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ISOMETRIC IMMERSIONS OF H? INTO H?+1

KINETSU ABE

The complete codimension 1 totally geodesic laminations
of the hyperquadrics of constant curvature 1 or —1 are com-
pletely determined. Also the set of all codimension 1 isometric
immersions of a hyperquadric into another of the same con-
stant curvature are determined and characterized in terms of
the naturally associated totally geodesic laminations and the
curvature of the laminations. Note that the hyperquadrics of
constant curvature 1 and —1 are often called the de Sitter
space-time and the anti de Sitter space-tmie, respectively.

1. Introduction.

A classical problem in differential geometry is to characterize and determine
all the possible submanifolds in space forms. To this end, there have been
various geometrically sensible conditions imposed upon in an effort to make
the problem more realistically viable. One of such is to restrict the subman-
ifolds to being of codimension 1 and of the same constant curvature as the
ambient space form.

In this restricted situation, the original problem has received much atten-
tion and, indeed, has seen much progress. In particular, the problem has
fundamentally been settled in the positive definite case. In the indefinite
case, Graves [5] gave the answer when the metric is Lorentzian and the con-
stant curvature equals 0. For non-zero constant curvature cases, there have
been a number of attempts made with limited success, see [6] for instance.
One of the main causes hampering a further advance in the indefinite case
was the lack of a completeness theorem on the leaves of the associated totally
geodesic foliations. Now that the completeness theorem [1] is available, the
time has come to address the problem in the indefinite case from a more
comprehensive point of view.

In this paper, we restrict ourselves to the Lorentzian case with non-zero
constant curvatures, namely, 1 or —1. The rationale for this restriction
will become self-evident later in the paper.

Let Sp and H£ be the n-dimensional hyperquadrics of signature p
and of constant curvatures 1 and — 1, respectively. Among others, we will
show the following:
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a) Only hyperquadrics which can support a complete totally geodesic fo-

liation of codimension 1 in an open subset are either H$ = i ί n ,

ffj1, n>l or S%_u 2 > n > 1.

b) For n > 3, on/ί/ isometric immersions f : S™ —̂  S7 + 1 are totally
geodesic ones; therefore, they are congruent to the standard imbedding
of S? into SΓ+1.

c) We determine all the complete degenerate totally geodesic foliations in
any open subset of iϊ™, n > 1.

d) We give a characterization of the space of isometric immersions from
H™ into H™*1 in terms of totally geodesic laminations and curvature
functions.

In particular, (d) may be regarded as a form of answer to the problem
posed at the beginning for the Lorentzian hyperbolic (or so-called anti-De
Sitter) spaces.

2. Hyperquadrics.

Let i?p+1 be Rn+ι equipped with the quadratic form

V n+l

(1) <?(X) = - $ > / + £ Xj\
j=\ j=p+l

The quadratic form q then naturally induces an indefinite but non-

degenerate symmetric bilinear functional g by

V n+l

=i J=P+I

= (x1, ,χn+i),Y = (yi, ,yn+i)eRn+1.

Set

S; = {iX G R;+1 : q(X) = l}

and

H; = {vx e R£l: q(x) =-i}.

It is quite elementary to see that the map σ : R™+1 —> R^l+i given by

σ(xu " ,xn +i) =(a;p+i, ,xn+uxu ,xp),
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is an anti-isometry from S™ onto H™_p. It is also equally elementary to
see that 5£ is diίfeomorphic to Rp x Sn~p and if™ is diffeomorphic to
Sp x Rn~p , respectively. The first diffeomorphism φ , for instance, is given

by

φ{χ,y) =

We will call S£ and H™ the (unit) hyperquadrics of dimension n and the
signature p. It is well-known that the quadratic form q or the symmetric
bilinear form g induces an indefinite Riemannian structure, denoted by
the same letter g , on the hyperquadrics, see [2], [7]. With the induced
indefinite Riemannian structure, S™ and if™ have constant curvatures
1 and —1, respectively. Note that S$ — Sn, the ordinary unit n-sphere
and Hg = Hn, the hyperbolic space of dimension n. These are the only
hyperquadrics which are Riemannian.

Among the hyperquadrics introduced above, only ones that are not simply
connected are iff « S'n-i

Define a map F : Rn -> i ? n + 1 by

(2)

Λ Λ i=2

where x — (rr1? , xn) G i?n. It is easy to see that F actually induces a
map Rn onto if™. Its derivative, for example for n — 3 , is given by :

3F

dF

9X3

The metric with respect to the basis {dF/dxι^dF/dx2^dF/dx3} is given
in the following matrix form:

0 0
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The derivative for the general case can be expressed in a similar way.
Rank F* is easily seen to be 3 in the above case and n in the general case.
Hence, F is an immersion. Indeed, it is an isometric immersion with the
above induced metric. Therefore, F is a covering projection. We denote
by Hγ the space Rn endowed with the above induced metric and call
it the n-dimensional hyperbolic space form of constant curvature —1 with
signature 1. Note that H™ is simply connected. All other hyperquadrics
except S1 are simply connected.

Any geodesic in H™ is mapped under F onto a geodesic in H™ and the
preimage of a geodesic in iff is a disjoint union of geodesies in H".

A totally geodesic submanifold in a hyperquadric is, in the spirit of the
Kleinian approach, defined as follows: A complete totally geodesic submani-
fold of dimension k in a hyperquadric is the intersection of the hyperquadric
and a (k+l)-dimensional linear subspace of -R£+1. Obviously, a totally
geodesic submanifold of a hyperquadric is also a hyperquadric in the lin-
ear subspace used to define it. From now on in this paper, a totally geodesic
submanifold always means a complete one unless otherwise specified.

Given an open subset U in a hyperquadric, a (complete) c^-totally
geodesic foliation of U is a exfoliation of U whose leaves are (complete)
totally geodesic submanifolds of constant dimension.

