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MOON HYPERSURFACES AND SOME RELATED
EXISTENCE RESULTS OF CAPILLARY HYPERSURFACES
WITHOUT GRAVITY AND OF ROTATIONAL SYMMETRY

FEI-TSEN LIANG

Let Ω*(iϊ) be a domain in W1 bounded by two spherical caps
Ύl — 1 . ΐl — 1

Σi and Σ2 of respective radii and R, with < R < 1.
n n

(cf. Figure 1 for n = 3). We consider the vertical cylinder Z
over dΩ*(R) and seek a hypersurface UR(XI, ... ,xn) over Ω*(i?)
of constant mean curvature H = 1 which meets Z in the angle
π (vertically downward) over Σχ(R) and the angle 0 (vertically
upward) over Σ2(iί); intuitively and essentially, this amounts
to seeking a solution to the problem

(01) {.. „.. j - l on
on

v being outward unit normal.

0. Introduction.

In view of the shape of the base domain Ω*(iϊ), we shall, as in [FG] for n — 2,
refer to Ω*(i?) as n-dimensional moon domains and as in [F2], refer to the
solution of (0.1) as moon {hyper)-surfaces. Such a moon surface (n = 2) is
chosen to majorize the gradient of solution u{x) of

(0.2) divTu = 2

in BR,RQ < R < 1, with RQ = 0.565406... being the unique value of
R for which Σχ(i?) passes through the center of the circle including Σ2(iϊ).
This enables us to show the existence of apriori gradient bounds for solution
of the equation (0.2) in BR, R^ < R < 1, in [FG].

0.1. We note that, an integration of (0.1) over the section Ω*(i?) yields

(0.3) |

Thus, the condition (0.3) is necessary for existence of the moon hypersurfaces
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In §3 and §5.1 of this paper, the existence of n-dimensional moon domains

Ω*(i2), 1 > R > , characterized by the condition (0.3), will be verified,
n

for n = 3 and n > 3, respectively. The existence of moon hypersurfaces, for
n = 3 and n > 3, will be proved in §1 and §5.2, respectively. These results
may help us to extend the above-mentioned apriori gradient estimates to
higher dimensions.

0.2. As in [F2] and §3 of [LI] for n = 2, we shall, in §2 and §5.3, for n = 3
and n > 3, respectively, in a suitable sense indicated there, construct the
moon (hyper)-surface as a limit of solutions ue to (1.2) defined throughout
the sphere BR including Σ2(i?) This result will also be applied in [L2] to
show that absolute gradient estimates cannot hold for solutions of

(0.4) divTu = n

in BR, R < Ron\ R^ being the unique value of R for which Σx(i?) passes

through the center of the sphere including Σ2(iί). As calculated in the ending

of §4, we have

2 + 2N/Ϊ9 = 0 7 4 6 4 2 1 9 8 7 . . . ( c f ( 4

For n > 3, RQ1^ is determined as in §5.1.1.

Σ2(R)

Figure 1. (n=3)

0.3. The proof of the existence of the moon hypersurfaces uR and the exis-
tence of that sequence of solutions converging to it are reduced to the general
existence results in Finn [Fl]. That is, in §1, we shall verify, for n = 3,

(0.5.1)
φ[Ω°] = |dΩ°nΩ<t | + | < 9 Ω o n Σ 1 | - | d Ω ° n Σ 2 | + n | Ω o | > 0
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(0.5.2)

ΞΞ |<9Ω° Π Ω*| - \dtt° Π Σ i | + |<9Ω Π Σ 2 | - n | Ω | > 0

for every Caccioppoli set Ω° C Ω*, Ω° φ φ, Ω*; in §2, we shall verify, for
n — 3, for e sufficiently small

(0.6.1)

φ[Ω°] ΞΞ \dΩ° Π Ω*| - (1 - e)|dΩ° Π Σ 2 | - βe dΩ° Π Σ + n|Ω°| > 0,

(0.6.2)

Π Ω*| + (1 - e)|3Ω° Π Σ 2 | + βe \dΩ° Π Si - n|Ω°| > 0,

for every Caccioppoli set Ω° C BR, 1 > R > 2/3, Ω° / 0, £ Λ where Σ =
dBR — Σ 2 and βe{R) is a constant depending on i?, and defined by the
equation (2.1); - 1 < βe < 1 for 1 > R > 2/3 and - 1 < βe < 0 for
1 > R > R{

0

3). The verification of (0.5.1), (0.5.2), (0.6.1) and (0.6.2), however,
is not a straightforward generalization of that of the two dimensional case,
due to the fact that the hyper surfaces of constant mean curvature are in
general not spherical. A new approach is inexcusably required. We will
draw on the technique of the rearrangement of level curves. The rotational
symmetry of both the boundary surface dBR and the boundary data will
therefore play a crucial role in our investigation. Also, in this connection,
we find that, in both cases of §1 and §2, it is more easy and natural to discuss
^[Ω0] than 0[Ω0]; thus because of the respective equivalence of (0.5.1), (0.6.1)
and (0.5.2), (0.6.2), we will restrict our attention to (0.5.2) and (0.6.2). In
either case, a minimizing body for ^[Ω0] exists and, using our new technique,
the only possible non-empty minimizing body for ψ[Ω°] is shown to have a
spherical cap of radius 2/3 and passing through dΣi as its boundary in
the sphere BR (obtained by completing Σ 2 ) . This only possible non-empty
minimizing body includes or is included in a hemisphere in the case of §1
or §2, respectively, and has φ > 0 in either case, thereby proving that the
empty set is the one and only minimizing body for ^[Ω0]. (0.5.2) and (0.6.2)
are immediate consequences of this.

