), K0(si) = D{ps/p).

Of course, our main job is to describe K\(si). To show that
Kι{si) = U{ps/p)/U0{psfp) it suffices the following [44]:

(i) Every unitary element of {si ®3?Y , the C*-algebra obtained
by joining an identity to si ® 3£, is homotopic to a unitary with the
form UQ + {1—PO) in the unitary group of {si ®3?Y , where po is an
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infinite subprojection of p such that p < p - po and UQ is a unitary

of Po^Po
(ii) If po is an infinite subprojection of p such that p < p - po

and UQ + (1 - po) is an unitary in the path component of unitaries of
( j / ® 3?Y containing the identity, then uo + (p - po) is homotopic
to the identity p of psrfp in the unitary group of psrfp.

Since J / ®J£ is purely infinite and simple, srf ®3£ has an approx-
imate identity consisting of projections by Lemma (4.3). If u is any
unitary element of (sf ®3?Y , by Lemma (4.1) u is homotopic to a
unitary element U\ + (1 - q) in the unitary group of ( J / ®3?Ύ, where
q is a projection of J/ ® ^ such that /? < q and Wi is a unitary of
#( j/ <g>^)#. We can assume that q is in J / <g> Λfrt for some n > 1.

To prove (i), we need to show that U\ + {\ - q) is homotopic to a
unitary with the form UQ + (1 - po) for some projection Po <P such
that p < p - po. Let #i be a projection in J / ® 3£ such that # < q\
and p <q\-q. It is clear that such #! exists. Then there exist partial
isometries W\ and W2 in #i(j/<g>^)#i such that

2 l χ and

=Pθ<P-

It is clear that we can assume that p ~ p' < p - Po Repeating one
of the fundamentals ([15, 1.7]) of the K\ twice, we obtain that U\ +
(QI-Q)> wlu\Wι + (q\-WιWι) and w^wluiWiWi + i
all in the same path component of the unitary group of
Set Wo = W2W\U\W\W2. Then UQ is a unitary of Po^Po a n d w i +
(1 - q) is homotopic to Wo + (1 - Po) in the unitary group of
( j / ®3?)+ . Hence (i) follows.

Now we show (ii). Let Mo + (1 -.Po) be a unitary homotopic to the
identity in the unitary group of ( J / ® o ^ ) + , where p < p~Po and WQ
is a unitary of Po^Po. By Lemma (4.2), there is a projection q > p
in J / ®3£ and a path of unitaries {υ(ή: 0 < ί < 1} of # ( J / ® J ) ί
such that

v(0) = ^ and v{l) = uo + {q -p0),

where we can assume that # - po is infinite. Take a partial isometry
tί; in J / (8) ^ such that

ww*>q-po and w*w = p -

Set Wi = tί; + p 0 . Then

p and
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Set υι(t) = υ(t) + {qx - q) for 0 < t < 1. Then ^(0) = qx and
v{\) = uo + (qι-po). Set w(t) = w\vx(t)wχ for each 0< t < 1 .Then
it is easily verified that {w(ή: 0 < t < 1} is a path of unitaries in
p(j/ ®3£)p (= p£fp®eu) such that w(0) = wlvi(0)w{ = p and
w(l) = ty*i;1(l)ίi;1 = Mo + (P - A)) Therefore (ii) holds.
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