Let {Ua} ,a £ Λ be a collection of mutually disjoint connected open
subsets of the hyperquadric. Let Fa, Vα G A be a c^-totally geodesic
foliation of dimension q defined in Ua. Then the collection of the pairs
{Ua.J^a} j OL G v4, will be called a examination of dimension q on the
hyperquadric. We will often call them just a differentiate lamination. Note
that the original definition of a lamination is due to Thurston .

Now let V(n,r) be the Stiefel manifold of ordered r-frames in Rn. It
is well known that V(n,r) -» V(n, 1) forms a principal fiber bundle in
a natural way. Denote by p the largest integer such that the fibration
V(n,p) —» F(n, 1) has a global section. Define by v{ή) the largest number
so that p(n — v{rί)) > v(n) + 1. Some of the numerical values for v{ή) are
given as follows: i/(l) = 0, i/(2) = 0, v(3) = 1, i/(4) - 0, i/(5) = 1,
i/(6) = 2, i/(7) = 3 etc.

Theorem 1. Let T be a (geodesically) complete totally geodesic foliation
of an open subset U C S™ of dimension q, then q — p < v{n — p). In
particular, a codimension 1 complete totally geodesic foliation on U can
exist only when n — p = 0 or 1.

Proof. Decompose R%+1 = R*®R%+1~~P'. Given a (q+l)-dimensional sub-
space L C -Rp+1, L Π RQ+1~P has dimension at least q - p + 1. The
totally geodesic submanifold of 5" defined by the linear subspace RQ+1~P
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is the ordinary (n-p)-sphere. Thus the subspace LP\RQ+1~P defines a com-
plete totally geodesic submanifold of dimension q — p in SQ~P. Hence,
T induces a complete totally geodesic foliation on U Π SQ~P. The desired
inequality then follows from the arguments given in [1]. For the second half,
if q — n — l, the induced foliation will have dimension n—p-l. From the
above inequality, this is possible only when n — p or n = p+ 1.

In view of the above anti-isometry between S™ and H™__p, only hyper-
quadrics that can support a complete totally geodesic foliation of codimen-
sion 1 in an open subset are either HQ or H", n — 1, 2, .

The totally geodesic foliations of codimension 1 in Hn were treated in
[3]. We will, in this paper, concentrate on those in H™.

Let U be a connected open subset of iJJ1. Let T be a complete
differentiate totally geodesic foliation of U. Given a leaf Lx of the foliation
passing through x , one can find a regular curve μ(s), s G (—e,e), e > 0,
transversal to the foliation in a neighborhood of x. If the leaf Lx is non-
degenerate, take the unit normal vector field to the foliation along the curve
μ(s). Translate parallelly the vector field along the leaves passing through
μ(s). Denote by X the resulting vector field in a neighborhood of the leaf
L. If L happens to be a degenerate leaf, there is a light-like vector which
is transversal to the leaf L at Ϊ . Extend that vector to a vector field along
μ(s) through the parallel displacement in a neighborhood of x. Then as
before, translate it parallelly along the leaves. Denote the resulting vector
field by X. Also denote by V the Levi-Civita connection in H{1 (or in
ϋΓ™), induced from the quadratic form q given in (1) .

Given a vector field Z tangent to the leaves, define a field of linear
operator cz{x) from Span {X} into itself at x by

(3) cz{x){X) = - P ( V χ Z ) ,

where P is the natural projection of TXH™ onto Span {X} with respect
to the direct sum decomposition TXH™ — T ^ L φ Span {X} .

Let 7 — 7(t), -oo < t < oo, be the geodesic in Lx such that 7(0) = x
and 7(0) = Z. It is then shown in [1] that the operator cz along Lx

satisfies a Ricatti type differential equation

(4) ^ = y2

This differential equation has two types of global solutions

sinht-cz(Q)cosht
cz(t) = 7— , π λ . , , , if \Z,Z) = - 1

cosht - cz{0)smht
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or

c z ( ί ) = 0 , VίEΛ, if ( Z , Z ) = 0 .

In the former case, cz(0) is a constant satisfying |c#(0)| < 1. As a
consequence, we have that |c^(t)| < 1, Mt G R and |βz(0)| = 1 if and only
if cz{t) Ξ 1 or - 1 Vί E R.

The laminations on Hn = Hg have been taken up in various occasions
from the point of recent developments in hyperbolic geometry. Prom differ-
ential geometric point of view, we have made use of the notion to describe
the isometric immersions of codimension 1 of a hyperbolic space into another
hyperbolic space of the same constant curvature —1 [3].

In what follows, we will describe all the codimension 1 laminations on
HQ = Hn and JEΓJ* « S^_λ. From the Kleinian point of view, there is a
striking dual nature between these two spaces.

In order to explain our construction most effectively, we will start out
with the lowest dimension, that is, when n = 2. In this case, H2 is anti-
isometric to S\. The anti-isometry maps the totally geodesic submanifolds
of one to those of the other. The codimension 1 lamination is exactly a
geodesic lamination in this case.

Denote by P2 the real projective space of dimension 2. According to
the Klein model of H2 , it is given as the unit disk in P2 represented
by the homogeneous coordinates {(1,656) : £i2 + 6 2 < l} ? where the
first coordinate 1 represent the time like coordinate in Rf. It is well-known
that the boundary of the unit disk is represented by the the null cone. The
complement of H2 in P2 then represents S2. The geodesies of H2,
the chords in the disk, are given as the segments of lines inside the disk in
R2(ζι > £2)- Similarly, a geodesic in S2 is represented by the portion of a line
outside the disk in JR 2 (£I,£ 2 ). Two geodesies in S2 do not meet in S2 if
and only if the lines representing them intersect inside the closed unit disk.
Note that the lines are considered to be projective lines; hence they always
intersect in P2.