The main tool used in this case of §1 is, what is known as the classical
isoperimetric inequality. We, however, find difficulties in applying this tech-
nique to the case of §2, mainly due to the boundary data 1 — e being unequal
to 1. Steiner symmetrization is suitably modified to prove that the minimiz-
ing body for φ[Ω°] in (0.6.2) is a surface of revolution, with the extremely
useful help of the analyticity of the boundary surface in BR of a minimizing
body for ^[Ω] and n — 3, (which is provided by Massari [Ma]).
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0.4. For simplicity of writing and convenience of visualization, we deal ex-
clusively with the case of three dimensional domains in §1, §2, §3 and §4.
In the chapter §5, we will extend the results in these chapters to domains
of dimension higher than three. We note that, for n > 7, Massari's Theo-
rem [Ma] does not yield the analyticity of the boundary surface in BR of a
minimizing body for ψ[Ω]. This difficulty of extension, however, as we shall
observe in §5.3, is insubstantial. Reviewing the argument used in §2 and
§5.3, incidentally, will enable us to formulate in §6 some existence results of
capillary hypersurfaces whose domain of definition and boundary data are
of rotational symmetry about the same axis.

1. Existence of the Moon Hypersurfaces for n — 3.

In this section, we shall prove.

Theorem 1.1. Let Ω* C R3 be a "moon domain7\ bounded by two spherical
caps Σi and Σ 2 with the respective radii § and iϊ, 1 > R > §, which satisfies
the condition

(1.1) |Σ3i|-|Σ32 |

Then the problem

(1.2)divΓti = 3 in Ω*,

/ (wPiζi + 3η) dx + [ ηdσ- ί ηdσ = 0 for all η G Hlfl(Ωx)

where ζi = ηXi, w = yj\ + \p\2, p = (puP2,Ps), Pi = vXi

has a solution u(x), unique up to an additive constant.

1.1. Background information. As in §2 of [LI], we reduce the proof of
Theorem 1.1 to the general existence results in Finn [PI], which, although
have been formulated for two dimensional domains, can be easily extended
to higher dimensions by the same argument.

As in [Fl], the capillary problem in the absence of gravity can be reduced
to the variational problem for a functional

ζ[u] = / Λ/1 + \Du\2 + nH ί udx- ί β{s)udσ,
Jn v Jn JdΩ

with β(s), — 1 < β(s) < 1, being piecewise Lipschitz continuous on the
boundary c?Ω of a bounded domain ΩCR n, and H being a constant. As in
§2 of [LI], for future reference we formulate
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Proposition 1. If, for a piecewise Lipschitz domain Ω, both the conditions

(1.3) φ[Ω°] = | 0 Ω o Π Ω | - / βds + nH\ίl°\ >0

and

(1.4) φ [Ω°] = IdΩ0 Π Ω| + ί βds-nH |Ω°| > 0

hold for every Caccioppoli set Ω° Φ φ, Ω (Ω° C Ω). Then there is a minimiz-
ing function u(x) G BV\oc(ft) for ξ[u]. Furthermore, the minimizing function
is unique up to an additive constant, is regular and locally bounded in Ω,
satisfies in Ω the Eq. (0.1) and the variational condition

nHη) dx [
JdΩ

1.2. The Proof of Theorem 1.1. In view of Proposition 1, it suffices to

show (0.5.1) and (0.5.2) for every Caccioppoli set Ω° C Ω*, Ω° φ ^,Ω#.

To show this, we first observe that if Ω cΩ*, then

(1.6) φ [Ω°] = |5Ω° Π Ω| + 3 [Ω°| > 0

V>[Ω°] = |aΩ°ΠΩ|-3[Ω°| > 0

where the last inequality is an immediate consequence of the following Propo-
sition. (Henceforth, we denote the characteristic function of a Caccioppoli
set E as ΨEΊ and the integral JB \DφE\, denoted as the perimeter of E in
BR, is defined by JBR \DφE\ = sup/ B β φEdivg among all vector functions
g G CQ(BR), \g\ < 1. This integral equals the surface area of dE in BR

whenever this boundary is smooth.)

Proposition 2. If A is a Caccioppoli set with A C BR: 0 < R < 1, then

ί \DφΛ\-3 f ψAdx>0.
JBR JBR

Proof. Let v(x), defined on J3 l5 describe the lower unit hemisphere, then

(1.7)
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If A C BR, 0 < R < 1, we can integrate the Eq. (1.7) in A, obtaining

3 / φΛdx = / divT-ucte = -(DφA,Tv),
JBR JA
/

and hence, as |Γv| < 1 in ψAdx < JBR \DφA\. D

(We note that this result is alternatively obtained in Giusti [Gl], pages
114 and 115.)

Thus it now suffices to consider all those sets intersecting dΩ* with a set
of positive area. We shall show that (0.5.2) holds for all those Ω° ^ Ω* which
have either or both of |<9Ω° Π Σχ| and |9Ω° Π Σ 2 | > 0. Once we show this,
since, for all the Caccioppoli sets Ω° C Ω*,

(1.8) Π Ω| + |<9Ω° n Σχ| - |<9Ω° n Σ 2 | + 3

+ | Σ 2 Π 0 (Ω, - Ω°) I - 3 |Ω - *Ω°|,

= φ [Ω, ~ Ω°] ,

(by (1.1))

(0.5.2) implies that there also holds (0.5.1) for all the Caccioppoli sets Ω° C
Ω#, Ω° φ φ, Ω*. The proof of Theorem 1.1 can thus be completed.

