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A HOMOTOPY TRANSFER
FOR FINITE GROUP ACTIONS

BILL RALPH

We obtain a transfer for group actions on spaces for which the
orbit map admits a section. This transfer exists for sets of homotopy
classes as well as for any generalized homology theory.

Introduction. Intuitively, one feels that there should exist special
relationships between the homotopy invariants of a space Y and its
quotient by the action of some finite group G. The main result of
this paper is the construction, for an arbitrary homology theory, of a
version of the transfer that exists for ordinary homology. Recall that
this is a homomorphism τ: Hn(Y/G) -> Hn(Y) with the following
properties:

(a) τop{z) = ΣgeGg*z f o r a 1 1 z e Hn(Y),
(b) poτ(υ) = \G\v for all veHn(Y/G)

where p: Hn{Y) —> Hn(Y/G) is the projection. An account of this
can be found in [Br].

Unfortunately, the existence of a transfer map satisfying (a) and
(b), or their duals in cohomology, seems to be a special property of
the ordinary homology and cohomology functors which is closely tied
to the fact that Eilenberg-Mac Lane spaces have the homotopy type of
abelian monoids. In view of this, it is not surprising that in general
there is no transfer for covariant functors F such as πn and those
associated with generalized homology theories.

In this paper we will recover a version of transfer for many functors
F including generalized homology theories. In order to deal with the
fact that the //-spaces that arise are not, in general, of the homotopy
type of abelian monoids, we will have to multiply equation (a) by a
number c(G), that I have been calling the coherence number of the
group G. This number depends only on the group G and is currently
under intense investigation. For cyclic groups this number is 1 and
hence the transfer equations will have their usual form in this case. It
is not yet known whether this number is always finite, so there may be
groups to which our transfer cannot be applied, although our feeling

133



134 BILL RALPH

is that this is not the case. [R3] contains all the current information
on this number. The reason the coherence number is not required
for abelian monoids can be understood in general form [Rl] and, for
ordinary homology in particular, from [R2].

1. Statement of results. Throughout this paper, we will assume that
all spaces have basepoints, that G is a finite group acting on a space
Y, that G fixes the basepoint of Y and that the orbit map admits
a section. We will let p: Y —• Y/G denote the orbit map and let
s: Y/G —> Y denote a section of it. The symbol c(G) which occurs
in the following theorems denotes a positive integer or infinity and is
a combinatorial invariant of the group that will be defined later.

The main results of this paper are the following:

THEOREM 1. Let Y have the homotopy type of a G-C.W. complex
and suppose that c(G) < oo. Let K be the {reduced) homology theory
associated with some spectrum and let p:hn{Y)->hn{Y/G) denote the
obvious homomorphism. Then there exists a transfer homomorphism
τ:hn(Y/G)-+hn(Y) satisfying the following:

(1) c(G)(τ o p(z) - ΣgeG g*z) = 0for all z e hn{Y),

(2) p o τ(v) = \G\υ for all υ e hn(Y/G). D

We also give a version of Theorem 1 for homotopy. See Theorem
6 below.

The following theorems give the flavour of the kind of constraints
imposed by the transfer.

THEOREM 2. Suppose that c(G) < oo and there is some homology
theory such that hn(Y) = Z and hn(Y/G) = 0. Then G must have a
subgroup of index 2.

THEOREM 3. Suppose that Z 4 acts on W and induces an effective
action on hn(W) = Zχ6 for some homology theory. Then the orbit map
W —• W/Z4 does not admit a section. π

Here is the definition of the transfer map in its most general setting.