Now let us denote by S1 the center circle in S2, which is represented by
the homogeneous coordinates (0,yi,y2) in P 2 . Let {C/, J7} be a complete
totally geodesic foliation in an open subset U C S2. Since all the leaves of
the foliation meet S'1 at a unique point (projectively), the foliation will
be uniquely characterized by a function from U Π S1 into the set of all
geodesies in Sf.

The set of all line in P2 consists of the set of all lines in i?2(£i5 £2) &nd
the line of infinity. The set of all oriented lines in i?2(£i, £2) is parametrized
by two parameters (α, θ) G RxS1. The actual correspondence is elementary
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and is given by

(α, θ) h-> ξι cos θ + £2 sin θ = a.

θ and π + θ give the same line with the opposite orientations. With
this parametrization the set of all oriented lines in i?2(ξi,£2) becomes a
differentiable manifold, i.e., the cylinder built on the the unit circle. For
an open subset U C Sf, U Π S1 is a disjoint union of open intervals
or the center circle itself. Since the center circle always intersects any other
complete geodesies, it cannot be a leaf of a complete totally geodesic foliation
of any open subset of Sf. Thus any such a foliation is completely determined
by a diίferentiable function from a connected open subset of the center circle
into the cylinder. As any two lines in P2 always intersect, we can further
restrict the range space of the function by requiring that 0 < a < 1. Thus,
the the range should be in [0,1] x S1. The function must be an immersion
as we shall see later. The following lemma will be useful later.

L e m m a 1. Let T be a codimension one totally geodesic foliation defined
in a connected open subset U C H™. Assume that the leaves of the foliation
are degenerate. Let Lγ and L2 be two leaves of the foliation. Then they
contain a unique light like line and the tangent space to the leaves at the
points in the center circle are parallel to each other along the center circle.

Proof. By definition Lγ and L2 are given as the intersections of n-planes
Pi and P2 with H™ in R2

+ι, respectively. Then PιΠP2 has dimension
at least n — 1. Let Lλ and L2 meet the center circle at x1 and x2,
respectively. If we also denote the tanent planes of L\ and L2 at Xι
and x2 by TXlLλ and TX2L2, respectively, there are unique degenerate
lines lχ and l2 in TxιLχ and TX2L2, respectively. For, if there is another
degenerate line, say Z, in TXιLx then light-like vectors in these two lines
will have non-vanishing inner product; hence contradicting the degeneracy.

Let 7 = 7(5), a < s < b be the portion of the center circle given by
7 = U Π S1 such that j(a) G L\ and 7(6) £ L2. From the above argument
one sees that each leaf along the curve 7(5) contains a unique light-like line
which form a line bundle over 7(5).

At this point, we digress to discuss a special but useful choice of a ba-
sis for R™. Let (xι,x2, - ,xn) be the standard coordinates of R™ so
that the inner product is given by q{x) = —xλ

2 + Σ]=2Xj2. Given a null
direction in i?^, we may assume that the null direction is given by the vec-
tor of the form (y,y,0, ••• , 0) G R™ up to an isometry of R™. Now
let e = (1/Λ/2)(1,1,0, ,0) and e = (1/Λ/2)(1, -1,0, ,0). Clearly
these two vectors are null vectors and (e, e) = —1. They span the space
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R\ — {(#1, £2,0, , 0)} . If we denote by ê , 1 < j < n — 2, the standard
orthonormal basis for the orthogonal complement of R\ in i?™+1, our de-
sired basis consists of {e, e, ê  , 1 < j < n — 2} . We call this basis an adapted
basis for the degenerate space, which is the span of {e, ê  , 1 < j ' < n — 2} .
Conversely, given a degenerate subspace of codimension one, one can always
obtain an adapted basis up to an isometry.

Going back to the line bundle of null vectors along 7 = 7(5), we can
choose a frame {e(s), e(s), e?(«s), 1 < j < n — 2} along the curve 7(5), a <
s < 6, such that e(s) spans the null direction of the leaf at 7(5) and the
frame forms an adapted basis for the leaf.

As before, denote by V the Levi-Civita connection in H™ induced from
the quadratic form q in (1) . Then we have

Vj{s)e(s) = eL(s) + ce(s)(7(s)).

Here ce(s) is the conullity operator at 7(s) and e/,(s) is the leaf component
of Vj(8)e(s). See [1] for more details about the conullity operator and its
properties in the indefinite setting. Since (e(ί),e(ί)) = 0, Vί, the Ricatti
equation is dy/dt = y2 and the trivial solution y(t) = 0 is the only global
solution along the null line spanned by e(s). Thus ce(5) = 0 , a < s < b. This
tells us that the parallel displacement of e(s) along the curve 7 = 7(5)
always stays in the leaves. But the parallel displacement of a null vector is a
null vector; hence, by the above uniqueness, e(«s), a < s < b are parallel to
each other along the curve 7 = 7(5). Next let e(s) and e(s) be the parallel
displacement of e(α) and e(α) along the curve 7 = 7(5), respectively.
Denote by V(s) the orthogonal complement of the span of e(s) and e(s)
in TΊ(S)H™, s E [α, 6]. Then we see that the span of e(s) and V(s)
is precisely the tangent space of the leaf at the point 7(5). For, suppose
that there is a vector in the tangent space of the leaf given in the form of
ue{s) + ve(s) + W, u,υ G R] W G V(s). (e(s), ue(s) + υe(s) + W) = -v = 0
implies that the vector is in the span of e(s) and V(s). Since the span of
e(s) and e(s) is parallel along 7(5), V(s) is also parallel; hence, the
span of e(s) and V(s) is parallel along the curve j{s).