To show this, we first observe that if Ω° has |<9Ω° Π Σ i | = 0, then
° Π Ω»| + |dΩ° Π Σ 2 | - 3|Ω0 | > 0, again due to Proposition 2.

Ω

Σ 2 C dBR

Figure 2.

Thus, it suffices to consider all those Caccioppoli sets Ω° with |5Ω°ΠΣi| >
0 and |<9Ω° Π (Ω* U Σ 2 ) | being connected. We observe also that, for all such
sets we can always assume that dΩ° Π Σi = Σi, for otherwise we could add
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to Ω° and e- neighbour hood of Σi and then pass to limit as e —» 0+ . (Here
we note that the boundary data βe being = — 1 on Σx enables us to do so.)
We call the collection of these sets as S. For sets in 5, we have

(1.9)

to minimize this expression (1.9) among all these sets in 5, however, is

equivalent to minimizing

(1.10) ψ* 3|Ω°UΩ**|

in the same collection of sets, where Ω** is that part of BR — Ω* lying above
the unique plane P passing through the circle Γ — 9Σχ (see Figure 2). Here
and in the following, we assume BR to be the sphere that is obtained by
completing Σ 2 , P to be the x,y plane and that side of P containing the
center of BR to be "above" P.

As in §2 of [LI], we consider a minimizing sequence \ Ω^ \ for the functional

^*[Ω°] in (1.10), and use the same argument to conclude from Theorem 1.19

in Giusti [G2] that there is a subsequence of {φno} that converges in LX(Ω)

to φ-ζi' and that setting Σ = <9Ω Π Ω*

DφΩo
3

Further, we have

ψ* [Ω] < inf

by a reasoning similar to that used for the proof of Lemma 6.3 in Finn [Fl].
We proceed to characterize the geometry of Σ.

Proposition 3. φ, then Σ must be a spherical cap passing through

Figure 3.
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Proof of Proposition 3. We consider an arbitrary body F in Ω* U Ω** U Σ 2 (cf.
Figure 3), passing through Γ = 9Σ l 5 and bounded below by the disk PΓ\BR.
Prom the discussion below Figure 2 and above (1.9), we may, without loss of
generality, assume that F\Ω** is in the collection S. Now that ψ*[FΓ)Ω*\ =
\dF Π (Ω* U Σ 2 ) | — 3|F|, we shall prove Proposition 3 by constructing a body
F such that F \ Ω** is in the collection 5, and that

F\ = m
\dFn (Ω, u Σ2)| > \dFn (Ω* u Σ2)|,

where the last equality holds only when dF Π (Ω* U Σ2) is a spherical cap
passing through Γ.

We observe first that, for each value V with

<V

a spherical cap passing through Γ and situating above P exists, the volume
enclosed by which and disk P Π BR is equal to V. (Cf. Figure 4).

Figure 4.

Now that

a body with

= \F\

exists which has a spherical cap Σ as its boundary in Ω*. Obviously, F \ Ω**.
is in the collection S. Furthermore, we may extend the spherical cap Σ to a
full sphere Σ which is the boundary of a ball 5 . Then

B-F = 1*1.
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and the isoperimetric inequality for three dimensions (Cf. [MM], p. 92)
asserts that

| & F Π ( Ω , U Σ 2 ) |

that is,

|&Fn(Ω*UΣ 2 ) | > Σ

and equality holds only when F = F. D

Also, by the analyticity of Σ (see [Ma]), we may use an argument similar
to that one used to prove Lemma 6.4 in page 148 of [Fl] to conclude.

Lemma 1. // Σ φ φ then Σ must consist of surfaces of constant mean
curvature 3/2 and Ω lies on the side of Σ into which the curvature vector
points.

Putting Proposition 3 and Lemma 1 together, we see that a non-empty Σ
must be a spherical cap of radius 2/3, which can possibly occur only when Σi
is a subset of a hemisphere of radius 2/3 and Σ strictly includes a hemisphere
of radius 2/3. In case that Σx is included in a hemisphere, denting Σ o as the
spherical cap of radius 2/3, included in Ω* and Ωo as the body enclosed by
Σ o and Σ l 5 we shall show

ψ* [ Ω 0 U Ω++] - ψ* [Ω*,] > 0, where V* [Ω«] = |Σχ | - 3 |Ω*,|

and hence

<ψ [Ωo] = ψ* [Ωo U Ω « ] - | Σ X | + 3 | Ω M |

= 0,

thereby proving (0.5.2), as minimizing ψ and φ* are one and the same matter.
In fact, adopting spherical coordinates with origin at the center 0 of B2/3

including Σo, we choose θx < τr/2 so that the equation r = is
o

that for the circle Γ (= dΈx). Thus, (cf. Figure 5) as calculated in (3.7) and
(3.8) for R = § (cf. (3.1), (3.3))

φ* [Ω0 U Ω,.] - φ* [Ω..] = (A π + JLπ cos3 θ^j-^n-^π cos

1 6 3/,

= ^ T C O S θ1

as desired.
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Figure 5.

