PACIFIC JOURNAL OF MATHEMATICS
Vol. 161, No. 2, 1993

ELLIPTIC REPRESENTATIONS FOR Sp(2n) AND SO(n)

REBEccA A. HERB

Let G be a connected, reductive p-adic group and let G° denote
the set of regular elliptic elements of G. Let n be an irreducible,
tempered representation of G with character ©,, and write ©; for
the restriction of ©, to G°. We say = is elliptic if ©; is non-zero.
In this paper we will characterize the elliptic representations for the
p-adic groups Sp(2n) and SO(n). We will show for Sp(2n) and
SO(2n + 1) that every irreducible, tempered representation is either
elliptic or can be irreducibly induced from an elliptic representation.
We will then show that this fails for the groups SO(27n). In this
case there are irreducible tempered representations which cannot be
irreducibly induced and are not elliptic.

Introduction. For real reductive Lie groups, the elliptic represen-
tations are the discrete series and limits of discrete series representa-
tions. Knapp and Zuckerman [K-Z] classified the irreducible tempered
representations by proving that every irreducible, tempered represen-
tation is either elliptic, or can be irreducibly induced from an elliptic
representation of a proper parabolic subgroup in an essentially unique
way. Thus the p-adic groups Sp(2n) and SO(2n + 1) behave in the
same way as real groups. In the p-adic case, Kazhdan [K] proved
that an irreducible tempered representation is elliptic just in the case
that it is not a linear combination (in the Grothendieck group) of
properly induced representations. Clozel [C] conjectured that an ir-
reducible tempered representation is elliptic, if and only if, it cannot
be realized as a full induced representation from a proper parabolic
subgroup. The case of SO(2n) provides a counterexample to Clozel’s
conjecture.

Every irreducible tempered representation is a subrepresentation of
a representation unitarily induced from a discrete series representa-
tion of a parabolic subgroup. Thus in order to classify elliptic rep-
resentations it is necessary to know which irreducible constituents of
reducible induced representations are elliptic. In [A], Arthur gives -
such a characterization in terms of the R-group corresponding to the
induced representation. In this paper we will use Arthur’s results to
characterize the elliptic representations of the symplectic and special
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orthogonal groups where Goldberg [G] has computed the R-groups
for all tempered representations unitarily induced from discrete series
of proper parabolic subgroups.

In §1 we will review the theory of the R-group and the results of
Arthur which will be needed in studying elliptic representations. In
§2 we will use the results of Goldberg to characterize the elliptic, irre-
ducible, tempered representations for the symplectic and odd special
orthogonal groups. In this case we will see that an irreducible, tem-
pered representation is either elliptic or is irreducibly induced from an
elliptic representation of a proper parabolic subgroup. In §3 we will
use results of Goldberg to treat the even special orthogonal groups,
which are technically more difficult than the groups considered in §2.
In this case there are examples of irreducible, tempered representa-
tions which are not elliptic, but cannot be irreducibly induced from
any representation of a proper parabolic subgroup.

I would like to thank Paul Sally and David Goldberg for their help-
ful comments.

1. Preliminaries. Let F be a locally compact, non-discrete, nonar-
chimedean local field of characteristic zero. Let G be the F-rational
points of a connected, reductive algebraic group over F. Let G’ de-
note the set of regular elements of G. Thus x € G’ if Dg(x) # 0
where Dg(x) is defined as in [HC, §15]. We say x € G is elliptic
if it is contained in a Cartan subgroup which is compact modulo the
center of G. Write G° for the set of regular elliptic elements of G.
Let &(G) denote the set of (equivalence classes of) irreducible, tem-
pered representations of G and let &(G) denote the subset of &;(G)
consisting of square-integrable representations. Given any 7 € &(G)
we write O, for the character of 7z and ©¢ for the restriction of ©,
to G°.

We say that M C G is a Levi subgroup of G if there is a parabolic
subgroup P = MN of G so that M is a Levi component of P.
Given ¢ € & (M), we write Ind$(c) for the corresponding induced
representation of G. (We will always use unitary induction.) Since
the class of Indg(a) is independent of P, we will also write i (o)
for the corresponding equivalence class.

