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ELLIPTIC REPRESENTATIONS FOR Sp(2n) AND SO(w)

REBECCA A. HERB

Let G be a connected, reductive /?-adic group and let Ge denote
the set of regular elliptic elements of G. Let π be an irreducible,
tempered representation of G with character θ π , and write θe

π for
the restriction of θ π to Ge. We say π is elliptic if θe

π is non-zero.
In this paper we will characterize the elliptic representations for the
/7-adic groups Sp(2«) and SO(n). We will show for Sp(2w) and
SO(2n + 1) that every irreducible, tempered representation is either
elliptic or can be irreducibly induced from an elliptic representation.
We will then show that this fails for the groups SO(2«). In this
case there are irreducible tempered representations which cannot be
irreducibly induced and are not elliptic.

Introduction. For real reductive Lie groups, the elliptic represen-
tations are the discrete series and limits of discrete series representa-
tions. Knapp and Zuckerman [K-Z] classified the irreducible tempered
representations by proving that every irreducible, tempered represen-
tation is either elliptic, or can be irreducibly induced from an elliptic
representation of a proper parabolic subgroup in an essentially unique
way. Thus the p-adic groups Sp(2n) and SO(2n + 1) behave in the
same way as real groups. In the /?-adic case, Kazhdan [K] proved
that an irreducible tempered representation is elliptic just in the case
that it is not a linear combination (in the Grothendieck group) of
properly induced representations. Clozel [C] conjectured that an ir-
reducible tempered representation is elliptic, if and only if, it cannot
be realized as a full induced representation from a proper parabolic
subgroup. The case of SO(2Λ) provides a counterexample to ClozeFs
conjecture.

Every irreducible tempered representation is a subrepresentation of
a representation unitarily induced from a discrete series representa-
tion of a parabolic subgroup. Thus in order to classify elliptic rep-
resentations it is necessary to know which irreducible constituents of
reducible induced representations are elliptic. In [A], Arthur gives
such a characterization in terms of the i?-group corresponding to the
induced representation. In this paper we will use Arthur's results to
characterize the elliptic representations of the symplectic and special
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orthogonal groups where Goldberg [G] has computed the i?-groups
for all tempered representations unitarily induced from discrete series
of proper parabolic subgroups.

In § 1 we will review the theory of the i?-group and the results of
Arthur which will be needed in studying elliptic representations. In
§2 we will use the results of Goldberg to characterize the elliptic, irre-
ducible, tempered representations for the symplectic and odd special
orthogonal groups. In this case we will see that an irreducible, tem-
pered representation is either elliptic or is irreducibly induced from an
elliptic representation of a proper parabolic subgroup. In §3 we will
use results of Goldberg to treat the even special orthogonal groups,
which are technically more difficult than the groups considered in §2.
In this case there are examples of irreducible, tempered representa-
tions which are not elliptic, but cannot be irreducibly induced from
any representation of a proper parabolic subgroup.

I would like to thank Paul Sally and David Goldberg for their help-
ful comments.

1. Preliminaries. Let F be a locally compact, non-discrete, nonar-
chimedean local field of characteristic zero. Let G be the F-rational
points of a connected, reductive algebraic group over F. Let G de-
note the set of regular elements of G. Thus x € G' if DG(x) Φ 0
where DG{x) is defined as in [HC, §15]. We say x e G is elliptic
if it is contained in a Cartan subgroup which is compact modulo the
center of G. Write Ge for the set of regular elliptic elements of G.
Let £*((?) denote the set of (equivalence classes of) irreducible, tem-
pered representations of G and let ^ ( ( J ) denote the subset of
consisting of square-integrable representations. Given any π e
we write θ π for the character of π and θ£ for the restriction of θ π

to G*.
We say that M c G is a Levi subgroup of G if there is a parabolic

subgroup P = MN of G so that M is a Levi component of P.
Given σ e %t{M), we write Indp(σ) for the corresponding induced
representation of G. (We will always use unitary induction.) Since
the class of lndp(σ) is independent of P, we will also write IG,M{G)