2. Moon Hypersurfaces constructed as a generalized solution
over BR in the sense of Miranda for n = 3.

As in Sec. 7.11 of Finn [Fl], II of Finn [F2], or §3 of [LI], let us extend the
spherical cap Σ 2 to a full sphere ΘBR, and write Σ — dBR — Σ 2 (cf. Figure
6). Then if e is small enough, it will be verified in §5 that there is unique
β€(R), - 1 < βe < 1 for 1 > R > 2/3 and - 1 < βe < 0 for 1 > R > R{Q\
such that data

satisfies

(2.1)

the necessary

1
e ~ 1

condition

( l - β ) | Σ

1 -

y +

6

K Σ

on

on

=

Σ2

Σ,

3|i

for the existence of a minimizing function u€(x) £ BV\0C (BR), which mini-
mizing the functional

ξ€[u]= ί Λ/I + IVu\2 4- 3 / udx- ί βe(s)uds,
JBR

 V JBR JdBR

/ I \ /
BR

 V JBR

and thus (cf. Proposition 1) satisfies

div Tu€ = 3

in BR] here (2.1) is necessary because substituting η(x) = 1 (in BR) into the
variational condition (1.5) for this particular function ξe[u] yields (2.1).

We shall show that (a) this minimizing function u€(x) indeed exists if e is
small enough, and (b) as e -> 0, \Vue\ cannot be bounded in e for any subset
o / | Σ i | of positive area.
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Σ = dBR\Σ2

Figure 6.

2.1. To prove (a), in view of Proposition 1, it suffices to show that, for
sufficiently small e, (0.6.1) and (0.6.2) hold for every Caccioppoli set Ω° C
BR, Ω° φ φ, BR. TO show this, as in §1, we first observe that, if Ω° C BRl

then

where the last inequality readily follows from Proposition 2 in §1. Thus,

it suffices to consider all those sets whose intersection with dBR is a set

of positive area. We shall show that (0.6.2) for n = 3 holds for all those

Ω° C Ω* which have |<9Ω° Π Σ 2 | > 0 or dΩ°ΠΣ > 0. As in §1, we note that

proof of (a) will be completed once we verify the truth of (0.6.2), because

there holds by virtue o/(2.1),

φ [Ω°] =φ[BR- Ω°],

for each Caccioppoli set Ω° C BR.
To show (0.6.2) for n = 3, we first observe that if e is small enough,

<ψ [Ω°] = [dΩ° Π BR] + (1 - e) |aΩ° Π Σ 2 | - 3 0

= 0. This follows from Propd-for all the Caccioppoli sets Ωo with dΩ° Π Σ

sition 2 and Giusti [Gl], Lemma 1.

Thus it suffices to consider all those Caccioppoli sets Ω° with

0 and <9Ω° Π (BR U Σ 2) being connected.

<9Ω°ΠΣ
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As in §1, we may try to minimize φ [Ω°] among all the Caccioppoli sets

Ω and consider a minimizing sequence \ ΩJ \ for φ [Ω°] the same reasoning

concludes that there exists a subsequence of the \ ΨQO \ converging in
to ΨQ such that

φ [fί] < inf φ [Ω°] .

Set Σ = Ω Π BR. If Σ φ φ, we have shown that
Due to the very fact that β€ Φ 1, it seems infeasible to proceed further as

in §1. We may, however, take a different approach and arrive at the same
conclusion. The main idea of the following discussion is provided by Steiner's
solution to the two dimensional isoperimetric problem.

Our main aim is to show

Proposition 4. The only non-empty candidate for Σ is the spherical cap
Σi. In other words, the only non-empty candidate for Ω is BR — Ω*.

We again let P to be the unique plane passing through the circle Γ =
dΈi Π dBR and designate P as the x, y plane so that the center of BR has
the ^-coordinate z > 0.

To prove Proposition 4, we shall proceed to verify

Proposition 3*. If Σ φ φ, then Σ is made up of surfaces of revolution
about the Z-axis.

We will reduce the proof of Proposition 3* to that of the following

Proposition 3**. If Σ φ φ, then at each point of Σ, the tangent of the
horizontal cross-section of Σ through this point is the normal of the unique
vertical plane ax + by = 0, α, 6 : constants, passing through this point (and
the origin).

The equivalence of Proposition 3* and Proposition 3** is obvious; in fact,
at each height zOi Proposition 3** yields that

xx + yy — 0

for each connected subarc (x(t),y(t),zo) of the horizontal cross-section of Σ,
which holds if and only if

x2 + y2 = constant,

i.e., (x(t),y(t),Zo) describes a circle with the center on the z-axis. This
amounts to Proposition 3*.
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We thus proceed to give a

Proof of Proposition 3**. Consider a vertical plane P : ax + by — 0, α, b :
constants, which divides Ω into two non-empty parts Ωx and Ω2 (and of
course passes through a great circle of dBR). We can assume ?/>[Ωχ] < V>PVI-
Reflecting the body Ωx in the plane P, we obtain a body Ω'χ on the opposite
side of the plane P such that

Ωx U Ωx C BR.

Then

U Ω'J = ^[Ωi] + ψ[Ω[] - 2 <9Ω2

- aΩi n P - <9Ω2 n p

since ^[Ω'J = φ[ςiλ] < φ[ς\2] (cf. Remark 1 below) and d^ΠP =

c?Ω2 Π P , by construction. The minimizing property of Ω yields ^[Ωx U

Ωi] = ψ ί l (and hence φ[Ωχ] — /0[Ω2]). The body Ωx U Ωi is therefore an-

other minimizing body for ψ[Ω] and the theorem of Massari [Ma] thus yields

the analyticity of the boundary surface of Ωi U Ωi in BR. In other words,

Σx U Σi is an analytic surface in BR, where Σx = 9Ωχ Π BR and Σ'χ is the

reflection of Σx in the plane P. In particular, each horizontal cross-section

of Σx U Σi must consist of smooth arcs, which is possible only if Proposition

3** holds, (for otherwise a cusp would have appeared at a certain horizontal

cross-section of Σx U Σi). D

Remark 1. We note that φ[Ω[] — φ[Ωχ] because of the rotational symme-
try of both the boundary surface dBR and the boundary data βe.