Let P be a parabolic subgroup of G with Levi component M and
split component A4 and let a denote the real Lie algebra of 4. Let
W(G/A) = Ng(A)/M. Then W(G/A) acts on &(M). For each
w € W(G/A), let Z, denote the representation space for Indg(wa).
Associated to each w € W(G/A), there is a meromorphic family of
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intertwining operators, A(w, v, g), v € ag, defined by the standard
integral formula. By normalizing with (scalar) meromorphic normal-
izing factors, we obtain intertwining operators & (w, v, g) which
are holomorphic on the unitary axis. Write &/ (w, o) =% (w, 0, g).
Now & (w, g): # — #, and satisfies the cocycle condition

M(wles U) = ‘M(wl s 11)20')%('(1)2, 0)

for all wy, wy; € W(G/A). Define W(o) = {w € W(G/A): wo ~oc}.
Let V' be the representation space of o. Then for each w € W(o)
there is an intertwining operator 7(w): V — V so that T(w)(wo)(m)
=og(m)T(w) forall me M. Now &' (w, ¢) = T(w)& (w, o) gives
a self-intertwining operator of Ind$(c) for all w € W(g) and these
span the commuting algebra C(o) of Ind$(o).

Given any reduced root f € ®(P, A), let Mg be the Levi sub-
group of G with M C My defined as in [HC, §13], and let ug(a)
be the Plancherel measure associated to the representation i M,, m(@).
Let A" = {B € ®(P, A): ug(c) = 0} and let W(A') be the sub-
group of W(G/A) generated by reflections in the roots of A’. Then
W(A) = {w € W(og): &'(w, a) is scalar}. We can write W(o) =
R x; W(A'), the semidirect product of R and W(A'), where R =
{weW(o):wp >0, VBe€A'}. Then {&'(w, 0): w € R} is a lin-
ear basis for the commuting algebra [S]. Further, given w;, w; € R,
M,(wlea U) = ’7('w1 > wZ)M’(wl > a)%’(wz, 0') where "(wl ’ w2) €
C* satisfies T(wiw;) = p(wy, wy)T(wy)T(w;y). Thus C(o) is iso-
morphic as an algebra to the complex group algebra C[R] if and only
if the intertwining operators T(w), w € R, can be chosen so that
T(wywy) = T(wy)T(w,) for all wy, wy € R.

Assume for simplicity in the remainder of this section that R is
abelian and C(0) ~ C[R] as algebras. (This will be the case in our
examples.) For each w € R, define

aw ={H €a: wH = H}.

Let Z be the split component of G and let 3 denote the real Lie
algebra of Z. Then 3 C a, for all w € R. Now a special case of
Arthur’s result is the following.

THEOREM 1.1 (Arthur [A, 2.1]). Suppose that R is abelian and that
C(0) >~ C[R]. Then i p(0) has an elliptic constituent < all constitu-
ents of ig m(0) are elliptic < thereis w € R such that a,, = 3.
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The irreducible constituents of ig j(c) can be described as fol-
lows. Let # be the representation space of i (o). Now given any

unitary character x € R, let
Ze={veX: . r,o)v=xr(r)v for all r € R}.

Then Z = @, el’i% is exactly the decomposition of /# into irre-
ducibles. Let 7, denote the irreducible representation of G on 7 .

Suppose that M’ is a Levi subgroup of G with M C M’ which sat-
isfies the compatibility condition of [A, §2] with respect to the choice
of positive roots A’ used to define R. Let R' = RNW(M'/A4). Then
R’ can be identified with the reducibility group for i), /(o). Now as
above we can use the characters of R’ to decompose iy /(o) into
irreducible constituents 7,/ , k' € R'. For each k' € R’ , define the
subset R(x’) of R by

Rk')={xeR:k(r)=«'(r), reR'}.

Then another consequence of [A, 2.1] is the following.

LEMMA 1.2 (Arthur). For each k' € R', we have

ig. s (Tye )-@ Z T

KER(IC )

In particular we see that the irreducible constituents 7, of ig (o)
can be irreducibly induced from M’ if and only if R=R’.

Define
ar = n Q-
wWER

LemMA 1.3. Suppose that R is abelian and C(o) ~ C[R]. Let ©
be an irreducible constituent of ig (o). Then there are a proper Levi
subgroup M' and t € &(M') such that © = ig ,p(t) if and only if
agr # 3. Further, M' and t© can be chosen so that t is elliptic if and
only if there is wo € R such that ag = ay, .