The parallel displacement in H™ along the center curve is given by the
rotations in the plane spanned by two coordinates of R^+1 '

(x1,x2,X3, '' ,#n+2) ^ (xi coss — x2sms,xι sins + x2 coss,rr3, ,xn+2\-

Let L be the tangent space to a leaf at a point in the center circle, say
x = (xι cos s — x2 sins,Xι sins + x2 cos s, x3, , Xn+2). Then the leaf itself
is given as the intersection of H™ and the n-plane spanned by L and
x = (xι coss — x2 sins,^! sins + x2 coss, £3, ,xn+2).
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Remark. The arguments in the proof can easily be applied to more general
situations. Indeed, we may choose any transversal curve to the foliation .
We will still have the same conclusion as in Lemma 1.

We will give some useful examples of complete totally geodesic foliations.

Example 1. Note that any differentiate function / from a connected
open subset O C S1 into the set of non-super parallel geodesies in H2

will define a differentiate totally geodesic foliation of the open subset U —
Useof(s) C Sf. Let Vw be the differentiate family of lines in i ? 2 ^ , ^ ) ,
where w is in the unit circle and is the common intersection point of all
of the lines in the family. The family is otherwise known as the parabolic
pencil in if2, consisting of the parallel geodesies whose end points are w.
For a given point s G 0, there is a (projectively) unique line ίs G Vw

which meets s in the line of infinity. We define f(s) = iSJ \/s G Ό. We see
readily that / is an immersion.

Similarly, we may consider a family of lines in R2(ξ1,ξ2), where w is
in H2. This family corresponds to the elliptic pencil. As in the above case,
one can uniquely define a differentiable immersion from O into the family,
defining a complete totally geodesic foliation.

Among the examples, let us choose a very special one. Set w — (0,0) G
R2{ίιΛ'2)> Then the elliptic pencil P(o,o) gives the complete totally geodesic
foliation of S2 consisting of the vertical time-like geodesies perpendicular
to the center circle. This is the foliation studied in [6].

Example 2. Define C to be the family of lines which are tangent to the
unit circle in iϊ2(ξi,£2) Each line in this family projectively represents two
opposite generators in the well-known two rulings of S2 by two families
of null lines. Every pair in the family C intersect in the complement
of the closed unit disk in P 2 , but this point of intersection projectively
represents the intersection points of lines in the pair which belong to the
opposite rulings. Thus C projectively represents the two rulings which are
obviously complete totally geodesic foliations. In fact it is easy to see that
all the leaves are null lines of S2.

Variations of this construction can be readily obtained. For example,
consider the interval (—1,1) C R. Then (α,0) G (—1,1) x S1 represents a
line in P2 which intersects the unit disk. Rotate the line about the origin in
R2{ζiτζ2) The resulting one parameter family of lines gives rise a complete
totally geodesic foliation of S2 by time-like lines.

It is easy to see that there are families of lines which are not always given
by a line under a one parameter family of rotations. Let C = ts, s E O C S1

be a given differentiable one parameter family of lines in -R2(£i,f2)-
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assume that the one parameter family is orientable, that is, all the line in
the family can be oriented at least continuously. We also assume for an
obvious reason that every line in the family intersects the closed unit disk
in i?2(£i,£2) Furthermore, we require that any pair of lines in the family
meet either in the closed unit disk or the point of intersection outside of the
disk occurs in the incoming portion of one line toward the disk and in the
outgoing portion of the other from the disk. There will be, indeed, infinitely
many choices of such one parameter families. Any one of such families gives
rise to a complete totally geodesic foliation of the open subset of Sf, which
is basically given as the union of the geodesies in the family.

Example 3. In H™ similar constructions as in the previous examples give
higher dimensional cases of totally geodesic foliations. Obviously, there are
many more totally geodesic foliations exist. We will give a totally geodesic
foliation of iff, which will be of particular interest later on. Let the the
quadratic form be given by

Then Pn is divided into three disjoint components 5J, dH™ and
H™ = S^_λ. In particular, if (£1, ,fn) is the inhomogeneous coordinate
system for xλ = 1, we have in the n-plane xλ — \ that

dH? = {(6,

Now set

ex(t) = (l,sinht, ±coshί, 0, ,0),

e2 (t) = (0, cosh ί, ± sinh ί, 0, , 0),

= (0,0,0,l,0,-- ,0),

en(t) = (0,0,0,0, . ,0,1).

Then {βj(ί), t G i?, 1 < j < n} is a frame field along a branch of the hy-
perbola in Hl{xι,x2,Xz) C H™.

(e1{t)9e1{t))=0, (e2(t),e2(t)> = - 1 , ( e ^ ) , ^ ) ) = 1, (3 < j < n).
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Set V(t) to be the span of e3(t), 1 < j < n. Then V(t) is an
n-dimensional subspace in i? 2

+ 1 . In terms of the original rectangular coor-
dinates, an element x — Σ™-χ α^-e ί̂) E V(t) is expressed as

x = (αi, αi sinh t + α2 cosh t, αx cosh t + α2 sinh t, α3, , αn).

Then we have

(5) xeH?<=> (x,x) = -1

? isahyperboloidoftwosheetsin H?. Suppose that V(t)ΠV(t')Π
H? Φ 0. Then for some pairs of n-tuples (au , an) and (α/, , αn '),

(αi,αi sinhί + α2cosh£, αx coshί + α2sinhί, α3, ,αn)

= (αi'jfli'sinhί' + α2

; cosh t\a.\ coshί' + a2' s'mht',a3', ,α n

; ) .

This implies that

a\ sinhί + a2 coshί = α/ sinhί + a2' cosht,

(6) ax cosht + α2 sinht = α/ cosht + a2

ι sinht,

a/ = α j ? 1 < i < n,/; j φ 2.

Combining (5) and (6), we get

(af

2)
2 = (α2)

2 <=^ α2 = ±α 2 .