In Proposition 3 * , we know t h a t <9Σ Π d B R C Σ U OΈχ b y t h e f a c t t h a t e
can be arbitrarily small and the reasoning used in the proof of Proposition 3
in §1. Thus, (0.6.2) yields that <9Σ Π dBR must be a connected subset of Σ,
for otherwise replacing a part of Σ below 9Σχ by that part of Σ surrounding
it yields a smaller value for φ. Thus, the reasoning used in the proof of
Proposition 3 yields that Σ must be spherical. Also, the reasoning following
the proof of Proposition 3 excludes that spherical cap situated above Σ x and
passing through <9Σχ.

Furthermore, in Proposition 3*, were Σ situating below Σ l 5 then a rigid
motion of it would result in a body meeting Σ with the same surface area and
therefore yielding the same value for φ (cf. Figure 7), which, however, would
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by no means be symmetric with respect to the 2-axis, violating Proposition
3*. We thus precluded the occurence of Σ being a spherical cap other than
Σi. Proposition 4 is finally proved.

small congruent to Σ
and yet asymmetric -
with respect to the z-axis

a surface of revolution
of constant mean curvature

Figure 7.

Now that Proposition 4 has been proved, our proof of (a) is complete by
observing that

by (0.3)= e |Σ 2 | ,

2.2. Next, to prove (b), we note that a proof for (b) given in §3.2 of [LI]
for the two dimensional domains extends in an obvious may to arbitrary
dimensional domains and we do not repeat it here.

We, however, recall that, in the course of our proof, we have incidentally
proved

Proposition 5.

and Tue(x)

L v-Tueds —> - | Σ i | , as e-> 0

as e —> 0, uniformly for x0 G Σ 2 .

We therefore gain the rough impression that the solution of (0.6) in Ω* has
been constructed as a limit of solutions ue defined throughout BR, as stated
in §0.0.2. We may proceed to gain a rigid and precise understanding on this.
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As in §3.3.3 of [LI], according to a theorem of Miranda [M], we know that
a subsequence of {u€} can be found which converges in BR to a generalized
solution u(x) of the equation (0.4), n = 3, in L\OC{BR). Set P and N and
normalize the solutions ue in essentially the same way as we have done in
§3.3.3 of [LI]. We again have

Proposition 6. Both the sets N and BR — P minimize the functional

(2.3) ^[Ω°] = |<9Ω° Π BR\ + β0 |<9Ω° Π Σ + |<9Ω° Π Σ 2 | -

among all the Caccioppoli sets Ω° C BR, Ω° φ φ or BR, where

Repeating our reasoning for proving Proposition 4, we again know that
the minimizing body for (2.3) must be either empty or else BR — Ω*. In
consideration of our normalization, the results in (b) and the reasoning used
in §3.3.4 of [LI] therefore again yield that P = φ and N = BR - Ω*. We thus
prove that the regularity domain of u coincides with Ω*. Also, the reasoning
used in the ending of §3.3.3 of [LI] or Theorem 7.8 in [F3] again yields
the identity of the function u and the solution to (1.2) (or (0.1)) in Ω*. We
therefore arrive at an accurate interpretation of what we asserted.

3. The Existence of Three Dimensional Moon Domains Ω*(i?) for
1 > R > 2/3.

Consider the function

(3.1) f(riθ) = σΘ{r)-3υθ(r)

where σθ(x) is the area of the spherical cap Dp(θ^) whose boundary dDp(θ^r)
is a circle of radius p = r sin# on dBr and V#(r) is the volume enclosed by
the spherical cap £>p(6>,r) and the plane passing through the circle dDp(Θir)
(cf. Figure 8). We readily see that, if Ω#(i2), 1 > R > 2/3, exists, the
equation of the circle Γ = dΣλ(R) is p — | sin#i(i?) where θχ(R) is the root
of the equation

(3.2) /(i?;7Γ-V(0))-/(2/3;0) = O (cf. (1.1) or (0.3)),

with

(3.3) φ(θ) = sin' 1
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Figure 8.

We shall justify, for 1 > R > 2/3, the existence of Ω*(i?) by showing the
existence of a root θ = θλ (R) for the equation

with

(3.4) g(R θ) = f(R;π- φ{θ)) - f(2/3;θ).

We have

(3.5)

and

rθ

σθ(x) = 2πr2 / sin0d0 = 2πr 2(l - cos0),
Jo

(3.6) Vθ{r) = π Γ (r2 - z2) d^ = πr3(2/3 - cos0 + 1/3cos3

«/r cos θ

Hence, by (3.1),

(3.7) / ( | ; θj = y (1 - cos θ) - A π ( 2 - 3 cos θ + cos3

8 8

and

(3.8) f(R,π-φ(θ))

= 2πR2{l + cosφ(θ)) - πR3(2 + 3cosφ(θ) - cos3
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with

(3.9)
COSφ{θ) =

By (3.4), (3.7), (3.8) and (3.9), we have

(3.10)

and

(3.11)

9(R,0) =
=0, iίR=l,

Γ
<0, if 1 >R>2/3.