Proof. As in [A, §2], for each w € R, there is a Levi subgroup Ly
of G containing M which satisfies the compatibility condition and
such that a, = ar_, the split component of L,,. Thus there is a Levi
subgroup M’ containing M which satisfies the compatibility condi-
tion so that a,, = ag. Since every element of R centralizes a,, we
have R C W(M'/A). Thus as above, each irreducible constituent of
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ig,m(0) is of the form i; ;. (7) where 7 is an irreducible constituent
of iyr p(0). Now if ag # 3, then M’ is proper.

Conversely, if such an M’ and 7 exist, then they can be chosen so
that M C M’ and 7 is an irreducible constituent of i), ,,(o). Thus
as above we must have R' = R. Thus R C W(M’/A4) so that a;, C
ag. Thus if M’ is proper we have agr # ;. Further, i), /(o) has
elliptic constituents if and only if there is wo € R so that a, = a,, .
But since ay C ag C a, for all w € R, this is true if and only if
Gy = AR = Gy - a

2. Elliptic representations of Sp(27) and SO(2n + 1). Goldberg’s
results in this case can be summarized as follows. Let G = Sp(2n, F)
or SO(2n + 1, F). Since all our groups will be F-rational points of
algebraic groups, we will drop the F’s. Similarly we write GL(n) for
GL(n, F). Then if P = MN is a proper parabolic subgroup of G,
there are r > 1, positive integers my, m,, ..., m,, and an m > 0,
with >, m; + m = n, such that

M ~ GL(m;) x --- x GL(m,) x G(m),
where G(0) = {1}, while for m > 0 we have

[ Sp(2m), if G = Sp(2n);
Glm) = { SO2m +1), if G=S0(2n +1).

Let 4 be the split component of M. Then A ~ (F*)" where
the ith copy of F* corresponds to the scalar matrices in the sub-
group GL(m;), 1 <i <r. Now if we use this identification to write
each a€ 4 as a=(A41,42,...,4), 4 € F*, then W(G/A) can be
identified with a subgroup of the group of all permutations and sign
changes of the 4;, 1 < i <r. Specifically, the permutation (ij) which
interchanges A, and 4; is in W(G/A) just in case m; = m; so that
the corresponding scalar matrices are the same size. Let ¢; be the
sign change A; — Ai‘l. Then ¢c; € W(G/A) forall 1 <i<r. Let
0=01® -0 Qp € &(M). Here for 1 <i<r, g; € &(GL(m;))
and p € &(G(m)). Now

(ij)o ~0 & 0; ~gj,
c,-cj(ij)a:aﬁa,-z&j,
and
Ci0 ~ 0 & 0; ~ Gj
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where & is the contragredient of o. Set
(2.1) I(e)={1<i<r:0;,~d;and

IG(m+m.),GL(m )xG(m)(0i ® p) is reducible}.

Of course o; ~ 6; is in fact a necessary condition for

IG(m+m,),GL(m,)x G(m)(Ti ® p)

to be reducible, since it is the condition that g; ® p is ramified in
G(m +m;).

THEOREM 2.2 (Goldberg [G]). Suppose M and o € &(M) are as
above. Let d be the number of inequivalent a; such that i € I(o).
Then R ~ Z‘21 and is generated by d of the sign changes c;, i € I(0).

ProrosITION 2.3. Suppose that M is any Levi subgroup of G and
g€ &H(M). Then
C(o) ~ C[R].

Proof. Renumber indices so that ¢y, ..., c; are the generators of
R. For 1 <i<d, arepresentative ¢; € Ng(A4) for ¢; can be chosen
so that

ci(my, ..., mp, m)e; = (my, ..., (mH™, L me, m)

where m = (my, ..., m,, m') € GL(m{) x---x GL(m,) x G(m) . For
1 <i<d,let V; be the representation space of ¢;, and define a
representation o} on V; by g7(g) = 0i((g")"!), g € GL(m;). Now
since ¢; € W(o), we have o/ ~ o0;. (In stating Theorem 2.2 we
used the fact that o ~ 6;.) Let T;: V; — V; be an intertwining
operator between g; and ¢; . Since (g})* = g;, Ti2 = r; 1S a non-zero
complex scalar. Thus we can normalize 7; so that Tl-2 = 1. Now
=019 Q0 p actson V=V, ---®V,V’'. Extend T; to an
endomorphism 77 of V by making it act trivially on every factor

I

except V;, where it acts by 7;. Then Tl.V intertwines c;0 and o and

(T/)* = 1. Further, for 1 <i#j<d, T/T/ = T[TV since they

act on different factors of V. Thus if we define T(c;) = T, then
ci — T'(c;) extends uniquely to a group homomorphism. o