DEFINITION 1. Let X and Y be spaces. Let W be an //-spacerfor
which there exists a topological group (L, 1) and a map ε: (W, WQ) —>
(L, 1) inducing an isomorphism of groups e: [X, W] —• [X, L]. Let
a be a map from Y to W and let a be the induced map from
[X, Y] to [X,W]. Let p:[X,Y]^[X, Y/G] be the map induced
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by the projection, let s: [X, Y/G] —> [X, Y] be the map induced by
the section and let β: [X, W] —• [X, W]ah be the abelianizing map.
The transfer map is the function

defined by

τβ(ϋ) = J2βoά(g*S(υ)). π
geG

2. Coherence numbers. As mentioned in the introduction, the de-
velopment of this transfer requires a new idea, namely the "Coherence
Number" of a finite group. We first define the coherence number of a
set of permutations on a finite set and then specialize this definition to
finite groups. The reader should refer to [R3] for details and proofs.
Let P(S) denote the set of all permutations on the set S.

DEFINITION 2. Let S be a finite set and let A c P(S). Suppose
that S = {si, . . . , sm} and A = {σx, . . . , σn} . Let rt = (σ\(Si), ... ,
σn(Si)) and C\ — (s/, . . . , sϊ), for / = 1, 2, . . . , m, be regarded as el-
ements of F(S)n , the direct product of n copies of the free group on
the set S. Let T be the subgroup of F(S)n generated by rx, . . . , rm

and C\, . . . , cm and define θ = Π/li ri^X Ξ T. There is a homomor-
phism λ: T —> T/[T, T], where [Γ, T] is the commutator subgroup
of T. The coherence number, c(A), of .4 is defined to be the or-
der of λ(θ), which may be infinite. It is easily verified that c(A) is
independent of the ways in which S and A are ordered. •

We now specialize this definition to groups by letting the group act
on itself as a set of permutations.

DEFINITION 3. Let G be any finite group. We can regard G as a
subset of P(G) by letting G act on itself on the left by translation.
Specifically, for g e G, we define g e P(G) by putting g{h) =
gh. The coherence number of {g\g e G} c P(G) will be called the
coherence number of the group G and will be denoted by c(G). We
will use TQ to denote the subgroup corresponding to T in Definition
2. D

In [R3] we showed that the coherence numbers obtained by letting
G act on itself on the right or the left are the same. We have chosen
Definition 3 as the most convenient in this context.

3. The combinatorial part of the transfer. In what follows we shall
denote the action of G on a point, function, homotopy class, etc. by
a * and let the meaning be determined from the context.
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DEFINITION 4. Let X and Y be sets and let {̂ 4/} be a set of n
subsets that cover X. If f\ X -» Y and gι: X -> 7 for / = 1, . . . , n
are two families of maps, then we will say that (/i, . . . , fn) ~ (g\9 . . . ,
gn) if the restrictions of f and gz to A\ are the same for all / =
l , . . . , n . •

Our next lemma contains the essential combinatorial idea that
makes the transfer work. Although it is only stated in terms of contin-
uous functions, the identical proof works for arbitrary functions. In
the following lemma, (L, 1) is a topological group and ζ: (Y, yo) —>
(L, 1) is a map. Hom((X, x0), (Y, y0)) wiU denote the set of maps
from (X, x0) to (Y, y0) and ζ denotes the induced map from
Hom((X, x0), (Y, y0)) to Hom((X, x 0 ) , (L9 1)). We will regard
Hom((X, XQ) > (L, 1)) as a group under pointwise multiplication.

LEMMA 1. Let G be a finite group with finite group with finite co-
herence number. Let (X, XQ) be a Hausdorff space and let (Y, yo) be
a space on which G acts. Let σ, ω e Hom((X, x0), (Y, yo)) with
p o σ = p o ω. Let M be the subgroup of Hom((X, x0), (L, 1)) gen-
erated by all elements of the form ζ°(g*σ) and ζ o (g * ω), where g
is any element of G. Let δ: M —• M a b denote the projection. Then
we have

geG geG

in M a b .

Proof. Recall, from Definitions (3) and (4), that the group TG is
generated by the elements rt = (gjgi, . . . , gtgn) and c, = (gi9... , &•)
for i = 1, . . . , n . The first step in our proof is to show that the homo-
morphism from TG into Hom((X, JCO), (L, 1)) given on generators
by Γ/ M ζ o (gi * σ) and c/ H-> £ o (gz * ω) is well defined.