The existence of a root θ — Θ1(R), 0 < θλ(R) < π, for the equation g(R; θ) —
0 readily follows from (3.10) and (3.11).

4. In (4.1), if e is sufficiently small, -1 < βt(R) < 1 for 1 > R > 2/3
and -1 < β€(R) < 0 for 1 > R > R^3).

In (2.1), we have to set

3 | B Λ | - ( l - e ) | Σ 2 |

It follows at once that βe(R) < 1 for e sufficiently small, since 3|2?R| =

4τri?3 < 4πR2 = |Σ 2 | + Σ , for 1 > JR > 2/3. On the other hand, using (0.3),

(4.1) βt{R) =

To show that — 1 < βe(R) for sufficiently small e we only need verify

(4.2) <

To do so, we, as in §1, denote P as the plane passing through the circle dΈi
and denote Ω** as the body enclosed by PΠBR and Στ (cf. Figure 2). Then,
we have

(4.3) Σ > I the planar disk PΓ\BR\,
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and

(4.4) |Σ 1 |

However, the inequality

(4.5) \PnBR\>\Σ1\-3\Ω..\

follows immediately from the fact proved in §1 that Ω** strictly minimizes
ψ*[Ω°] (cf. (1.10) and (1.12)) among all the Caccioppoli sets passing through
the circle 9Σχ and situating entirely at one side of the plane P (including
P). The inequality (4.2) is thus proved.

We note that, alternatively, (4.5) can be proved by a direct calculation.
Namely, using the notations in §3,

\PΠBR\ = -πsin2

and

Hence

(cf. (3.7)).

= ^-π(3 sin2 θ - 2 + 2 cos3 θx)
Δ t

for all θ.
We now proceed to prove βe{R) < 0 for 1 > R > RQ '. We have, as

| S Λ - Ω . | <2|Ω,,|, that

>

— 7r(l-cos^1)(2cos2(91
Δ ί

1 f\
= — π ( l — cos θi)

Δ i
cos#! -f

y/3 Λ / 3 - 1
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In view of (2.1), we therefore only need verify

(4.6) θλ(R) < cos- 1 (3)
for 1 > R>R[

o

ό).

To do so, we may observe that, there holds the following

Proposition 7. Θ^RJ > θλ(R2), if Ri % R2-

Proof. This is an immediate consequence of (0.5.2). In fact, if R1 <z R2

and θι(Rι) < Bι(R2), then after a rigid motion, Σχ(i?i) C H1(R2) and
Ω*(i?!) C Ω*{R2) with

ψ[ΩΛRι)} = |Σ2(/2i)| - \Vi(Ri)\ - 3|Ω,(i2i)| > 0,

in accordance with (0.5.2) and yet contradicting our original definition (0.3)of
fi.(i20. D

Figure 9.

Thus, to verify (4.6), it suffices to show that

(4.7) < COS

To do so, we may observe that, as Σ x (RO) passes though the center of

BR(3), we have, using the notation as in §3,

(4.8) φ (θ,

that is,

?(3)

(cf. Figure 10),

i?i3) cos
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and hence

which yields

(4.10)

Substituting (4.8) into (3.2) or (3.4), we shall obtain R^3) as the root of the
equation

or, using (3.1), (3.7) and (3.8),

3sin

or, using (4.9) and (4.10)

cos3

that is,

or,
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Hence,

(4.11) = 0.746421987.

Figure 10.

Thus, using (4.10) and (4.11)

= cos

As > ^ Ί Γ 1 ' ( 4 7 ) ( a n d h e n c e ( 4 6 )) follows.

5. On Still Higher Dimensional Cases.

5.1. We first verify the existence of the n-dimensional moon domain
n — 1

1 > R > , characterized by the equation
n

(5.1)

where <9Ω« = Σ2UΣX, Σ 2 and Hi being spherical caps in R™ of the respective

radii Rι = and R. As in §2, we set
n

(5.2) /(, = σθ(r) ~nvθ(r).

where the definition for σθ(r) and υθ(r) in the beginning of §3 extends to
the present setting in an obvious way. If Ω*(i?) exists, the equation of the

n — 1
(n — l)-dimensional sphere Γ = dΈι(R) is p = sin^i where θx is the

root of the equation n
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with
-l ( n ~ l)sin0

S m nR '

Denoting ω^ as the volume of the TV-dimensional sphere and setting,
again,

(5.3) g(R; θ) = f(R; π - φ{θ)) - f

we have

(5.4) g(R O) = f(R π)

= 2(n - lJω^iiΓ" 1 - 2(n - l)ωn_!.Rn

> 0, i f i?<l,

and

(5.5)

I \ n / \ n
n - 1

ifi? =
n -

if 1 > Λ > n '

n 1
since r = is the zero of the derivative of the concave function h(r) =

n
r n-i _ r n F r o m (54) a n d (55) follows the existence of a root θ = 0i(Λ), 0 <
0i OR) < π

? f°r th e equation (̂-R π) = 0, of which the existence of Ω*(iϊ) is
an immediate consequence.

