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IRREDUCIBLE NON-DENSE AY-MODULES

V.M. FUTORNY

We study the irreducible weight non-dense modules for
Affine Lie Algebra Agl) and classify all such modules having
at least one finite-dimensional weight subspace. We prove
that any irreducible non-zero level module with all finite-
dimensional weight subspaces is non-dense.

1. Introduction.

Let A = _; —g and G = G(A) is the associated Kac-Moody algebra
over the complex numbers C with Cartan subalgebra H C G, 1-dimensional
center Cc C H and root system A.
A G-module V is called a weight if V = @ Vi, Via={v eV |hv=Ah)
AEH*
forallh € H}. If V is an irreducible weight G-module then c acts on V' as a

scalar. We will call this scalar the level of V, For a weight G-module V, set
PV)y={Ae H* |V, #0}.
Let @ = ZZ(p. It is clear that if a weight G-module V is irreducible

peA
then P(V) C A+ Q for some A\ € H*. An irreducible weight G-module V is

called dense if P(V) = XA + @ for some A € H*, and non-dense otherwise.

Irreducible dense modules whose weight spaces are all one-dimensional
were classified by S. Spirin [1] for the algebra A and by D. Britten, F.
Lemire, F. Zorzitto [2] in the general case. It follows from [2] that such mod-
ules exist only for algebras A, C(V). V. Chari and A. Pressley constructed
a family of irreducible integrable dense modules with all infinite-dimensional
weight spaces. These modules can be realized as tensor product of standard
highest weight modules with so-called loop modules [3].

In the present paper we study irreducible non-dense weight G-modules.
We use Kac [4] as a basic reference for notation, terminology and prelimi-
nary results. Our main result is the classification of all irreducible non-dense
G-modules having at least one finite-dimensional weight subspace. This in-
cludes, in particular, all irreducible highest weight modules. Moreover, we
show that this classification includes all irreducible modules of non-zero level
whose weight spaces are all finite- dimensional.
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The paper is organized as follows. In Section 3 we study generalized Verma
modules M¢(A, ), a is a real root, A € H*, v € C, € € {+, —} which do not
necessarily have a highest weight (cf. [5]). By making use of the generalized
Casimir operator and generalized Shapovalov form we obtain the criteria
of irreducibility for the modules Mg (), ) without highest weight (Theorem
3.11).

In Section 4 we classify all irreducible Z-graded modules for the Heisenberg
subalgebra G C G with at least one finite-dimensional graded component.
Irreducible G- modules with trivial action of ¢ were described earlier in [6].
Let 0 € A such that Zd—{0} is the set of all imaginary roots in A. Following
[6] we introduce in Section 5 the category O(a) of weight G-modules V

¢
such that P(V) C | J{\ —ka +né|k,n € Z,k >0} where \; € H*, but
i=1

without any restriction on the action of the center (unlike in [6] where the
trivial action of the center is required). The irreducible objects in O(a) are
the unique quotients of G-modules M, (A, V'), where A € H*, V is irreducible
Z-graded G-module. Modules M, (X, C), with A(c) = 0 were studied in [7-
9]. If A(c) # 0 and at least one graded component of V' is finite-dimensional
then the module M, (A, V) is irreducible [8, 9]. In Section 6 we classify all
irreducible non-dense G-modules with at least one finite-dimensional weight
subspace (Theorem 6.2). It turns out that these modules are the quotients
of the modules of type M¢(A,7) or M,(\, V). Moreover, any irreducible G-
module of non-zero level whose weight spaces are all finite- dimensional is
the quotient of M<(),) for some real root o, A € H*, vy € C, ¢ € {+,—}
(Theorem 6.3).

2. Preliminaries.

We have the root space decomposition for G : G = H® chp, where dim

pEA
G, = 1 for all ¢ € A. Denote by U(G) the universal enveloping algebra of G,
by W the Weyl group and by (, ) the standard non-degenerate symmetric
bilinear form on G [4, Theorem 3.2]. Let A™ be the set of real roots in A
and A*™ be the set of imaginary roots in A. Fix o € A™ and consider a
subalgebra G(a) C G generated by G, and G_,. Then G(a) ~ sl(2) and we
fix in G(a) a standard basis e,, €_q, by = [€a, €—o] Where [hq, 1] = £26€44.
We will use the following realization of G:

G=G(a)®C[t,t '] ® Cc® Cd

with [z®t"+ac+bd, y®t™+a,c+byd] = [z,y] @t +bmy@t" —binz @t +
N0n—m(Z,y)c, for all z, y € G(a), a,b,a;, b, € C. Then H = Ch,®CcdCd.
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Denote by ¢ the element of H* defined by: d(h,) = d(c) = 0 and §(d) = 1.
Then A" = Z6 — {0} and 7 = {@,d — @} is a basis of A. Let A, = A (7)
be the set of all positive roots with respect to 7. The root system A can be
described in the following way: A = {+a+nd |n € Z}U{nd | n € Z — {0}}.
We have Gipinsg = G1a @t", n € Z, G5 = Ch, ®t", n € Z — {0}. Set
Catns = €a Q1" €_gins = €_o®t", N EZ, eps = hy @™, m € Z — {0}.
Then [ers, ems] = 2k0k,—mC, [€rss €xatns) = 2640t (ntk)s) [Cathsr E—atms] =
Ok,—m (ha + k) + (1 — 0k, —m)€(k+m)s for any k, m € Z.