for the corresponding equivalence class.
Let P be a parabolic subgroup of G with Levi component M arid

split component A and let α denote the real Lie algebra of A. Let
W(G/A) = NG(A)/M. Then W(G/A) acts on &2(M). For each
w G W(G/A), let %fw denote the representation space for lndp(wσ).
Associated to each w e W(G/A), there is a meromorphic family of
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intertwining operators, A(w, v, σ), 1/ € α£, defined by the standard
integral formula. By normalizing with (scalar) meromorphic normal-
izing factors, we obtain intertwining operators Jtf(w9v,σ) which
are holomorphic on the unitary axis. Write $/(w , σ) = stf{w, 0, σ).
Now $/{w, σ): <%{ —• <% and satisfies the cocycle condition

for all Wi, i ^ € W{GjA). Define W (̂σ) = {w e W[GjA) :wσ~σ}.
Let V be the representation space of σ. Then for each w e W(σ)
there is an intertwining operator T(w): V —> F so that T(w)(wσ)(m)
= σ(m)T(w) for all meM. Now J / ' ( Ό ; , σ) = T(w)£t?(w, σ) gives
a self-intertwining operator of Indp(σ) for all w € FF((j) and these
span the commuting algebra C(σ) of Ind^(σ).

Given any reduced root β e Φ(P, A), let Mβ be the Levi sub-
group of G with M c Λf̂  defined as in [HC, §13], and let μp(σ)
be the Plancherel measure associated to the representation ΪM 9M(&)-

Let Δ; = {β e Φ(P, A): μp(σ) = 0} and let W{JS!) be the sub-
group of W(G/A) generated by reflections in the roots of Δ ; . Then
W(A') = {w e W(σ): stf'{w, σ) is scalar}. We can write W(σ) =
iϊ x 5 fΓ(Δ;), the semidirect product of R and W(Δ'), where R =
{w G H^(σ): wβ > 0, Vβ e Δ ;}. Then {J/ ;(I<; , σ): w e R} is a lin-
ear basis for the commuting algebra [S]. Further, given W\, W2 E R,
j / ' ^ u ^ , σ) = η(w\ 9 W2)s^'{w\, σ)sf'(w2, <τ) where f/(^i, 1̂ 2) G
C x satisfies T(wιW2) = η(wι, w2)T(wι)T(w2). Thus C(σ) is iso-
moφhic as an algebra to the complex group algebra C[R] if and only
if the intertwining operators T(w), w e. JR, can be chosen so that
T(wχw2) = T(wι)T(w2) for all wuw2eR.

Assume for simplicity in the remainder of this section that R is
abelian and C(σ) ^ C[R] as algebras. (This will be the case in our
examples.) For each w eR, define

Let Z be the split component of G and let 3 denote the real Lie
algebra of Z . Then 3 c α^ for all w £ R. Now a special case of
Arthur's result is the following.

THEOREM 1.1 (Arthur [A, 2.1]). Suppose that R is abelian and that
C(σ) ~C[i?]. Then iG,M(σ) has an elliptic constituent <£• all constitu-
ents of IG,M(^) we elliptic o there is w eR such that α^ = 3.
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The irreducible constituents of iG,M(σ) c a n be described as fol-
lows. Let %? be the representation space of IG,M{G) Now given any
unitary character K G R, let

^c = {v e&:sf'(r9 σ)v = κ(r)v for all r e i?}.

Then %? = 0 ^ - ^ is exactly the decomposition of %? into irre-
ducibles. Let nκ denote the irreducible representation of G on ^ .