5.1.1. Using the above notation, we may here describe a procedure for de-

termining the value RQU\ n > 3. Indeed, since R^ is the unique value of

R for which Σ ( i ? o j passes through the center of BR(n), we may, as in §4,

obtain RQ^ as the root of the equation

with

. 0i n



MOON HYPERSURFACES AND EXISTENCE RESULTS 455

and

2 2 ( n - l ) 2 '

here f(r;θ) is defined by (5.2).
The number Rj1 \ as mentioned of in the end of 0.2 is of significance once

we place it into perspective in the context of the results in [L2].
5.2. Having verified the eistence of Ω*(R) for n > 3, we proceed to prove

n — 1
the existence of comparison hypersurfaces in Ω*(i2), 1 > R > , which

n
is the solution to the problem (0.4) and (1.5), setting H — 1 and β — —1, +1
on Σ l 5 Σ 2 , respectively. We again, using Proposition 2, reduce this to the
proof of the ineq.
(5.6) ψ*[Ω°] = \dΩ° Π Ω| + \dΩ° Π Σ 2 | - n|Ω° U Ω**|

for all Ω° passing through Γ = <9Σl7 with the whole Σ2 as a part of its
boundary and situating entirely in one of the two half spaces provided by
the hyperplane passing through Γ; here Ω** is the region bounded by Σi and
this hyperplane. Repeating the variational procedure indicated in §1, we
again justify the existence of a minimizing body for /0*[Ω0]. Set Σ = <9ΩίΊΩ*.
We readily see that Proposition 3 holds here; that is, nonempty Σ must be
a spherical cap passing through Γ, which as Lemma 1 can also be extended,

f2 1

must be a spherical cap of radius strictly including a hemisphere andn.
can possibly occur only when Σx is included in a hemisphere. However, if
Σi is included in a hemisphere, denoting Ωo as the body enclosed by Σi and

n — 1
that spherical cap of radius included in Ω*, we have, adopting the

n
notation in §5.1,

; π - ^(2/3)) - /(2/3; 0i(2/3))

= (σπ_, l(2/3)(2/3) - σM3/2)(2/3)) - K_, l ( 2 / 3 )(2/3) - ^ l

p2/Scosθ\ / ̂

-ωn^ / - - Z\
J2/3cos(π-θ1) \y

JΘ sinθdθ-ω^ ^-J ^ smnθdθ

> 0, obviously.

We therefore prove (5.6) and the existence of the comparison hypersurfaces
for n > 3.
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5.3. A careful examination of the work of §5 tells us that; in order to
construct such a sequence of solutions to (0.4) in BR C Rn, n > 3, whose
limit, in the sense indicated in 2.2 is our moon hypersurface in Ω*(I?) C Mn,

we only need to (1) verify that — 1 < β€(R) < 1, for 1 > R > and e

sufficiently small, where

n n\BR\-(l-e)\Σ2(R)\
p€(R) = Γ

Σ = dBR — Σ 2, the full sphere dBR being obtained by extending Σ2(i2).
(2) Prove the statement of Proposition 3** and Proposition 4 in spite of

the difficulty arised by the possible existence of singular subsets ofΣΠ BR in
the case ofn>7. The fact that βe < 1 readily follows from the inequality

n\BR\ = nωnR
n < nωnR

n-χ = \dBR\ = | Σ 2 |

The fact βe > —1, by (5.1), amounts to the fact that

> | Σ 1 | - n | B r - Ω , |

which is a consequence of the inequality

Σ .

(see the beginning of §3 for notation) obtained immediately from the fact
that Ω** minimizing φ*[Ω] (cf. (5.6)) among all sets indicated below (5.6).

As of (2), we may, first of all, put Proposition 4, 3* and 3** in a precise
form in the higher dimensional setting. In fact, to extend the existence
results in §2 to the case where n > 3, it suffices to verify that (0.6.2) holds

ΎΊ —— 1

for every Caccioppoli set Ω° C BR, Ω° φ φ,BR, 1 > R > . To do so,
IV

as in §2, we may observe that it suffices to consider those Caccioppoli sets

with |<9Ω° Π Σ > 0 and <9Ω° Π (BR U Σ2(i?)) being connected. Thus, as in

§2, we may try to minimize ^[Ω°] in (0.6.2) among all the Caccioppoli sets

Ω C BR and the same reasoning concludes that a subsequence of minimizing

sequence {Ω°} for V{Ω0}, Ω* C BR, exists such that {^ΩP} converges in

L1 (Ω) to ΨQ such that

ψ [Ω] < infψ[ίή].

Set Σ = dΩ Π BR. If Σ φ φ, we have observed that | Σ Π Σ1 > 0, and we may

assume 9Ω° Π (BR U Σ2(iϊ)) to be connected.
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For our present purpose, we only have to show, as in §2.1.

Proposition 4. The only non-empty candidate for Σ is the spherical cap
Σi. In other words, the only non-empty candidate for Ω is BR — Ω*.

We again let P to be the unique plane passing through the (n — 2)-
dimensional sphere Γ = <9Σχ Π ΘBR and designate P as the xλ, x2,... , xn-i
plane so that the center of BR has the xn-coordinate xn > 0.

To prove Proposition 4, we shall also proceed to verify

Proposition 3*. // Σ φ φ, then Σ is of rotational symmetry about the

xn-axis.