For a Lie algebra A, S(.A) will denote the corresponding symmetric alge-
bra. We will identify the algebra U(H) = S(H) with the ring of polynomials
C[H*] and denote by o the involutive antiautomorphism on U(G) such that

o(ey) =€_q, 0(€5_0) = €q_s- Set Ny = Z Gy, N_ = Z G o

pEAL pEAL
3. Generalized Verma modules.

The center of U(G()) is generated by the Casimir element z, = (h, + 1)+
4e_ye,. Denote

N‘O‘ti-z Z G Na— = Z Gy,

pe€AL—{a} peAL—{a}
T,=SH)®Clz,), E.=H+G()®N,, ce{+,-}.

Let A € H*,+v € C. Consider the 1-dimensional T,-module Cv, with the
action (h® 2%)vy = h(X\)y™v, for any h € S(H), and construct an H + G(«)-
module

V(A7) =U(G(a) + H) R Cox.

T
It is clear that the module V' ()\,v) has a unique irreducible quotient V) .,.

Proposition 3.1.
(i) IfV is an irreducible weight H + G(a)-module then V ~ V, , for some
A€ H*, yeC.
(i) Vay Vi ifandonlyify=+', N = X4+na,n € Z, v # (A(hy)+2¢+
1)% for all integers £,0 < £ < n if n > 0 or for all integers £,n < £ <0
ifn <O.

Proof. This is essentially the classification of irreducible weight s(2)-modules.

O

Let A € H*, v € C, ¢ € {+,—}. Consider V, , as E:-module with trivial
action of N¢ and construct the G-module

ME (A ) & Vi,

U(E:)
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associated with a, A, v, .
The module M:(A, ) is called a generalized Verma module. Notice that
V\,» does not have to be finite-dimensional.

Proposition 3.2.
(i) ME(N,7y) is a free o(U(NE))- module with all finite-dimensional weight
subspaces.
(i1) MZ(N,y) has a unique irreducible quotient, LS (X,7).
(iil) M:E(\,y) =~ M5, (N,v') ifand only ife = €',y =", X' = Ana,n € %
and v # (A(ho) + 20+ 1) for all € Z, 0 < L <n if n >0 or for all
teZ, n<t<0ifn<0.

Proof. Follows from the construction of G- module M¢ (A, ~y) and Proposition

3.1. g

Let Ry = {(AMho) +2¢£+1)* | £ € Z}. Recall that V is called a highest
weight module with respect to N, and with highest weight A € H* if V =
U(G)v, v € Vy and Vyy, = 0 for all ¢ € A, (). Proposition 3.2, (iii) implies
that Mg (X,v) and LE (A, ) are highest weight modules with respect to some
choice of basis of A and, therefore, are the quotients of Verma modules [4],
if and only if v € Ry. The theory of highest weight modules was developed
in [4, 10].

Corollary 3.3.

(i) Let V be an irreducible weight G-module, 0 # v € V5 and Ntv = 0.
Then V =~ Lt (A, 7y) for some y € C.

(ii) Let A & Ry. LE(N\,y) ~ L5, (N,') if and only if e = €', o/ = a or
o =—-a,y=7, N =X +na,n€Z and v # (Mha) +2¢+ 1) for all
beZ, 0<tl<nifn>0o0rforallteZ, n<£<0ifn<0.

Proof. Since V is irreducible G- module, V' = U(G(a))v is an irreducible
G(a)-module and V ~ o(U(NZ))V'. Then V is a homomorphic image of
ME (N, 7y) for some v € C and, thus, V ~ L¢(\,v) which proves (i). (ii)
follows from Proposition 3.2, (iii). Il

From now on we will consider the modules M} (A, v)(= M(A,7v)). All the
results for the modules M (\,y) can be proved analogously. Set z = z,.
For A € H*, v € C and integer n > 0 we denote by z(n) the restriction of z
to the subspace M (X, ¥)x—n(s—a)-

Proposition 3.4. If v # (Mhy) + 20+ 1)* for all 0 < ¢ < 2n then
Specz(n) = {(2k £ /7)* | k€ 2,0 < k <n}.

Proof. Denote V,, = M (X, ¥)x-n@-a), » > 0. One can easily show that
Vn = ea—évn—l + e—JeaVn-—l + e—a—éeivn—l- Let Vn—l = @Vn—l(T)aT € Ca
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where V,_ (1) = {ve€V,1|3N:(2(n—1)—7) v =0}. Then the sub-
space €,—5Vn_1(7) +e_sea Vo 1(7) + e_q_s€2Vn_1(T) CV, is z(n)- invariant
and z(n) has on it the eigenvalues 7 and (2 &+ /7)?, thanks to the condition
v # (A(ha) +2¢+1)?, 0 < £ < 2n, which implies that z(n) has eigenvalues
2k + 7% 0< k<n. O

Corollary 3.5. Ify & R, then e, and e_, act injectively on M (X, 7).