Suppose that M' is a Levi subgroup of G with M c M' which sat-
isfies the compatibility condition of [A, §2] with respect to the choice
of positive roots Δ' used to define R. Let R = RnW(M'/A). Then
Rf can be identified with the reducibility group for iM> fM(σ). Now as
above we can use the characters of R' to decompose IM' ,M(G) i n t 0

irreducible constituents τκ>, K' e R'. For each K1 e Rf, define the
subset R(κ') of R by

R(κ') = {κeR: κ{r) = κ'{r), r e i?'}.

Then another consequence of [A, 2.1] is the following.

LEMMA 1.2 {Arthur). For each κf eRf, we have

In particular we see that the irreducible constituents πκ of
can be irreducibly induced from M7 if and only if R = Rr.

Define

LEMMA 1.3. Suppose that R is abelian and C(σ) ~ C[R]. Let π
be an irreducible constituent of ΪG,M(G) Then there are a proper Levi
subgroup M' and τ e &t{M') such that π = iG,M'(τ) tf and only if
&RΦ 3 Further, M1 and τ can be chosen so that τ is elliptic if and
only if there is WQ^R such that α^ = aw .

Proof. As in [A, §2], for each w eR, there is a Levi subgroup Lw

of G containing M which satisfies the compatibility condition and
such that Ow = α ^ , the split component of Lw . Thus there is a Levi
subgroup M' containing M which satisfies the compatibility condi-
tion so that aM> = α^. Since every element of R centralizes aM> we
have R C W(M'/A). Thus as above, each irreducible constituent of
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h,M(σ) is of the form iG^M>(τ) where τ is an irreducible constituent
of ΪM\M(σ) Now if OR ̂  3, then Λ/7 is proper.

Conversely, if such an M' and τ exist, then they can be chosen so
that M C M' and τ is an irreducible constituent of IM' ,M(°) Thus
as above we must have R = R. Thus i? C W{M'/A) so that αM> C
OR. Thus if A/' is proper we have CLR Φ 3. Further, IM',M(°) has
elliptic constituents if and only if there is WQ E R SO that α^ = aM>.
But since αM ' C α^ C α^ for all w e R, this is true if and only if
aM' = aR = ^ 0 D

2. Elliptic representations of Sp(2n) and SO(2n + 1 ) . G o l d b e r g ' s
results in this case can be summarized as follows. Let G = Sp(2n, F)
or SO(2n + 1, F). Since all our groups will be i7-rational points of
algebraic groups, we will drop the F 's. Similarly we write GL(n) for
GL(n, jp). Then if P = MN is a proper parabolic subgroup of G,
there are r > 1, positive integers mi, m2, . . . , mr, and an m > 0,
with Σr

i=x nii + m = n, such that

M - GL(mi) x x GL(rar) x G(m),

where (7(0) = {1}, while for m > 0 we have

rSp(2m), ifG
1 j lSO(2m + l ) , i fG

Let A be the split component of M. Then 4̂ ~ ( ^ x ) r where
the ίth copy of F x corresponds to the scalar matrices in the sub-
group GL(m, ), 1 < / < r. Now if we use this identification to write
each aeA as a = (λx, λ2 9 . . . , λr), λt e Fx , then W(G/A) can be
identified with a subgroup of the group of all permutations and sign
changes of the λ, , 1 < / < r. Specifically, the permutation (ij) which
interchanges A/ and A7 is in W(G/A) just in case mz = m7 so that
the corresponding scalar matrices are the same size. Let cz be the
sign change A, -+ A^1. Then c, G W(G/A) for all 1 < 1 < r. Let
(7 = cr1{g)...(g)cjr®/7G ^2(Af). Here for 1 < / < r, σf e l%(GL(m/))
and pe^2(G(m)). Now

(O') ~ σ ̂  σz ~ σ; ,

and
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where σ is the contragredient of σ. Set

(2.1) I(σ) = {1 < / < r: σ, ~ &t and

him+m^GUm^xGim)^ ® P) i s reducible}.

Of course σf ~ <τ; is in fact a necessary condition for

to be reducible, since it is the condition that σ, ® /? is ramified in
G(m + m, ).