But a'2 = a2 implies that t — t' and V(t) = ^(t 7 ); hence, the subspaces
V(t) and ^(t') meet in the (n — l)-dimensional plane determined by
α2 = —α2. This equality is the precisely the condition that the two sheets of
the hyperboloids represented by the n-planes V(i) and V(t') meet each
other in the opposite sheets. Thus, for instance, by choosing the sheets of
the hyperboloid corresponding to the half plane determined by a2 > 0, we
obtain a foliation of codimension 1 in H™ consisting of degenerate leaves,
as t runs from — oo to +oo along the original hyperbola. This foliation
is the higher dimensional version of the double rulings in Sf. Note that the
above construction can be carried out starting with any geodesic in dH™
instead of the particular hyperbolas of the above kind.

Any complete totally geodesic submanifold of codimension 1 intersects
the center circle S1 of H™ = S%_χ once and only once in the projective
sense. Thus again any completely totally geodesic foliation of codimension 1
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of a connected open subset U in H™ — S™_λ is parametrized by the open
interval UΠH^DS1 = UΠS^ΠS1 in the center circle ^.Consequently,
any differential lamination on H™ = S'n-i will be parametrized by a family
of mutually disjoint connected open subsets in the center circle. As before
the set of all oriented (n-l)-planes corresponds to the differentiable manifold
R x 5n~~1, where S'71"1 is the unit sphere in Rn. A parametrization by a
connected open subset of the center circle means an differentable immersion
of the open subset into the parameter space R x Sn~ι, which satisfies
appropriate conditions to generate a complete totally geodesic foliation.

Unlike in Hn the space of differentiable laminations on H" is rather
simple. Since any complete totally geodesic foliation of an open subset is
uniquely parametrized by one parameter in the intersection of the open sub-
set and the center circle, any mutually disjoint family of connected open
subsets of the center circle parametrizes a lamination on H™ and vice
versa. As seen in the above examples, a connected open subset of the center
circle may parametrize, in general, infinitely many complete totally geodesies
foliations. Thus, a given family of mutually disjoint connected open subsets
in the center circle can parametrize infinitely many mutually distinct differ-
entiable laminations.

3. Isometric immersions.

Let Mp and M™+1 be two (indefinite) Riemannian manifolds of dimensions
n and n-fl and signatures p and q, respectively ( p = 0 and q = 0 inclusive).
We will often denote them and their differential geometric quantities without
superscripts or subscripts when there is no fear of confusion. Thus, TMX

and TMy denote the tangent spaces of M™ and M™+1 at the points
x G Mp and y G M™+1, respectively. Denoted by (, ) the (indefinite)
Riemannian metrics on M and M. As usual, V and V denote the
corresponding Levi-Civita connections on M and M.

Let / : M —> M be an isometric immersion of M into M. Given
X, Y, and Z G TMX, and the unit normal ex at x G M, there are two
fundamental equations of the immersion :

(7) R(X,Y)Z = R(X,Y)Z + (AeχXΛAeχY)Z;

(8) (VxAem)Y = (VYAem)X.

Here, R and R are the curvature tensors of M and M and Aβχ is
the shape operator of the immersion / in the direction of ex at x G M.
The first equation (7) is called the Gauss equation and the second (8) the
Codazzi equation.
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The dimension of the null space of Aeχ is called the conullity of the
immersion and is denoted by vx, x E M. The open subset of M where
the conullity assumes the minimum v is then foliated by (geodesically)
complete totally geodesic submanifolds of dimension v if M is geodesically
complete. See [1] for more details of these accounts.

In particular, if both M and M are space forms of the same constant
curvature, then v > n — 1. Unless / : M —>• M is a totally geodesic
immersion, v = n — 1, and the immersion naturally defines a differentiate
lamination on M. In particular, non-totally geodesic isometric immersions
from a space form into another space form of the same curvature can exist
only if M = Hn or Hf by Theorem 1. When M = Hn, we have ob-
tained in [3] that any differentiate lamination can be realized as a conullity
lamination of an isometric immersion / : Hn -> Hn+1. Furthermore, any
differentiate lamination on Hn can be the conullity foliation of infinitely
many mutually non-rigid isometric immersions.

Note that iff may possibly isometrically and non-totally geodesically
immersed only into either H^1 or H%+1.

In [6] Graves and Nomizu proved that there was no umbilic free isometric
imbedding of S™ into S"+1 if n > 4. The following is an improvement of
their result.

Theorem 2. Only isometric immersions of S™ into S™+1 for n > 3 are

totally geodesic ones; hence they are all congruent to the standard imbedding

induced from the imbedding (#!,••• , xn+\) *-ϊ (#i, , x n + i , 0) of R™ into

Proof. Since S" is anti-isometric to iϊ^_1? S™ can have a complete
totally geodesic lamination of codimension 1 only if either n — 1 = 0 or 1.
If n = 1, we have an isometric immersion of a curve; hence any regular and
non-totally geodesic immersion of R with arclength parametrization will
do. When n = 2, there are many isometric immersions of Sf into Sf,
which are not totally geodesic. Some examples are given in [6].

Lemma 2. Let T be a complete totally geodesic foliation of a connected
open subset U C H™. Then U admits a global Frobenius coordinate system
with respect to T.

Proof. Let xλ and x2 be the first and second coordinate functions of
i?2+1 Let L a leaf of T. Then L is the intersection of an n-plane P and
iff in i?2+1 Consider PnR%(x1,x2) C R%+1. The intersection is of either
dimension 1 or dimension 2. In the latter case, P(ΛR\(xux2) — Rl(xι,X2)
Thus L contains the entire R\ = Hi C H™. Hence L meets every totally
geodesic submanifold in H™, presenting a contradiction. In the former, the
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line of intersection represents two distinct points in R{(ξi) = Hi C H™.
Suppose that these points lie in L. Then they can be joined by a geodesic
segment in L. Hence, there is a 2-plane P2 in P which represents the
geodesic segment. Given any leaf V of T nearby the leaf L, L' and
the geodesic represented by P has non-empty intersection. Thus LΠLf is
non-empty, contradicting that they are leaves of the same foliation. What
we have seen so far is that every leaf intersects Hi C H™ once and only
once. Denote by Oj? the intersection UΠHl. Ojr is an open interval, say
(α, 6), —oo < a < b < oo, in Hi « R. Now let {βj, j' = 1 < j < n — 1} ,
be a diίferentiable frame field along the open interval so that the frame at
each point in the open interval is a basis for the leaf passing through the
point. Define a differentiate map F : Rn~λ x (α,6) —> U by

(9) F(tir.. ,ίn_1) = exp, ( Σ * ^ ) ' (*!'••' >tn-i)eRn-\ se{a,b).