Proof. If v & R then Specz(n) () Rx_ng = 0 for all integer n > 0 by Propo-
sition 3.4 and, therefore, e, and e_, act injectively on M (), 7). (1

Fix p € H* such that (p,a) =1, (p,d) = 2. Since M(A,~) is a restricted
module, i.e. for every v € M(\,7), G,v = 0 for all but a finite number
of positive roots ¢, we have well-defined action of a generalized Casimir
operator Q on M (A,7) [4]:

Q= (u+2p,n)v+2 Y B peuw, v €M)y,
pEAL

where €_, € G_,, (€_p,e,) =1, p € A;. Set Q = 2Q + id.
Let s € W, so(u) = p— (g, @), p € H*.

Lemma 3.6. For a G-module M (), )

Q=[(A+2p+ sa(A+2p),A) +7id.

Proof. Follows from [4, Th.2.6] and definition of €. 0
+

Lemma 3.7. Letn>0,80=0—a, 0 # v € M(A, ¥)r-ng, ¥ # (A(ha)
20+ 1)? for all 0 < £ < 2n and Nfv = 0. Then k?>y = (n(A\(c) +2) — k%)?
for some k€ Z,0<k<n.

Proof. 1t follows from Lemma 3.6 that z(n)v = y'v and
A=nB8+2p+ss(A—nB+2p),A—nB)+79 = (A+20+5,(A+2p), A) +7v
which implies

v =+ 4n(A(c) + 2).
But, v = (2k £ ,/7)? for some k € Z, 0 < k < n by Proposition 3.4.
Therefore, k*y = (n(A(c) + 2) — k?)? which completes the proof. |

Corollary 3.8. Let A€ H*, vy € C— Ry. If kv # (n(\(c) +2) — k?)? for
alln,k€Z,n>0,0<k<n then G-module M(\,~) irreducible.

Proof. If the G-module M (),v) has a non-trivial submodule M, then M
contains a non-zero vector v of weight A — n(d — «) , n > 0, such that
N}v =0. Now, the statement follows from Lemma 3.7. O
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Consider the following decomposition of U(G):
UG) = WN;UG) +UG)NT) & T,Cleslea ® ToCle_osle—q & T,

Let j be the projection of U(G) to T,. Introduce the generalized Shapo-
valov form F, a symmetric bilinear form on U (G) with values in T}, as follows
(cf. 11]): F(z,y) = j(o(z)y), =,y € U(G). The algebra U(G) is Q-graded:
UG) = PU(G),. It is clear that FU(G)y,, U(G),,) = 0 if n1 # .. Denote

neQ

UN_)_, =UWN_)NU(G)—-, and let F, be a restriction of F to U(N_)_,,.

For A € H*, v € C, consider the linear map 0, , : T, — C defined by
Oxr~(h ® 2™) = h(A)y" for any h € S(H), n € Z,.

Set \k =A+ka, k€Z. Let u=X—n(d —a) € P(M()\,7)), n € Z, and
v # (A(hy) + 25+ 1)? for all integer s, 0 < s < 2n. Then Ay, € P(M()\,7)),
M\, Y)r,. = Cu, and M(\, %), = UN_)_n(a+s)Vn- Set F™ = F,,i5. We
define a a bilinear C-valued form F? on M(},7), as follows:

F)(u10n, usvn) = 0Os,, 4 (F(") (uy, u2)) , Uty Uz € UND) _p(ats)-

One can see that dim L(},7), = rank F}.

Lemma 3.9. Let A € H*, v € C — Ry. The following conditions are
equivalent:

(1) M(A, ) is irreducible.

(11) F)(\)—n(é—a

(ili) Oy, (det F™) £ 0 for all integers n > 0.

) 15 non-degenerate for all integers n > 0.

Proof. Follows from the Corollary 3.5. O

Consider in T, the following polynomials: fn,x = k*z — (m(c + 2) —
k*)?, gs = z — (ho + 25+ 1)%, s,m,k € Z, 0 < k < m. Lemma 3.7 implies
that if 6, ,(gs) # 0 for all s € Z, 0 < s < 2n and 6, ,(fm i) # 0 for all
m,k €Z,0<m <n,0< k< m, then M(A\,¥)a—n@—a) = L(A,Y)r-n(5-0a)
and 0,, ., (det F() # 0. We conclude that the polynomial det F(™ is not
identically equal to zero and has its zeros in the union of zeros of polynomials
ik, 0<m <n,0<k<m,g,, 0< s < 2n. Therefore, det F(™ is a product
of factors of type f.,  and g;.

Lemma 3.10. Letn,m € Z, n >0, 0 <m < n. Then fn, is a factor of
det F™ if and only if k is a divisor of m or k = 0.