Let Aj = { X E X\σ(x) = ^z *ω(x)} . Note that, since poσ = poω,
these sets cover X . It is clear from the definition of the A{ and
Definition 4 that (σ, . . . , σ) ~ (gi * ω, . . . , gn * ω) . From this, we
see in general that (g*σ, ... , g*σ) ~ ((ggi) * ω, . . . , (g£π) * ώ).

We will construct a homomorphism ^ x ^: TQ —• L as follows. Let
/?£ be the projection of the subgroup ΓG of F(G)\G\ onto the ^ h
factor. For each x e X, we define a map of sets, ηx: G -> L,
by tyxίsO — C ° (g * G>)(JC), which then induces a homomorphism
ίfo: -F(G) —» F{L). Let o: -F(X/) —> L be the canonical homomor-
phism and define ψx^k — υof\χ°Pk'
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Now suppose that x e A} , n Ak . We claim that ψxj = ψx^. To
see this, the reader can easily check that equality holds on the two
types of generators for the group TG.

Since the sets Ak cover the set X, it follows that the homomor-
phisms ψx^k, obtained from each pair x and k with x e Ak, can
be "glued" together into a single homomorphism ψ from TQ into
the set of continuous functions from (X, XQ) into (L, 1). It is im-
mediate from our construction of ψ that ψ{ri) = ζ o (gv * σ) and
ψ(d) = ζ o (^ * ω) and hence we obtain a well-defined map from TG

into Hom((X,.Xo)> (L, 1)).
Clearly the image of ψ is precisely the subgroup M of

Hom((X, XQ), (L, 1)) and so ψ induces a homomorphism ψah: T^-^
M a b . Since the coherence number of G was assumed to be finite, we
know that c(G)λ(θ) = 0, where λ{θ) is the element of Tf defined
in Definition 2. Applying ψah, we see that c(G)ψ*b(λ(θ)) = 0. Ex-
panding this, we obtain that

c{G)ψ

geG J \ geG

which equals zero and gives our result. D

The reader should check that, if the topological group L used above
happened to be an abelian monoid, then we would not need the factor
c(G).

4. Properties of the transfer map. Here is the crucial property of
the transfer map.

THEOREM 4. If τa is given as in Definition 1 and z e [(X, XQ),

(Y,y0)] then

= 0

in

Proof. Define ζ = ε o a: (Y, yo) —• (L> 1) a n d choose a represen-
tative z: X -> Y. Let M be the subgroup of Hom((X, x0), (L, 1))



138 BILL RALPH

generated by all the elements of the form ζo(g*z) and ζo(g*{sopoz})
for all g e G. By Lemma 1,

geG geG

in M a b .
From this it follows that

c(G) Σ[[ζ(g * z)]] = c(G) Σ[[ζ(g *{sopo z})]]
geG geG

in [(X, xo)> (£> l ) ] a b

5 where the inner and outer brackets indicate
the two equivalence relations of homotopy and abelianization respec-
tively. The result now follows after applying the isomorphism

( O a b : [{X, xo)> (L, l ) ] a b - [{X, xo), {W, wo)f\ π

Since the subgroup generated by a single element is abelian, it turns
out that, under an additional hypothesis, we can say something about
the order of elements in [(X, XQ) , (W, WQ)] . The reader can easily
furnish the proof of the following by modifying the proof of Theorem
4.

THEOREM 5. Assume the context of Definition 1 and in addition that
[X, Y/G] is trivial. Suppose that for some [f]G[X,Y] and all geG
the elements ά([g*f]) coincide in [X, W], Then the order of ά([/])
in [X, W] divides c(G)\G\. π

We next examine the simplest form of our transfer, which occurs
when Y is an H space which has the homotopy type of a topological
group and X is a co-H space. In this case, the transfer map τ is
a homomorphism from [X, Y/G] to [X, Y]. It is in this setting
that we feel our use of the term transfer is most justified, since we
obtain a transfer map with exactly the same properties as the transfer
for singular homology theory, except for the appearance of the factor
c(G). This factor can be looked on as the "correction" term that is
required because homotopy theory is "not as abelian", in a certain
sense (see [Rl] for a precise description), as we might like it to be.