Here exps means the exponential map at 5. F is clearly a diffeomorphism
because of the curvature condition on H™. This completes the proof.

A null curve x = x(s), s G (α, 6), — oo < a < b < oo, in H™ is a
differentiate curve such that (dx/ds,dx/ds) = (x,i) = 0, Vs G (α, 6). As
before, we locally identify H™ with H™ C i?2+1 under the covering map
in (2) .

We will give here a brief account on Cartan frames on H\. The idea can
be applied to H™ with minor modifications. The reader should find more
detailed discussions about the Cartan frames in [4, 5] and [6].

A null frame in Hi is an ordered quadruple

TP Γ Δ R r Λ

F = [A,B,C,x]=
0,4 64 C4 X4

where A, J5,C and x are vectors in R\ with the following additional
conditions:

(A,B) =-l,(A,A) = (B,B) =0,

(C,C) =1,(A,C) = (B,C) =0,

(x,x) =-ί,(x,A) = (x,B) = (x,C) =0,

detF = ± l .

To any null frame there is an associated orthonormal frame defined by
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Let

N =
0 0 10
0 0 01

It is easy to see that L(F) = F N *, VF. Given a null curve £ =
α (s), s E (α, 6), —oo < a < b < oo, in if™, we call the following system of
differential equations the adapted Frenet equations on the null curve.

dA/ds = fci ($);!($) + k2{s)C(s),

dB/ds = -fe!(s)β(s) + A;3(5)C(s) + k4(s)x(s),

dC/ds = k3(s)A(s) + k2(s)B(s),

dx/ds = k4(s)A(s).

In a matrix form the adapted Frenet equations are stated as

0 -kλ k2 0
k2 k3 0 0
0 k4 0 0

It is known that there is a unique framed curve F = F(s) which is a
solution to the Frenet equations under given initial conditions F(0) = Fx.
In particular, a Cartan framed curve is an adapted framed curve F = F(s)
whose Frenet equations have the form

ds

Given initial conditions, Cartan framed fields uniquely exist. Given a
Cartan framed curve F , we define the B-scroll BF : R2 —>• Hi of F by

0
0
k2

0

0
0

h
1

k3

k2

0
0

1
0
0
0

BF(u,s) = x(s) +uB(s).

We see easily that

BF*(d/ds) = A + uk3C + ux.
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Therefore we have

{BF.(d/du),BF.(d/θu)) =0,

{BF.{d/du),BF.(d/ds)) = -l,

{BFt(d/ds),BF.(d/ds)) = u2(l + k3

2).

R2 with this induced metric has signature (—,+). The shape operator
of the B-scroll relative to the basis {d/du, d/ds} will then be calculated to
be

\—k3 —k2 — udk3/ds

o -h

Thus the Lorentz surface Bp : R2 —> Hf has the same constant curvature
— 1 as Hi if and only if k3 — 0. This surface is often referred to as a
generalized null cubic. If, in addition, k2 = 1 everywhere, the B-scroll
takes especially simple form with the adapted Cartan framed curve given by

cosh s cosh s sinh s sinhs
cos 5 — cos s — sin s sin s
sin s — sin s cos s — cos s

sinhs sinhs cosh s cosh s

The induced metric and the shape operator relative to the basis
{d/du, d/ds} are respectively given as

and

The u coordinate curves are the precisely the geodesies in the relative
nullity foliation and are imbedded isometrically onto the the geodesies in the
direction of B vector field.

Let T be a complete totally geodesic foliation of a connected open subset
U C H". Let f :U -ϊ Hι+1 be an isometric immersion such that its relative
nullity foliation is T.

Lemma 3. The leaves of T are either all non-degenerate or all degenerate.

Proof. If a leaf L is non-degenerate, there is a neighborhood of L where
all the leaves are non-degenerate. Suppose that there is a maximal open
subset V C U such that all the leaves in V are non-degenerate. Then the
boundary ΘV of V consists of two degenerate complete totally geodesic
submanifolds of codimension 1. According to the classification of the shape
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operator [8], there are four possible matrix representations of the shape
operator relative to an pseudo orthonormal basis {e, e,βi, • , en_2} . In our
case the rank of the shape operator is known to be less than or equal to
1. If the shape operator A6χ is diagonalized relative to the above basis,
assuming A6χe φ 0, we have that (Aeχe,e) = (e, e) = — 1. On the other
hand, (A€χe,e) = (e^A6χe) = 0. This is a contradiction. Therefore, the
shape operator has rank n. This also implies that the ranks of the shape
operators in the leaf are n everywhere, contradiction. Only other possible
case is that it is represented by the matrix:

0 0
10

0

0

Now suppose that one of the totally geodesic submanifolds in dV is
the limit set of non-degenerate leaves {Lj, j = 1,2, } in U. The shape
operator at a point in a non-degenerate leaf is always diagonalizable. For,
if not, the shape operator will have the above matrix representation relative
to a pseudo orthonormal basis. It implies that the vectors {e, e l 5 , en_2}
span the null space, which will consequently be degenerate, a contradiction.