Proof. Assume that k is a divisor of m or k = 0. Set r = 2n+2m+k. Consider
A € H* and v € C—Z such that 0, ,(fmx) = 0r,(g-) = 0. For integer s > 0
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set vy = A_; = XA —sa. Then 0,, (finr) = 0., ,(9r+5) = 0 and vs(h,) € Z,
which implies that 6, ,(g¢) # 0 for all£ € Z, £ < r+s. Thus, the form F; _,;,
B =0—ais defined for all s > 0,0 < i <mnand M(v,,y) ~ M(),), s >0 by
Proposition 3.2, (iii), where M (),) is the Verma module with highest weight
Ar = A+ ra. Therefore, M(v,,7)y, ., = M(A:)y,—ig, 0 < i < n as T,-
modules. The operator z(m) has eigenvectors w}, w; € M(A,),,_mp with
eigenvalues y© = (A(hy)+4(n+m+k)+1)? and v~ = (A(ha) +4(n+m)+1)?2
respectively. Since 6, ,(fm.x) = 0, then

v =v+4m(Xc) +2) € {v", 77}
and
(Vs +2p+5a(vs +2p), v5) +7 = (Vs —=mPB+2p+54(vs —mPB+2p), vs—mB) +7".
Let w? € {w},w;} and z(m)w? = y*w?. Then
Qu: = [(vy — mB + 2p + s4(vy — mB + 2p),vs — mB) + v |w?
by Lemma 3.6. But, w} € M(\,) and
Qw? = (2(\ + 20, \,) + Dw?
by Corollary 2.6 in [4]. Hence
200 +20, X)) +1 = (Vs —mB + 2p+ so(vs — mPB + 2p),vs — mP) +*

and
M +20,0) = (A +20— 75X, — 77)

where 7* = mé — ka if v* = v and 7* = mé + ka if y* = 7. If k divides
m or k = 0 then 7* is a quasiroot and D = Homg(M (A, — 7*), M (X)) #0
(10, Prop. 4.1].

Let 0 # x € D. Then x(M (A, — 7)) N M(X\,),,—ng # 0 and therefore,
Ox,._.,(det F(®) = 0 for any integer s > 0. It implies that if A\ € H*,
v € C—2Z and 0y ,(fmi) = 0 then 6, . (det F™) = 0. Thus, f, is a factor
of det F(™. Conversely, suppose that f,  is a factor of det F(™, k # 0 and
k is not a divisor of n. Let r = 4n+k. Consider a pair (X,y) € H* x (C—1Z)
such that 0y ,(fnx) = Or,(g-) = 0 but 6y ,(fp,) # 0 for all 0 < p < n,
0 < g < p (such X and ~y always exist). Then 6, ,(det F™) = 0 and the
Verma module M (),) has an irreducible subquotient with highest weight
A, — 7%, where 7* is one of nd + ko, nd — ka. But, this contradicts the
Theorem 2 in [10]. Therefore, f, ) can not be a factor of det F(™ if k # 0
and £ is not a divisor of n.
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Let now 0 < m < n, 0 < k < m, k is not a divisor of m and f,,; is a
factor of det F™. Consider a pair (A,7) € H* x C such that 0, ., (fmx) =0,
Ory(fpq) # 0 forall pge Z,0<p<n, 0<gq<p, (p,g) # (m,k) and
0r,(gs) # 0 for all s € Z. As it was shown above f,, , is not a factor
of det F(™ which implies that 0, .(det F(™) # 0. Now it follows from
Lemma 3.7 that M (X, 7)s_ng = L(X\,Y)r—np and 6, ,(det F™) # 0. But,
this contradicts the assumption that f,, ; is a factor of det F(™. The Lemma
is proved. O

For n € Z,n > 0 denote X, = {0} U{k e Z, | & € Z}.

Theorem 3.11. Let A € H*, v € C— R,. G-module M (), ) is irreducible
if and only if k*y # (n(M(c) +2) — k?)® foralln € Z, n >0, k € X,,.

Proof. Follows from Lemmas 3.9 and 3.10. O

4. Irreducible representations of the Heisenberg subalgebra.

Consider the Heisenberg subalgebra G = Cc @ Z G C G. Ttis a
keZ—{0}
Z-graded algebra with degc = 0, degexs = k. This gradation induces a
Z-gradation on the universal enveloping algebra U(G) : U(G) = @L{i.
i€Z

In this section we study the irreducible Z-graded G- modules. The central
element c acts as a scalar on each such module. In general, we say that a
G-module V is a module of level a € C if ¢ acts on V' as a multiplication by

a.

4.1. G-Modules of non-zero level. Let G, = nga, G_ = ngé. For
k>0 k<0

a € C* = C— {0}, let Cu, be the 1- dimensional G. & Cc-module for which
G.v, =0, cv, = av,, € € {+,—}. Consider the G-module

M(a)=UG) ® Cu.

U(GedCc)

associated with a and e.
The module M*(a) is a Z-graded: M®(a) = ZME(a)i where

M*(a); = (o(U(G:)) NUi) ® va.

Proposition 4.1.
(i) The G-module M¢(a) is irreducible.

(i) Mc=(a) is a o(U(G.))-free module.
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(iii) dim M®(a); = P(|i|) where P(n) is a partition function.