THEOREM 6. In addition to the assumptions of Definition 1, assume
that Y = W and that X is a co-H space. Then the transfer map
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τ: [X, Y/G] —• [X, Y] is a homomorphism with the following proper-
ties:

(1) c(G)lτop(z)-Σg*z\ =0 fora!lze[X9Y],
\ seo J

(2) p o τ(υ) = \G\v for all υe[X, Y/G].

Proof. Immediate from Theorem 4 and the definitions. D

5. The transfer for a generalized homology theory. Next, we develop
a transfer for the reduced homology theory associated with any spec-
trum.

We will follow the definitions and notation for spectra given in
[Sw]. Recall that the reduced homology theory, Λ*, associated with a
spectrum E is defined by

hn(Y) = diήimπk+n(EkΛY, * ) ,
k

where the connecting homomorphisms φk are defined by the compo-
sition

πk+n(EkΛY, *)^πk+n+ι(Sι ΛEkΛY, * ) ^ % i # w Λ 7 , *).

It will be convenient in what follows to denote by φk the correspond-
ing homomorphisms used to define hn(Y/G).

Proof of Theorem 1. The proof will be a straightforward "direct
limit version" of Theorem 4. Note that we have not had to make any
assumptions involving topological groups. This is because suspending
maps is equivalent to mapping into spaces of the form ΩSY, where
Y is a CW complex, and as, is well known, see [St] for example,
these spaces are of the homotopy types of topological groups. In what
follows, we will extend the group action of G on Y to an action of
G on Ek Λ Y in the obvious way.

We begin by taking the spaces X, Y and W in Theorem 4 to be
$n+k ? £k Λ Y a n ( j QS(Ek Λ Y), respectively, and the map ak: Ek A

Y —• ΩS(Ek Λ Y) to be the adjoint of the suspension of the identity
map. By Theorem 4, there is a transfer homomorphism

τak: πn+k{Ek Λ Y/G, *) -+ πn+k(ΩS(Ek Λ Y), *).

Let adj^: πn+k(ΩS(Ek Λ Y), *) -> πk+n+ι(Sι ΛEkAY,*) denote
the adjoint homomorphism and define

τk = ιk oadjfcoτα : πn+k(EkΛY/G, *) -+ πk+ϊ+n(Ek+ι Λ Γ , *).
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The theorem now follows immediately from the following easily
verified properties:

(a) Φk+\ ° ?k = *k+\ ° Ψk ,

(c) c(G)(τko Pk{z) -ΣgeGΦk(g * z)) = 0. D

Using the fact that Eilenberg-Mac Lane spaces have the homotopy
types of abelian monoids and the remark following Lemma 1, it can
be shown that the coherence number factor c(G) can be dropped
in Theorem 1 to obtain a transfer resembling the usual transfer for
ordinary homology theory.

6. Proofs of Theorems (2) and (3).

Proof of Theorem 2. From Theorem 1, the transfer gives that
c(β) ΣgeG S * z = 0. Since hn{X) = Z, we have that Σgeo S * z =
0. This can only happen if there is a nontrivial homomorphism
from G into the automorphism group Z2 of Z. The result follows
immediately. D

Proof of Theorem 3. By way of contradiction, assume that the orbit
map has a section. The units of order 4 in Z 1 6 = {0, 1, . . . , 15} are
3, 5, 11 and 13. Since the action is effective, p: hn(W) -> hn{W/Z4)
cannot be an isomorphism, p is a split epimorphism since the orbit
map admits a section. Therefore the image of the map in homology
induced by the section is a direct summand of Z 1 6 . It follows that
this image and the image of the transfer map must be trivial. Since
Z 4 is cyclic, its coherence number is 1 by [R3]. Theorem (1) gives that
τ o ρ(z) — ΣgeG 8 * z w ^ich equals either 8z or 12z depending on
which unit of order 4 we take. This contradicts the triviality of τ . D
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