Let {xj e Lj, j = 1,2, } be a sequence of points which converges to
a point a G L c dV. Since the correspondence x \-ϊ A6χ is differentiate,
the correspondence x ι-» (Aeχ)

2 is also differentiate, which equals the zero
matrix at any point on the leaf in the boundary dV. By differentiability of
the correspondence x *-+ {A6χ)

2, IA6χ., j = 1,2, j converges to the zero
matrix. Consequently, the shape operator at any point in the leaf must also
be represented by the zero matrix. This is a contradiction. Hence, the rank
of the shape operator at any point in the leaf in dV must equal n, if the
leaf is a limit leaf of non-degenerate leaves.

This proves that under the assumption in the lemma U is either com-
pletely foliated by non-degenerated leaves or else completely foliated by de-
generated leaves.

Suppose that a connected open set U C H" is foliated by the degenerated
leaves of the complete relative nullity foliation T which is induced by an
isometric immersion/ : U C H" -> H?+1. Let β = β(s), s G (α, b) C R, the
portion of the center circle which is in U. Let e(s) and e(s) be the parallel
null vector fields along β such as described in the proof of Lemma 1. Recall
that e(s) generate the unique null line and (e(s),e(s)) = (e(s),e(s)) = 0
and (e(s),e(s)) = —1 in the leaf at each s G (α, b). Then e and e span
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a Lorentzian plane in TXH™, Mx G U C H". The orthogonal complement of
the plane is in the null space of the immersion. Since each leaf intersects the
curve β once and only once, we can extend the vector fields e(s) and e(s)
to the entire U by parallelly displacing them along the radial geodesic rays
staring at /3(s), s G (α, b) in each leaf passing through β(s). We denote the
resulting vector fields by the same letter e and e, respectively. Denote by
7s — 7s(*)j tE(c,d) the maximal integral curve of the vector field e passing
through /3(s), s G (α,6). As before, we denote by βj(θ), 1 < j < n — 3,
the parallel displacement along the curve s of an orthonormal basis for
the orthogonal complement of the plane spanned by e(s') and e(s') at
a point s' G (α, b). The leaf passing through a point β(s) is given as the
intersection of H™ and the n-plane spanned by e(s), e^s), 1 < j < n — 2,
and the position vector β(s). In particular, the plane P(s) spanned by
e(s) and β(s) gives a geodesic in the leaf. The geodesic has e(s) as its
velocity vector at /5(s); hence, it has to be a light-like geodesic. On the
other hand, P{s) is degenerate and contains the line spanned by e(s) as a
unique null line. This implies that the geodesic must be the straight null line
itself. Let us consider the (n — l)-plane in R%+1 which is perpendicular to
the 2-plane that contains the center circle. Call the (n — l)-plane Pv . A
dimensional argument then yields that the the tangent plane to the leaf at
β(s) contains a unique (n — 2)-plane in Py. Call the unique (n — 2)-plane
θ . Since Pv is pointwisely fixed under the rotation in the plane containing
the center circle, the tangent spaces to the leaves passing through /3(s),
which are parallel along /?, contain Θ as a unique common subspace for
all s G (α, b). Denote by ©^(s) the orthogonal complement of Θ in the
tangent space TSH™ to iff at β(s). Since Θ is a space-like space, ©^(s)
is a Lorentzian space of dimension 2. e(s) is in ©^(.s); hence , there is
a unique light like vector e(s) G ©x(s); such that (e(s),e(s)) = —1. The
vector field e(«s) is parallel along β = β(s). The vector e(s) generates a
unique light-like geodesic, denoted by 7 = 7(ί), t G R. The geodesic 7
meets all the leaves of the foliation transversally except possibly one leaf
which is exactly at the antipodal position in the center circle. As is proved
in Lemma 1, one can come up with a parallel null vector field e(£), t G R
along 7 such that (e(ί),e(ί)) = — 1, t G R and e(t) determines the
unique light-like direction in each leaf at 7(ί). The parallel displacement
©^(ί) of Θ±(5) along j(t) is tangential to the leaf at t G R. Denote
by βj(t), 1 < j < n — 2, the parallel displacement along j(t) of an
orthonormal basis ej(s), 1 < j < n - 2, for Θ±(s). Denote by x = x(t) =
/ o 7 ( ί ) , teR. Denote also /*(e(ί)),Λ(e(ί)),Λ(e, (ί)), 1 < j < n - 2, by
A(t),B(t),Bj(t), 1 < j < n - 2, respectively. Then the (n + 2)-tuple of
vector fields {i(t),A{t),B(t),C{t),Ba{t), 1 < j < n - 2} form what might
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be called a generalized Cartan framed curve in H"+1. Here C[t) is a unit
normal field to the immersion / along x = x(t), t E R. Each leaf passing
through 7(ί) is mapped onto the totally geodesic submanifold given as the
intersection of H?+1 and the span of {x(t), J5(ί),Bj(t), 1 < j < n - 2} . It
can be expressed as a mapping / : Rn —» Hι+1 in the following manner:

n - 2

with

The induced metric in Rn under / gives the same constant curvature
— 1 as H™; hence, making Rn into H™. The shape operator of the
immersion / is given in terms of the matrix representation relative to the
basis {e(t),e(t),ej(t), 1 < j < n — 2} by

where An = Q Q

w

and the remaining Ai/s are the zero matrices of appropriate sizes, where
k — k(t) is a differentiate function of t G R.