Proof. (ii) and (iii) follow directly from the definition of M*(a). Since a # 0
one can easily show that for any non-zero u € o(U(G.)) there exists u' €
U(G,) such that 0 # u'uv, € M*¢(a), which implies (i) and completes the
proof. O

Lemma 4.2. IfV is a Z-graded G-module of level a € C* and dim V; < oo
for at least one © € Z then

Spec ese_s |y C {2ma | m € Z}.

Proof. Let v € V; be a non-zero eigenvector of ese_s with eigenvalue b and
b # 2ma for all m € Z. Since a # 0, if e,sv = 0 then e_,5v # 0, n €
Z — {0}. Denote Y = {n € Z —{0,1} | ens5v # 0}. We may assume without
lost of generality that 7 = ¢ and | Y N Z, |= co. Elements e; and e_; act
injectively on the subspace spanned by efv, e* v, k € Z. Then, for each
ke YNZ,, ese_s(ersv) = bersv and 0 # e* ;ersv € V. Set wy = eF sexsv.
Then ese_swy = (b+ 2ka)wy, k € Y NZ,. This contradicts the assumption
that dim V; < co. Therefore, b = 2ma for some m € Z. O

For a Z-graded G-module V and j > 0 denote by V! the Z-graded G-
module with (VU), =V,_;, i € Z.

We describe now all irreducible Z-graded G-modules of non-zero level with
finite-dimensional components.

Proposition 4.3.

(i) Let V be an irreducible Z-graded G-module of level a € C* such that
dim V; < oo for at least one i € Z. Then VUl ~ M?(a) for some
ee{+, -}, jeZ

(i) Ext'((M¢(a))¥), M (a)) =0 for any j € Z, €,¢' € {+,—}.

Proof. (i) By Lemma 4.2 Spec X |y C {2ma | m € Z} where X stands for
ese_s. Let V; # 0, n be an integer with maximal absolute value such that
2na € Spec X |y, and let 0 # v € V;, Xv = 2nav. Assume that n > 0.
Then eisv = 0 for all £ > 1. Indeed, if egsv # 0 for some &k > 1 then
X (ersv) = exsXv = 2naesv and 2(n + k)a is an eigenvalue of X on
V; which contradicts the assumption. Therefore, esv = 0 for all & > 1.
Consider the element & = e} 'v # 0. Then e_ses0 = exs0 = 0, k > 1.
If es0 # O then v, = e} # 0, exsv, = 0 and, hence e_z5v, # 0 for all
p > 0, k> 1. This would imply that dim V; = co. Therefore, e;o = 0 and
V = U(G)o ~ M*(a) up to a shifting of gradation. If n < 0 then, clearly,
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V ~ M~(a) up to a shifting of gradation. Suppose that V; = 0 but, for
example, V,_; # 0. Then esv = 0 for any non-zero v € V,_; for all k > 0
and thus V = U(G)v ~ M™*(a) up to a shifting of gradation. This completes
the proof of (i).

(ii) Follows from the proof of (i) and Proposition 4.1, (ii). OJ

Lemma 4.4. Fuvery finitely-generated Z-graded G-module V' of level a € C*
such that dim V, < oo for at least one 1 € Z has a finite length.

Proof. If V; = 0 then statement follows from Proposition 4.3. Let V; # 0, n be
an integer with maximal absolute value such that 2na € Spec ese_s |y, and
v be a corresponding eigenvector. It follows from the proof of Proposition
4.3, (i) that V' = U(G)v ~ M*(a) up to a shifting of gradation. Consider a

G-module V = V/V'. Then dim V; < dim V, and we can complete the proof
by induction on dim V;. O

Now we are in the position to establish the completely reducibility for
for finitely-generated G-modules of non-zero level with finite-dimensional
components.

Proposition 4.5. Ewvery finitely-generated Z-graded G-module V of a non-
zero level such that dim V, < oo for at least one i € Z is completely reducible.

Proof. Follows from Lemma 4.4 and Proposition 4.3. [l

4.2. G-modules of level zero. The irreducible G-modules of level zero are
classified by V. Chari [6]. We recall this classification.

Let G = U(G)/U(G)c and let g : U(G) — G be the canonical homomor-
phism. For 7 > 0 consider a Z-graded ring L, = C[t",¢t™"], degt = 1 and
denote by P, the set of graded ring epimorphisms A : G — L, with A(1) = 1.
Let Ly = C and Ay : G — C is a trivial homomorphism such that Ag(1) = 1,
Ao(g(ers)) =0 for all k € Z — {0}. Set Py = {Ao}.

Given A € P,, r > 0 define a G-module structure on L, by:

Ck(;trs = A(g(ekg))t’s, keZ-— {O} y ct™ = O,S € Z.
Denote this G-module by L, 4.

Proposition 4.6.
(i) LetV be an irreducibe Z-graded G-module of level zero. ThenV =~ L, 5
for some r >0, A € P, up to a shifting of gradation.
(ii) Ly =~ Ly if and only if 1 = r' and there exists b € C* such that
A(g(exs)) = b*A'(g(exs)), k € Z — {0}
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Proof. (i) is essentially Lemma 3.6 in [6]; (ii) follows from [6, Prop. 3.8].
O

Remark 4.7. All the results of Section 4, except Proposition 4.1 (iii), are
hold for the Heisenberg subalgebra of an arbitrary Affine Lie Algebra.