THEOREM 2.2 {Goldberg [G]). Suppose M and σ e ^(M) are as
above. Let d be the number of inequivalent tτz swc/z that ί e /(σ).

R ~ Z^ am/ w generated by d of the sign changes ct, i G /(σ).

PROPOSITION 2.3. Suppose that M is any Levi subgroup of G and
σeW2{M). Then

Proof. Renumber indices so that C\, . . . , Q are the generators of
R. For 1 < / < d, a representative c, e NG(A) for c, can be chosen
so that

c/(wi, . . . , mr, m ' ) ^ 1 = ( m i , . . . , (m^)" 1, . . . , rar, m!)

where m = (mi, . . . , mr, w ;) € GL(mi) x x GL(rar) x G(w). For
1 < / < d, let F/ be the representation space of σf , and define a
representation σ* on P̂  by σ*(^) = ^((gO" 1)? <? ̂  GL(m/). Now
since Cι e W^(σ), we have σ* ~ σ/. (In stating Theorem 2.2 we
used the fact that σ* ~ σ/.) Let Γz: ^ -+ ^ be an intertwining
operator between σz and cr*. Since (σ*)* = σ,, Γ? = rz is a non-zero
complex scalar. Thus we can normalize 7} so that Tf = 1. Now
a = o\ ® ® σr ® p acts on F = V\ ® ® Ĵ  ® Kr. Extend Γz to an
endomorphism Tj of F by making it act trivially on every factor
except Vf, where it acts by Tt. Then Tj intertwines czcτ and a and
(7f ) 2 = 1. Further, for \<iφ j <d, TjTj = TjTj since they
act on different factors of V. Thus if we define τ\cι) = T[, then
Ci »-> Γ(C|) extends uniquely to a group homomorphism. D

LEMMA 2.4. For any M, σ as above, there exists w0 e R so that
aR = OWQ . Further, there is w e R such that aw = {0} «=> OR = {0} <̂
Λ - Z 2 °
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Proof. By Theorem 2.2, R = Zf c 5(G/i4) where S(G/^) denotes
the subgroup of W(G/A) generated by the block sign changes c, , 1 <
/ < r. Renumber indices so that it is generated by the sign changes
c\, . . . , cd. If we let w0 = C\ cd, then <%o c aw for all w G R
so that CLR = OWQ. Now for w e S(G/A), α™ = {0} if and only
if w = C1C2 c r , and C1C2 --cr £ R if and only if c; G i? for all
1 < i < r. Thus α* = α ^ = {0} if and only if i? - Z^. D

Lemma 2.4 can be combined with Theorem 1.1 and Lemma 1.3 to
obtain the following theorems.

THEOREM 2.5. Let M be a Levi subgroup of G and let σ e
Then iG,M{σ) has an elliptic constituent «=> all constituents of i
are elliptic <=> R~Zf2.

THEOREM 2.6. 2>ί π e ^ ( G ) . ΓΛen either π is elliptic or π =
h,M(τ) f°r some proper Levi subgroup M of G and some elliptic
τ e Sl(M).

Suppose now that R ~ Zr

2. For K eR, define ε(κ ) = /c(Π/=i Q) =

± 1 . Let 1 G R denote the trivial character.

PROPOSITION 2.7. For all K eR we have θ£ = ε(κ)θ[.

Proof. For 1 < i < r, let Af/ be the maximal parabolic subgroup
containing M with Afz ~ GL(m/) x G(n - m z ) . Let Rj be the re-
ducibility group for /M.,M(^) We can identify i?z with the sub-
group of R generated by {Cj, \ < j < r, j Φ 1}. (Since Af = 0
there is no compatibility condition.) Then for each κι e i?/, Λ(κ:/) =
{*/(+), κτ/(—)> where /c/(±)(c/) = JC/(C/) , j / / , and κ/(±)(c, ) = ± 1 .
Now using Lemma 1.2, for κ\ G i?/ we have ΪQ M(*K) = π?c(+) ®
* K | ( _ ) . Thus ΘJ | ( + ) = - Θ J | ( _ } .