LEMMA 2.4. For any M, a as above, there exists wy € R so that
aR = ay, . Further, there is w € R such that a,, = {0} & ag = {0} &
R~7,.
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Proof. By Theorem 2.2, R =Z4 C S(G/A) where S(G/A) denotes
the subgroup of W (G/A) generated by the block sign changes ¢;, 1 <
i < r. Renumber indices so that it is generated by the sign changes
Cl,...,¢cq. If welet wyp =c;---¢c4, then Gy, C Gy for all w € R
so that ag = a,, . Now for w € S(G/A), a, = {0} if and only
if w=cc-¢,and cc;---¢, € R if and only if ¢; € R for all
1<i<r. Thus aR=aw0={0} if and only if R~ 7). O

Lemma 2.4 can be combined with Theorem 1.1 and Lemma 1.3 to
obtain the following theorems.

THEOREM 2.5. Let M be a Levi subgroup of G and let o € &(M).
Then i, p(0) has an elliptic constituent < all constituents of i p(0)
are elliptic <+ R~17Z).

THEOREM 2.6. Let & € &,(G). Then either n is elliptic or © =
ig,m(t) for some proper Levi subgroup M of G and some elliptic
1€ &(M).

Suppose now that R~ Z} . For x € R, define e(r)=x([Ii=;¢) =
+1. Let 1 € R denote the trivial character.

PROPOSITION 2.7. For all xk € R we have ©¢ = e(k)65.

Proof. For 1 <i<r,let M; be the maximal parabolic subgroup
containing M with M; ~ GL(m;) x G(n — m;). Let R; be the re-
ducibility group for iy, m(c). We can identify R; with the sub-
group of R generated by {c;,1 < j <r,j # i}. (Since A’ =
there is no compatibility condition.) Then for each k; € R;, ﬁ(x,-) =
{ri(+), ki(—)} where x;(£)(c;) = Ki(c)), j #i,and Ki(£)(c;) = 1.
Now using Lemma 1.2, for k; € R; we have ig, M(Tk,) = Ty () ®
ﬂx‘(_) . Thus eii“_) = ~8§i(_) .

Now the proof is by induction on s(x), the number of indices 1 <
i <r sothat k(c;) = —1. It is trivial if s(x) = 0 since ¢(1) = 1.
Assume that the lemma is proven for x¥ € R so that s(k) =5 2> 0.
Fix ¥ € R with s(k) = s+ 1. Then thereis 1 < i < r so that
K(c;) = —1. Let k; denote the restriction of ¥ to R;. Then k¥ =
ki(—) and s(x;(+)) = s. Thus by the induction hypothesis we have
e = g(k;(+))O5 . But as above

et = -—Gei(ﬂ = —¢&(Kki(+))0 = &(x)65. O

K

4
x,(+)
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3. Elliptic representations of SO(2n). Let G=SO(2n)=S0(2n, F).
Then if P = M N is a proper parabolic subgroup of G, as in §2 there
are r > 1, positive integers m;, my, ..., m, andan m>0, m#1,
with Y7, m; + m = n, such that

M ~ GL(m;) x --- x GL(m,) x G(m),

where G(0) = {1}, while for m > 2 we have G(m) =SO(2m).

Let A be the split component of M. Then 4 ~ (F*)" and, as
in §2, W(G/A) can be identified with a subgroup of the group of
all permutations and sign changes of the 4;, 1 < i < r. As be-
fore, the permutation (ij) is in W(G/A) just in case m; = m;. Let
G' = O(2n). For 1 <i < r, thereis ¢; € Ng(A4) such that for
m=(my, ..., my, m)€GL(my)x - x GL(m,) x G(m), ¢;mc;"' =

(my, ..., (mﬁ)‘l ,...,my, m). Thus conjugation by ¢; gives the
sign change c¢; taking 4; to A7'. Further, if m > 2 thereis ¢ €
Ng(A) so that @me'~! = (my, ..., my, ¢'m'), where ¢’ is an outer

automorphism of SO(2m) with (c’)? = 1. Note that conjugation by
¢’ acts trivially on 4. Now if 1 < i < r and m; is even, then C;
can be chosen to be in Ng(A4), so that conjugation by ¢; gives the
sign change of ¢; € W(G/A). Further, if m; is odd and m > 2,
then C; can be chosen so that ¢;¢’ € N;(A) and conjugation by ¢;¢’
gives the sign change ¢; € W(G/A). If m; is odd and m = 0, then
the individual sign change ¢; is not in W(G/A), but for two such
indices, C;¢; € Ng(A) and gives the product c;c; € W(G/A). This
makes the groups SO(2n) more complicated than the groups Sp(2n)
and SO(2n+1).