In §2.1, Proposition 3* is proved with the aid of a theorem of Massari [Ma],
which, as mentioned above, does not exclude the possibility of existence of
singular points of a minimizing body in the case that n > 7; however, it gives
an estimate for the dimension of singular parts, which has been improved by
Federer. Their results yields

Theorem Of Massari And Federer. IfΈ^φ, then the reduced boundary

9*Ω of Ω is an analytic manifold of dimension n — 1 and

Hs [(Σ \ d*Ω) Π JBΛ] - 0, V 5 > n - 7, s e K,

where Hs denotes the Hausdorίf s-measure.
To prove Proposition 3*, as in §2.1, we consider a vertical plane P : aλx

ι +
a2x

2 + + αn_ 1xn~ 1 = 0 , α l 5 . . . , αn_i : constants, which divides Ω into
two non-empty parts Ωx and Ω2. We may assume, without loss of generality,
that ΨlΩx] < φ[Ω2]. Reflecting the body Ωx in the opposite side of the plane
P, then

ΩX u Ω; C BR,

and, as in §2.1, we have ^[Ωi U Ω[] < ψ [Ω] and hence φ[ftλ U Ω'J = ψ [Ω] ,

in view of the minimizing property of Ω. Thus, we have

Proposition 3**. // Σ φ φ, then at each regular point of Σ, the nor-

mal of the horizontal cross-section of Σ through this point is orthogonal to

the normal of the unique vertical plane aλx
ι + a2x

2 + • + an_ιxn~ι =

0, α i , α 2 , . . . ,α n _i : constants, passing though this point (and the origin).

At height x%, if the horizontal cross-section includes regular points of Σ,
we may choose a regular point (a J , . . . , xj) °f ^? then, for each connected
curve (as1 (£),... ,xn~ ι(t),x%) through this point and included in a regular
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part of the horizontal cross-section of Σ at the height x%, Proposition 3**

yields that

£ V + £ V + • + xn~ιxn~ι = 0,

which holds if and only if

(x1)2 + (x2)2 + -" + {xn~ιf = constant,

i.e. (xι{t),... ,xn~ι•(£),XQ) lies on a sphere with its center at (0, . . . , 0 , ^ ) .

Thus, each regular point of this horizontal cross-section of Σ must be in-

cluded in a region on an (n — 2)-dimensional sphere with its center at

(0,0,.. . ,#0) and, furthermore, denoting C as the component of this hor-

izontal cross-section including this spherical cap, we note that C must be

a whole closed sphere; indeed, were C bounding a region in the hyperplane

xn — x% and C includes only a portion of and not the whole sphere, then

C would have to include at least two disjoint spherical regions and the di-

mension of singular parts of this cross-section would be n — 2, contradicting

above-mentioned regularity result of Massari and Federer; however, were C

bounding no region then a portion of Σ with positive (n — l)-dimensional

Hausdorff measure would not be a portion of the boundary of any compo-

nent of Ω (with positive n-dimensional Hausdorίf measure) and removing

this portion of Σ would result in a smaller value of φ, contradicting the

minimality of Ω and Σ. Thus, the proof of Proposition 3* is complete. The

argument following the proof of Proposition 3** in §2.1 again applies in our

present setting and enables us to prove Proposition 1, from which, as indi-

cated above, follows (0.6.2) and the existence of that sequence of solutions

to (0.4) in BR CRn, described in §0.0.2 and beginning of this section.

6. Some existence Results of Capillary Hypersurfaces without
Gravity and of Rotational Symmetry.

As in Finn [Fl] and quoted in Proposition §1 of this paper, we may reduce

the capillary problem in the absence of grativity to the variational problem

(6.1) ξ[u]= ί Jl + \Vu\2+nH ί udx- [ β(s)uds,
JΩ V JΩ JΘΩ

with /3(s), — 1 < β(s) < 1, being piecewise Lipschitz on the boundary of a

piecewise Lipschitz domain Ω C Rn, and H being a constant. As quoted

in Proposition 1, a necessary and sufficient condition for the existence of a

minimizing function u{x) G BV\OC{Ω) for the functional (6.1) is that both the

conditions (1.3) and (1.4) hold for every Caccioppoli set Ω° φ φ, Ω (Ω° C

Ω). Furthermore, since H is constant, the conditions (1.3) and (1.4) are

equivalent. Thus, in §1, §2, §5.1 and §5.3 of this work, we have restricted
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our attention to verifying (1.4); the argument used in §2 and §5.3 yields the
existence of a minimizing body Ω for ψ[Ω°] and setting Σ = <9Ω Π Ω, the
argument used to verify Proposition 3* yields.

Proposition 3***. Suppose Ω and β(s) are rotational symmetry of the
same axis. If Σ φ φ then Σ is of rotational symmetry about this axis.

We may, without loss of generality assume that this axis of symmetry is
the £n-axis. Suppose, in addition, that β(s) is piecewise constant; i.e., there
exist relatively open subsets Σ* of <9Ω, such that, if i < j , Σ* is "below" Σ 7

(in the sense that, for two arbitrarily chosen points xι G Σ* and x3 E Σ 7,
then xn component of xι is less than that of x3), and,

(6.2) β{s)\Σi = constant ci: UΣ* = <9Ω.

Then, the argument used in §2.1 to exclude those Σ situating below Σi
can be applied to yield

Corollary 1. Suppose, in addition to the hypothesis of Proposition 3***,
β(s) is piecewise constant, as indicated in (6.2). Then, if Ω φ φ or Ω, there
occurs at least one of the following possibilities:

Possibility 1. <9Σ Π Σ1 = φ or Σ1.

Possibility 2. There exists at least one i, i > 1, such that

<9Σ* \ dΈi+ι C <9Ω.

Possibility 3. In (6.2), U Σ ι = dft for some integer k < oo and

dΩΓ)Σk = φov Σ,k.

Σ1

Figure 11.
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Indeed, Σ* being open, were Corollary 1 false, a rigid motion of Ω would
result in a body meeting Σ J, for each j , with the same area as Ω and is
therefore another minimizing body for the functional Φ, which, however,
would not be of rotational symmetry of the axis indicated in Proposition
3***.
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