Now the proof is by induction on s(κ), the number of indices 1 <
/ < r so that κ{Ci) = — 1. It is trivial if s(κ) = 0 since ε(l) = 1.
Assume that the lemma is proven for K G R SO that s{κ) = s > 0.
Fix K e R with $(*:) = s + 1. Then there is 1 < / < r so that
κ{Ci) = - 1 . Let Ki denote the restriction of K to U,-. Then K =
κ:/(~) and s(Ki(+)) = ^. Thus by the induction hypothesis we have
θ £ = ε(κ/(+))θ^ . But as above
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3. Elliptic representations of SO(2n). Let G=SO(2n) = SO(2n? F).
Then if P = MN is a proper parabolic subgroup of G, as in §2 there
are r > 1, positive integers m i ) m 2 , . . . ) m r and an m > 0, mφ\,
with Σ J = 1 m, + m = n, such that

M ~ GL(mi) x x GL(mr) x G(m),

where (7(0) = {1}, while for m > 2 we have G{m) = SO(2m).
Let A be the split component of M. Then 4̂ ~ ( i 7 X ) r and, as

in §2, W(G/A) can be identified with a subgroup of the group of
all permutations and sign changes of the λ/, 1 < i < r. As be-
fore, the permutation (ij) is in W(G/A) just in case m, = m7 . Let
G' = O(2/ι). For 1 < i < r, there is c, € ^ ( Λ ) such that for
m = (mi, . . . , mr, m7) G GL(mi) x x GL(mr) x G(m), CimcJ1 =
(mi, . . . , (m*)" 1 , . . . , mr, m'). Thus conjugation by c; gives the
sign change ct taking λt to λ^1. Further, if m > 2 there is c1 e
NG'{A) so that c'trίc1'1 = (mi, . . . , mr, c'm'), where c ; is an outer
automorphism of SO(2m) with (c')2 = 1. Note that conjugation by
cr acts trivially on A. Now if 1 < / < r and mz is even, then c,
can be chosen to be in NQ(A) , so that conjugation by cz gives the
sign change of c, G W(G/A). Further, if m; is odd and m > 2,
then c/ can be chosen so that lie1 e NQ(A) and conjugation by C c'
gives the sign change cz G W{G/A). If m/ is odd and m = 0, then
the individual sign change Q is not in W(G/A), but for two such
indices, c{Cj G NG(A) and gives the product C;C7 G W(G/A). This
makes the groups SO(2Λ) more complicated than the groups Sp(2n)
and S O ( 2 n + l ) .

Let σ = (7i ® ® crr ® /? G ^(Af) . Here for 1 < Ϊ < r, σz G
g2(GL(m/)) and /? e ^2{G{m)). Now as in §2 we have

CiCj(ij)σ ~ σ & σi ~ άj.

Further, if m; is even, then

CiO ~ a <& Oi ~ d|.

If m/ is odd and m > 2, then

czσ ~ σ o σx< ~ σz and dp ~ p.

Finally, if m;, m7 are odd, then

CiCjσ ~ σ <& Gi ^ d1/ a n d <T7 ~ σ 7 .
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Write 7£> = {1 < i < r: m, is even} and 70 = {l < i <r: ra, is odd}.
Define

τ

e u I o , if m > 2 and dp ~ p\
τ

e, otherwise.

Define I2 = I\. Now set

7(σ) = 71(σ)ϋ72(<7)

where

(3.1a) 72(σ) = {i E 7i: a ~ σ/ and
iG(m+m.),GL{m )xG(m)(σi ® /̂ ) ί s reducible}

and

(3.1b) 72(σ) = {z G 7 2 . σ/ ~ σ/}.