Llet 0 =019 -0, ®p € &(M). Herefor 1 <i<r, og; €
& (GL(m;)) and p € &(G(m)). Now as in §2 we have

(ij)Jo ~0 & 0; ~0aj,
cicj(ij)o ~ o & 0; ~ Gj.
Further, if m; is even, then
Ci0 = 0 & 0; = 0.
If m; is odd and m > 2, then
cio~ag<o0;~d and c'p=~p.
Finally, if m;, m; are odd, then

CiCjo ~0 ¢ 0;~06; and 0g; ~d;.
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Write I,={1 <i<r:m;iseven} and I,={1 <i <r: m; is odd}.
Define )
I_{IeUIO, ifm>2and c'p~p;
"1, otherwise.
Define I, = I{. Now set

I(o) = I1(0) U I;(0)
where
(3.1a) I i(o)={i€l,:0;~d; and
iG(m+m,),GL(m )xG(m)(0i ® p) is reducible}
and
(3.1b) (0)={i € L: g; ~ &;}.

THEOREM 3.2 (Goldberg [G]). Suppose M and o € & (M) are as
above. For j =1,2, let d; be the number of inequivalent o; such
that i€ 1;(c), and let d =d, +d,. If dy =0, then R ~Z%, while if
dy, >0, then R~ Z‘z"‘1 . In either case, R C S(G/A), the subgroup of
W(G/A) generated by sign changes.

PROPOSITION 3.3. Suppose that M is a Levi subgroup of G and that
o € &(M). Then C(o) ~ C[R].

Proof. Suppose first that m = 0, or that m > 2 but ¢’p # p. In
thiscase Iy = I, and I, = I,. If d, < 1, then R is generated by
d, sign changes in indices i € I;(g), and the proof is the same as
that of Proposition 2.3. Assume that d, > 2. Renumber the indices
sothat 1,...,p=dy e (o), p+1,...,d =d,+d, € I,(g), and
C1Cp > C2Cp s -+ 5 Cp—1Cp > Cpt1» - - - » Cq are a complete set of generators
for R~ Z4~!. For each 1 < i < d, we must have 0; ~ ¢} . As in
Proposition 2.3, we can choose T;: V; — V; intertwining o/ and g;,
so that 72 =1, 1 <i < d, and extend them to endomorphisms 7}

1
of V=V®  -V,®V'. Again, (TiV) =1 and TVTV TVTV
for 1 < i, j <d. Now we can define T(cicp) = TVTV, 1 5 i <
p—1,and T(¢;) =T/, p+1<i<d,and this extends to a group
homomorphism.

In the case that m > 2 and ¢’p ~ p, we have I} = [,Ul,. Renum-
ber indices so that 1,...,p € IL(e)Nl,, p+1,...,d = d, €
Ii(o)NI,, and cy, ..., c; are the generators of R ~ Z¢. Choose
intertwining operators 7;, 1 < i < d, as above, and also choose an
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intertwining operator 77: V/ — V'’ which intertwines ¢’p and p and
satisfies (77)% = 1. Extend T” to an operator (7")" on V which acts
non-trivially only on ¥’. Then define T(c;) = T/ (T")V,1<i<p,
and T(c;)=T}) ,p+1<i<d. ’ ]

LEMMA 3.4. There is wo € R such that ag = ay, if and only if d,
is even or dy, = 1. Further,

there is w € R such that a,, = {0} <& d =r and d, is even

and
ag={0}=d=randd, # 1.

Proof. We can write a = {(x;,..., X): x; € R} so that ¢; cor-
responds to the sign change x; — —x;. Renumber indices so that
l,...,p=dyel(o),p+1,...,d € I)(g), and R is generated by
the elements c¢icj, 1 <i#j<p,and ¢;,p+1<i<d. Nowif d; is
even, we have wyp =c¢;---¢; € R and aR=aw0={(x1, ey Xp)i X =
+=x4=0}. If dy =1 we have wy = ¢;---c; € R with ag =
aw, = {(X15 ..., Xr): X2 = --- = x4 = 0}. Finally, if d> > 3 is odd,
then ag = {(x1, ..., X;): x; = --- = x4 = 0}, but a, # ag for any
w ER. a

Combining Lemma 3.4 with Theorem 1.1 and Lemma 1.3 we obtain
the following.