5. The category O(a).

Let o € 7. Following [6] we define category O(a) to be the category of
weight G-modules M satisfying the condition that there exist finitely many

elements Aj,..., A\, € H* such that P(M) C UD(’\i) where
=1

D\)={\i+ka+nd|kneZ, k<0}.

Notice that the trivial action of ¢, as in [6], is no longer required. It is clear
that O(a) is closed under the operations of taking submodules, quotients
and finite direct sums.

Denote B, = Zgaw. Then G =B_,® (H +G) & B,,.

nez

Let V be an irreducible Z-graded G-module of level a € C and let A € H*,
A(c) = a. Then we can define a B = (H + G) ® B,-module structure on V'
by setting: hv; = (A +id)(h)v;, Bov; =0 forallh € H,v; € V;, 1 € Z.

Consider the G-module

M,(\ V) =U(G) ® V
u(B)
associated with o, A\, V.

Proposition 5.1.
(i) The G-module My (A, V) is S(B_4)- free.
(i) My(A, V) has a unique irreducible quotient Lo (A, V).
(iii) P(Ma(A\,V)) = (D) —{ +nd|neZ})UP(V)C D).
(iv) M,(\ V)~ M, (N, V') if and only if &' € {a+né | n € Z} and there
exists i € Z such that A = X +id and VI ~ V' as graded G-modules.
Proof. Follows from the construction of G- module M, (), V). O

Now we describe the classes of isomorphisms of irreducible modules in

O(a).

Proposition 5.2. 3
(i) Let V be an irreducible object in O(cx). Then there ezist A € H* and
an irreducible G- module V' such that V ~ L,(\, V).
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(i1) Lo(A, V) = Ly(N, V") if and only if there exists 1 € Z such that \ =
N +i6 and VI ~ V' as graded G-modules.

Proof. One can see that V contains a non-zerc element v € V,\ such that
B,v = 0. Then V = U(G)v is an irreducible Z-graded G- module and
V ~ U(B_,)V. This implies that V is a homomorphic image of M, (), V)
and, therefore, is isomorphic to L, (A, V'), which proves (i). Part (ii) follows
from Proposition 5.1, (iv). O

Lemma 5.3. I[f0 < dim L,(\,V), < oo for some pp € H* then dim V; < oo
for alli e Z.

Proof. If A(c) = 0 then VUl ~ [, for some r > 0, A € P,, j € Z by
Proposition 4.6 and, hence dim V; < 1 for all 1 € Z. Let A(c) = a € C* and
VUl ~ M¢(a), for any j € Z, ¢ € {+, —}. By Proposition 4.3, (i), dim V; = oo
for alli. Ifa € Q4 (a & Q4 respectively) then A(h,)—na ¢ Z, for all integer
n > ng (n < ny respectively) and for some ny € Z. Thus, e, ns€_qins
acts injectively on L, (A, V) for all n > ny (n < ny respectively) which
implies that dim L, (A, V), = co. But, this contradicts the assumption. We
conclude that VUl ~ M#(a) for some j € Z, € € {+, -} and dim V; < oo for
all i € Z. |

Theorem 5.4. Let V e O(a) be an irreducible.
(i) [6] IfV is of level zero then V' ~ L (X, L, 5) for some A € H*, A(c) =0,
r>0, AeP,.
(i) IfV is of level a € C* and dim V, < oo for at least one p € P(V)
then V ~ L, (A, M¢(a)) for some A € H*, \(¢) = a, ¢ € {+,—}.

Proof. (i) follows from Propositions 5.2 and 4.6, while (ii) follows from
Lemma 5.3, Propositions 5.2 and 4.3. O

In some cases we can describe the structure of modules L, (A, V).

Let Mc) = 0, 7 = 0, A = Ao, Loy, =~ C. Set M(\) = M,()C).
Notice that M()\) ~ S(B_,) as vector spaces and, therefore, P(M()\)) =
{A=—na+ké|kneZ n>0}U{\} and

dim M(A)s—natks = 00,n > 1,dim M(A)y = dim M(A)s_asks = 1,k € Z.

Proposition 5.5.
(i) Lo(A\C) =~ M(X) if and only if A(hy) # 0.
(i1) If A(hs) = 0 then Ly (X, C) is a trivial one-dimensional module.

Proof. Proposition follows from [7, Proposition 6.2] and is also proved in

8]. O
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Let A(c) = a € C*. Set M*(\,a) = M, (), M¢(a)). We have
P(M*(Xa)={r—ka+nd|kneZ k>0U{\—end|neZ,}
and
dim M°(X,a)x—kasns = 00, k > 0,n € Z,dim M*(\,a)r—ens = P(n), n € Z,.
Proposition 5.6. [8, 9] L,(\, M¢(a)) ~ M*(),a).

Recall, that g—module V is called integrable if e, and €4(5—a) ACt locally
nilpotently on V. All irreducible integrable G- modules in O(«) of level zero
were classified in [6]. In fact, they are the only integrable modules in O(«).

Corollary 5.7. IfV is irreducible integrable G-module in @(a) then V is
of level zero.