THEOREM 3.2 (Goldberg [G]). Suppose M and σ e $?2(M) are as
above. For j = 1, 2, let dj be the number of inequivalent σι such
that i e Ij(σ), and let d = dx +d2. If d2 = 0t then R~Z%, while if
d2>0, then R ~ Zf~ι. In either case, R c S(G/A), the subgroup of
W(G/A) generated by sign changes.

PROPOSITION 3.3. Suppose that M is a Levi subgroup of G and that
σ e %2(M). Then C(σ) ~ C[R].

Proof. Suppose first that m = 0, or that m > 2 but dp φ p. In
this case I\ = Ie and I2 = Io. If d2 < I, then R is generated by
d?i sign changes in indices / e /ι(σ), and the proof is the same as
that of Proposition 2.3. Assume that d2>2. Renumber the indices
so that 1, . . . , p = d2 e I2(σ), p + 1, . . . , d = dx + d2 e I\(σ), and
C\CP, c2cp 9... , cp-\Cp, Cp+ι,..., Q are a complete set of generators
for 7? ~ Zf~ι. For each 1 < / < d, we must have σ/ ~ σ*. As in
Proposition 2.3, we can choose 7}: V\ -• ̂  intertwining σ* and σz,
so that Tf = 1, \ <i <d, and extend them to endomorphisms 7 /
of F = F i O . Θ K r β K ' . Again, {TV)1 = 1 and TjTj = Γ / ^ F

for 1 < i, < rf. Now we can define T{CiCp) = TYTV', 1 < i <
p - 1, and T{C[) = Tj, p + I < i < d, and this extends to a group
homomorphism.

In the case that m>2 and dp ~ p, we have 7i = IeUl0 . Renum-
ber indices so that 1,...,/? e 7i(σ) n 7 0 , /? + 1, . . . , d = d\ e
I\(σ) Π Ie, and ci, . . . , Q are the generators of 7? ~ Zf. Choose
intertwining operators 7/, 1 < Ϊ < rf, as above, and also choose an
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intertwining operator V: V —• V which intertwines c'/? and p and
satisfies (Γ') 2 = 1. Extend V to an operator (Γ ' ) F on V which acts
non-trivially only on V. Then define Γ(c, ) = T[{Tf)v, 1 < / < p ,
a n d Γ(c;) = TY 9p + \<i<d. u

LEMMA 3.4. There is woeR such that aR = 0wo if and only if d2

is even or d2 = 1 Further,

there is w eR such that α^ = {0} <* d = r and d2 is even

and
aR = {0} & d = r and d2 φ 1.

. We can write α = {{x\, . . . , xr): xt e R} so that ct cor-
responds to the sign change X; ι-» - x z . Renumber indices so that
1, . . . , p = d2 G I2(σ) ,p+l, ... ,d el\(σ), and R is generated by

the elements C/C,, 1 < / Φ j <p, and Cj, p + l < i <d. Now if ^ is
even, we have wo = <?i * Q G i? and α^ = aWo = {(xi, . . . , xr): Xi =
... = χd = 0}. If d2 = 1 we have w0 = ^--Cj e R with α# =
α % = {(^i > > χr) '• ^2 = * * = *d = ° l Finally, if d2 > 3 is odd,
then a*? = {(xi, . . . , xr): xx = = xd = 0}, but α^ ^ α^ for any
w eR. π

Combining Lemma 3.4 with Theorem 1.1 and Lemma 1.3 we obtain
the following.

THEOREM 3.5. Let M be a Levi subgroup of G and σ e $?2(M).
Then IG,M{G) has an elliptic constituent o all constituents of ΪQ^(α)

are elliptic <& d = r and d2 is even.

PROPOSITION 3.6. Suppose that d < r or that d = r and d2 = 1.
Then each irreducible constituent of IG,M{G) is of the form iG,M'(τ)
where Mf is a proper Levi subgroup of G and τ e <§?(M;). If d2 is
even or d2 = 1 we can choose Mf so that τ is elliptic.