THEOREM 3.5. Let M be a Levi subgroup of G and o € &(M).
Then i, ap(0) has an elliptic constituent < all constituents of ig, (o)
are elliptic < d =r and d, is even.

PRroOPOSITION 3.6. Suppose that d <r orthat d =r and d, = 1.
Then each irreducible constituent of i p(0) is of the form ig 5. (7)
where M’ is a proper Levi subgroup of G and 1 € &(M’). If d, is
even or dy =1 we can choose M’ so that t is elliptic.

ProposITION 3.7. Suppose that d = r and d, > 3 is odd. Then
each irreducible constituent of i p(0) is a linear combination of rep-
resentations induced from proper parabolic subgroups, but cannot be
irreducibly induced. In fact, each irreducible constituent of ig (o) is-
of the form 2?;1 cilg,m (T;) where the M; are proper Levi subgroups
of G, the t; € &(M;) are elliptic, and the c; are non-zero complex
numbers.



ELLIPTIC REPRESENTATIONS 357

REMARKS. Such representations exist. For example, suppose G =
SO(6), M ~GL(1)3,and 0 ~ x; ® x» ® x3 where the x;, 1 <i<3,
are distinct characters of F* with X,-z = 1. Note also that SO(6)
is locally isomorphic to SL(4). In fact a non-elliptic representation
which cannot be irreducibly induced can also be constructed in the
principal series of SL(4). All of the above results on R-groups are
equally valid for the real Lie groups SO(2n, R). On the other hand,
representations of the type described in Proposition 3.7 cannot exist
for the real case. This is because the only odd integer m such that
GL(m, R) has discrete series is m = 1. Now there are only two
distinct characters y of R* with y2=1.

Proof of Proposition 3.7. In this case, by Lemma 3.4, ag = {0}.
Thus by Lemma 1.3, the constituents cannot be irreducibly induced.
The fact that each irreducible constituent of i »s(0) is a linear com-
bination of representations induced from proper parabolic subgroups
follows from a theorem of Kazhdan [K] since we know from Theorem
3.5 that the irreducible constituents are not elliptic. However since
this is the first example in which non-elliptic representations are not
irreducibly induced, it is interesting to show that directly.

In this case we again have I1(d) = I, I(c) = I,, and R =~

Zg‘l . Write p = d,, and suppose that m;, ..., m, are odd and
Mp41, ..., m, are even. Then R can be generated by s; = ¢1¢2, §2 =
C2€3, ceey Sp_l =Cp_1(,'p, Sp+1 =CP+1 s oo s Sr=20Cr.

For 1 <i<p,let M; be the Levi subgroup of G so that M C M;
and M; ~ GL(m;) x G(n —m;). Fix i and define d’, d}|, d; as in
Theorem 3.2 with respect t0 iy up(0). Then di = d; and d) =
dy—1. Thus d' =r—1 and d} > O is even, so that R’ ~ Z}2
and every irreducible constituent of iy, () is elliptic. Let S =

{S15 ..+ 58—1, 8p41> ..., S} be the set of generators of R. Then R;
has generators
S\{s1}, ifi=1;
Si=1 (S\{si-1, s} U{sicsi}, if2<i<p-1;
S\{sp-1}, if i =p.

As in the proof of Proposition 2.7, for x,x’ € R and k; € ﬁ,-,
T ®m = iG,M(TK') if k|l =k'|r =k; and Kk #K'.

Now fix kg € R and define ki, 1 <i<p-1by ki(s;) =xo(s;), j #
i,and k;(s;) = —Ko(s;). Define x, =xp. Thenfor 1 <i<p,k;_; #
K;, but x;_; and x; have the same restriction to R;. Now since p
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is odd we can write
p j+1
—1)i+
T, = Z %(TCKI—I + 7[",) ’
i=1

and this expresses 7, as a linear combination of properly induced
representations of the desired form. O

Suppose that we are in the situation that d = r and d, is even so
that [[/_,c; € R. For k € R, define (k) = x([];_; ¢i;). Then the
following can be proven in the same way as Proposition 2.7.

PROPOSITION 3.8.ASuppose that d =r and d, is even. Then ©% =
e(k)®5 forall k € R.
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