Proof. Suppose V is of level a # 0. Since V is integrable, it follows from
Proposition 5.6 that V # L,(\,M¢(a)), ¢ € {+,—}. Then V =~ L,()\,V)
and for any k € Z, there exist 1 > k, j < —k such that V; # 0, V; # 0.
Now the same arguments as in the proof of Lemma 5.3 show that e_, and
es—o are not locally nilpotent on such module and, therefore, V has a zero
level. O

Remark. (i) The structure of modules L,(\, L, 4), » > 0 is unclear is
general. Some examples were considered in [1, 12].

(i1) Most of the results of Section 5 can be generalized for an arbitrary Affine
Lie Algebra [6, 7, 12].

6. Non-dense G-modules.

Definition. An irreducible weight G-module V is called dense if P(V) =
A+ Q for some A € H* and non-dense otherwise.

In this section we classify all irreducible non-dense G- modules with at
least one finite-dimensional weight subspace. Our main result is the following
Theorem.

Theorem 6.2. IfV is an irreducible non-dense G-module with at least one
finite-dimensional weight subspace then 1% belongs to one of the following
disjoint classes:

(i) highest weight modules with respect to some choice of m;

(i) LE(\,y),a€ A, A€ H*,ye C—Ry,e € {+,—};
(iii) Lo(A\, Lypp), @ € A, X€ H*, M(c) =0,7>0, A€ P,.
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(iv) La(\,M%(a)), a € A™, A€ H*, a € C*, X(c) = a, € € {+,~}.

Moreover, we can describe the irreducible G-modules of non-zero level
with finite-dimensional weight subspaces.

Theorem 6.3. Let V be an irreducible G-module of level a # 0 with all
finite-dimensional weight subspaces. Then V ~ Lt /(A,7y) for some a € A",
A€ H*, Mc)=a,7€C,e€{+,-}.

Remark 6.4. Theorems 6.2, 6.3 imply that in order to complete the clas-

sification of all weight irreducible G-modules one has to study the following

classes:

(i) Modules of type L,(\, V) where V is a graded irreducible G-module

of non-zero level with all infinite- dimensional components.

(i) Dense G-modules of zero level.

(iii) Dense G-modules of non-zero level with an infinite-dimensional weight
subspace.

These classification problems are still open.

The proof of Theorem 6.2 is based on some preliminary results. We start
with the following Definition.

Definition 6.5. A subset P C A is called closed if 8;,08, € P, i + 32 € A
imply 3, + 3, € P. A closed subset P C A is called a partition if PN—P = §,
PU-P=A.

Lemma 6.6. Let P be a partition, P> 6, P = PN A", B € A™.
(1) If|Pen{B+ki|keZ,}|[<ooor|PenN{-LF+kéd|keZ}|<o0
then P™ = {p+nd | n € Z} for some ¢ € A™.
(i) If| PenN{B+ké|keZ} |=| PeN{-B+kéd|keZ,} |= oo then
P = A, (%) for some basis T of A.

Proof. Recall that A = {£3+ké |k € Z} U{nd | n € Z — {0}}. It follows
from [7] that there exist w € W and ' € A" such that

wP={f +ki|keZ}U{ké |k >0}
or
wP ={B'"+nd,—B +ké|n>0,k>0U{kd]|k>0}=A,(r")
where 7' = {#',6 — 3'}. Then

P={w'pf +ké|keZ}U{kd|k>0}
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or P = A, (w™'n'). This implies the statement of Lemma. a

Definition 6.7. A non-zero element v of a G-module V is called admissible
ifN;'U =0or B‘O’U = 0’ for some € Are, = {+, _}.

Lemma 6.8. If the G-module V' contains a non-zero vector v € Vy such
that e,v = 0 and A+ kd & P(V) for some ¢ € A™, k € Z — {0} then V
contains an admissible vector.

Proof. We will assume that & > 0. The case k < 0 can be considered analo-
gously. We prove the Lemma by the induction on k. Let £ = 1. Then we have
ept+mo¥ = €50 = 0 for allm > 0. Ife,_;s;v = 0 for all 1 > 0 then B,v = 0 and
v is admissible. Let e,_,sv 7# 0 for some n > 0 and e,_;sv = 0,0 <7 < n.
Set 7 = €y_nsv # 0. Then e,_;50 = €59 = €_p4(nt+1)60 = 0, 1 < n and, thus,
ey =0forany o € P = {p—id,—p+ (n+j+1)5,(j +1)8 | i < n,j > 0}.
One can see that P U {—p + né} is a partition and P = A, (7) — {¢'} for
some ¢' € A", T = {¢',0 — ¢'}, by Lemma 6.6. Hence, N} 4 = 0 which
proves the Lemma for k£ = 1.