PROPOSITION 3.7. Suppose that d = r and d2 > 3 is odd. Then
each irreducible constituent ofIG^M^) is a linear combination of rep-
resentations induced from proper parabolic subgroups, but cannot be
irreducibly induced. In fact, each irreducible constituent of /G,M(^) is

of the form Σ/iicίzG,Λ/.(τi) where the Mt are proper Levi subgroups
of Gf the %i £ ^t(Mi) are elliptic, and the ct are non-zero complex
numbers.
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REMARKS. Such representations exist. For example, suppose G =
SO(6), M ~ GL(1)3, and σ ~ χx ® χ2 ® Jfo where the /,•, 1 < i < 3,
are distinct characters of Fx with χf = 1. Note also that SO(6)
is locally isomorphic to SL(4). In fact a non-elliptic representation
which cannot be irreducibly induced can also be constructed in the
principal series of SL(4). All of the above results on i?-groups are
equally valid for the real Lie groups SO(2n, R). On the other hand,
representations of the type described in Proposition 3.7 cannot exist
for the real case. This is because the only odd integer m such that
GL(m, R) has discrete series is m = 1. Now there are only two
distinct characters χ of R x with χ2 = 1.

Proof of Proposition 3.7. In this case, by Lemma 3.4, α^ = {0}.
Thus by Lemma 1.3, the constituents cannot be irreducibly induced.
The fact that each irreducible constituent of io,M(σ) *s a linear com-
bination of representations induced from proper parabolic subgroups
follows from a theorem of Kazhdan [K] since we know from Theorem
3.5 that the irreducible constituents are not elliptic. However since
this is the first example in which non-elliptic representations are not
irreducibly induced, it is interesting to show that directly.

In this case we again have I\(σ) = Ie, h{σ) = Io, and R ~
Zr

2~
ι. Write p = d2, and suppose that ni\, . . . , mp are odd and

rrip+ι, . . . , mr are even. Then R can be generated by s\ = c\C2, s2 =

3 5 ? p \ p \ p ? / 7 + l p + 1 ? > r r

For 1 < / < p, let Mz be the Levi subgroup of G so that M c Mt

and Mi ^ GL(m ) x G(n — mi). Fix / and define df, d[, d'2 as in
Theorem 3.2 with respect to /M,Λ/(^") Then d[ = d\ and d'2 =
d2 - 1. Thus d1 = r - 1 and d'2 > 0 is even, so that R' ~ Zr

2~
2

and every irreducible constituent of iM^Mip) is elliptic. Let S =
{s\, . . . , sp-ι, sp+ι, . . . , sr} be the set of generators of R. Then U,
has generators

S\{s{}, if / = 1

Si = I (5\{jf.i, Si}) U {Si-xSi}, if 2 < / < p - 1

[ _ ! } , if *=/?.

As in the proof of Proposition 2.7, for K , K1 G i? and κr, G i?/,
nκ θ π ^ = iG,M^κ) if ^1*. = κ:r|Λ/. = *c, and K ̂  κ:;.

Now fix KQ G i? and define ic/, 1 < / < p—1 by Ki(Sj) = κo(^7), 7 φ
i, and K/^/) = —JCOCSJ) . Define κp = KQ. Then for 1 < / < p , κ:z_i ^
JC;, but /C/_i and K:/ have the same restriction to 7?/. Now since p
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is odd we can write

y
ι = l

and this expresses πκ as a linear combination of properly induced
representations of the desired form. D

Suppose that we are in the situation that d = r and dι is even so
t h a t IYi=ιci e R- For / C G Λ , define ε(κ) = κ(Hr

i=ιCi). Then the
following can be proven in the same way as Proposition 2.7.

PROPOSITION 3.8. Suppose that d = r and d2 is even. Then Θe

κ =

e(κ)θf for all KER.
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