Assume now that the Lemma is proved for all 0 < k' < k and consider
two cases:

(1) There exists n € Z, 0 < n < k such that e,y 5v =0forall0 <i<n
but €y 1nsv # 0. Then ey 467 = e_yq(k—n)s¥ = 0,0 < ¢ < n where ¥ = e,y 5V
and e_yq(k—n)o¥ € Vaqps = 0. f k—n=1ork—-n>1and e_,450 =0
then Nyv = 0 and v is admissible. Let k —n > 1 and v' = e_,450 # 0.
Then v' € Vy, epv' =0, N+ (k—n—1)d & P(V) where X' = A+ (n + 1)4,
¢ = —¢p+ (k—n)d and V has an admissible element by the induction
hypotheses.

(ii) Let e,4i5v = 0 for all 0 < i < k. Since exsv = 0 we have e,y 50 = 0
foralls > 0. If 9, = epsv # 0 for some 0 < m < k then 9,, € Vy,
XN =X+mé, e,0,, =0, X'+ (k—m)d & P(V) and we can apply induction.
Assume that 9, = 0 for all 0 < m < k. Then we have e,V = ensv = 0,
1 >0,0<m< k. Ifey,jv=0foral j >0then Bjv = 0 and v
is admissible. Otherwise, let n be a minimal positive integer such that
U = €p_ns¥? # 0. Then e, ;50 = e_yi(ntk)s? = €350 = 0,1 > 0, 7 <
n. Assume that e_, (n41)s7 = 0. We have ey® = 0 for any ¢ € P =
{p—30,—p+(n+m)d,md | j <n,m>0}. The set PU{—p+né}is a
partition, | Pren {cp+z5 [i>0} |=| PN {—p+id|i>0} |= oo and,
therefore, P = A, (%) — {¢'} for some ¢’ € A", & = {¢',d — ¢'} by Lemma
6.6. We conclude that NJ v =0and 7 is admlss1ble Finally, suppose that
v' = e_yi(nt1)s0 # 0. Then o' € Vi, e,v' =0, X'+ (k—1)6 € P(V) where X'
stands for A + § and, thus V has an admissible element by the assumption
of induction. This completes the proof of Lemma. a
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Proposition 6.9. Let V be an irreducible non-dense G-module. Then V
contains an admissible element.

Proof. Let A € P(V) and A + ¢ & P(V) for some ¢ € A. We can assume
that ¢ € A™. Indeed, let ¢ = 4. If e,v = €5_,v = 0 for some 0 # v € Vj,
o € A then V is a highest weight module with respect to {c,d — o} and
v is admissible. If, for example, e,v # 0 then X' = A + a € P(V) and
AN+ (d—a) € P(V). Hence, we can assume that A+ € P(V), ¢ € A™. Let
0#v eV Ifv' =e, n5v # 0 for some n € Z — {0} then e,v' =0, v' € Vj,
A= X+¢—nd, A\+né ¢ P(V) and Proposition follows from Lemma 6.8. If
e,—nsv = 0 for all n € Z then B,v = 0 and v is admissible. O

Corollary 6.10. If V is an irreducible non-dense G-module then either
V>~ LE(A,y) orV =~ L,(\, V) for somea € A", A€ H*,y€ C, e € {+,—}
and irreducible G- module V.

Proof. Follows from Proposition 6.9, Corollary 3.3 (i) and Proposition 5.2.
O

Now Theorem 6.2 follows from Corollary 6.6 and Theorem 5.4.

Proof of Theorem 6.3. Let p € P(V). Consider the G-submodule V =
Uu (G’)V# C V. Then it follows from Proposition 4.5 that V is completely
reducible and moreover each irreducible component is isomorphic to M¢(a),
e € {+,—} up to a shifting of gradation by Proposition 4.3, (i). Denote by
V* the sum of all irreducible components of V' isomorphic to M*(a) and
assume that V* # 0. Let 0 # v € VTNV, x € P(V) and V*NV, 5 = 0. We
will show that for any a € A there exists m, € Z, such that e, ,sv = 0 for
all m > m,. Indeed, let vy = e,v # 0. Consider the G-module U (G)v, which
is again completely reducible by Proposition 4.5. If exsv # 0 for all £ > 0
then v, = efvy # 0 for all k£ > 0. But, for big enough &, v;, will belong to the
direct sum of irreducible components of U(G)vy each of which is isomorphic
to M~ (a) up to a shifting of gradation. This contradicts Proposition 4.1,
(i), since vy = 2",y (k4250 = 2e25v;. Thus, there exists m, > 0 such
that eyym, sv = 0 and, therefore, e,y msv = 0 for any m > m,.

Suppose that x + 8 € P(V). Since V is irreducible there exists 0 #
u € U(G) such that 0 # uv € V, 5. It follows from the discussion above
that e,suv = 0 for big enough n € Z,. The G-submodule V' = U(G)uv
is completely reducible by Proposition 4.5 and since V* N VX_H; = 0, any
irreducible component L C V' such that L N 17X+5 # 0 is isomorphic to
M~ (a) up to a shifting of gradation. Hence, e,;0 # 0 for any non-zero
# € V' N V,4s by Proposition 4.1, (i) and ensuv # 0 in particular. This
contradiction implies that x + d ¢ P(V) and therefore V is a non-dense
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G-module. Applying Theorem 6.2 we conclude that V =~ LZ,(),~y) for some
a € A, N € H* Mc) = a, v € C, € € {+,—} which completes the
proof. O
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