Conversely, suppose there is given a generalized Cartan framed curve
{x(t),A(t),B{t),Bά(t), 1 <j <n-2} in H?+1. We have the following
conditions satisfied:

(x(t),x(t)) = -l, (A(t),A(t))=0, (B(t),B(t))=0,

(C(t),C(t)) = 1, (A(t),B(t)) = -1 , (A(t),Bj(t)) = 0,

(B(t),Bj(t)) = 0, (A(t),C(t)) = 0, (B(t),C(t)) = 0,

Furthermore, assume the following hold:

dx/dt = A,

VA(t)A(t) = k(t)C(t), k = k(t),

VAWB(t) = w(t)C(t), w = w{t),

VA(t)C{t) = w(t)A(t) + k(t)B(t),

VA(t)Bj(t)=0, l<j<n-2.
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Here V is the connection in if*"*"1. If, in general, Y = Y(t) is a vector
field tangent to u"f+1 along a curve x = x(t), then we have:

where λ(ί) = (dY/dt,Y(t)} = -(Y{t),A(t)). In terms of the differentiation
in i?2+2> the above equations can be written as follows:

dx/dt = A{t),

dA(t)/dt = k(t)C(t),

dB(t)/dt = x(t) + w(t)C(t),

dC(t)/dt = w(t)A(t) + k(t)B(t),

dBj/dt = 0.

Assuming that x = x(t), t £ R, is a null curve in H"+1, we define a
mapping / : Rn -»• H?+1 by

n - 2

with

We have

f*(d/dt) = dx/dt + udB(t)/dt = A(<) + uw(t)C{t) + ux{t),

so that

Λ ; ) =o,

(f.(d/dt),Md/dt)) =u\w2-l),

J i ) ) = (f~Λd/dt)j~>(d/dUj)) =o,

uj)) = δij, i < i , j < n - 2.

Clearly, the metric in i?n induced by / is Lorentzian and of signature
1. We may call the immersion / : Rn -> H?+1 the generalized B-scoll of
the generalized Cartan framed curve

{x(t), A(t), B(t), C(t), Bj(ί), 1 < i < n - 2} .
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In order to compute the shape operator of the generalized B-scroll, we
choose a space-like unit normal field ξ = C + uwB. Then,

Ϋd/duξ = dξ/du

and

= dξ/dt = dC/dt + u{dw/dt)B + uw{dB/dt)

= (k + udw/dt)B + w(A + uwC + ux)

= (k + udw/dt)f*(wd/du) + wf*(wd/dt).

Furthermore,

Denoting by Aξ the shape operator of the map in the direction of
relative to the basis {d/du, d/ds, d/duj} , 1 < j < n — 2, we get

Aξ =
A21 A21 A22

Here,

—w —k — udw/dt
0 -w

And the remaining Aτj

:s are the zero matrices of appropriate sizes.
The metric induced by the immersion / : Rn -» iJ™+1 gives rise to the

same constant curvature —1 in Rn if and only if w — 0. Now we have seen
that

Theorem 3. Let T be a complete totally geodesic foliation of codimension
1 by degenerate leaves in a connected open subset of H™. Then T occurs
as the relative nullity foliation of the generalized B-scroll of a generalized
Cartan framed curve in Hι+1 and vice versa. Such a foliation can have
more than one immersions in the form of different B-scrolls, but they are
completely determined by the curvature function k = k(t), t E R, of the
null curve x — x(t), t G R.
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4. Foliations with non-degenerate leaves.

Let U be a connected open subset of H". Let T be a complete totally
geodesic foliation of codimension 1 in U. Given a tangent vector Z at x
to the leaf Lx of T passing through the point x. We denote by cz{x) the
conullity operator of T at x. Along the geodesic 7 = η{t) determined by
the initial conditions 7(0) — x and dj/dt(0) — Z in LX1 cz(t) satisfies
the Ricatti type differential equation (4), i.e.,

dy/dt = ί/2 - 1.

The only global solution is given by

sinht — cz(0) cosht
cosh t — cz (0) sinh t

If we denote by σ — σ(s), s G (α, 6), the maximal integral curve through
x of the unit orthogonal vector fields to the foliation T, the global coordi-
nate mapping Σ : (α,6) x Rn~ι -» U C if™ C i?2+\ which is given as F
by (9) in the proof of Lemma 2 can be more specifically expressed as follows:
Denote by TXLX the tangent space of the leaf Lx passing through x G U.
The induced inner product in TXLX is positive definite. Denote by Sx the
unit (n — 2)-sphere in the tangent space. Given a unit vector Z(s) G »ί>σ(s),
define a map Σz : (α, 6) x R -> U C H? C i?2+1 by

(10) Σ z(s,t) = σ (

Our global coordinate map Σ coincides with Σz in the plane

{5σ(θ) + tZ(s)} , where a(s) = σ*(d/ds)(s).

We have

Σ*(d/ds)(s,t) = Σz{sU(d/ds)(s,t)

— σ(s) coshί + Z(s) sinht

= σ(s) sinh ί + Z(s) cosh ί.

Hence, we have that

<Σ.(d/ds)(β,t),Σ,(0/dί)(β,t)) = 0,

ί),Σ,(a/aί)(s,ί)> = 1 ,

,t) = (cosht — c(s) sinhί)ά(5).
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Here, c(s) is the curvature of σ(s) in iϊj2, i.e., (d2/ds2, Z'(s)) = c(s) —

— (<J(S), Vcr(s)Z(s)). As |c(s)| < 1, Έ*(d/ds) never vanishes . This implies

that Σ is an immersion. It is obvious that Σ is one-to one and onto.

Lemma 4. Let {α }̂ and {bi} , i = 1,2, , be two sequences of positive

real numbers such that (α^,^) C (αi+i,δi+i) C (α, 6) and lim^oo â  =

a and lim^oo 6X = 6. TVien there exists a countable family

{q — q(s), Qi = Qi(s), i = 1, 2, }

of c°°-realvalued functions defined in R satisfying the following conditions:

i) g{s) > 0, 5 E (a, 6) and 0 elsewhere;

ii) ft(s) > 0 , 5G (βij&i) and 0 elsewhere;

iii) dJgi/dsj —» djg/dsj, i, j = 1,2, , uniformly in any compact subset

of R.

Proof It is well-known that there exists a c°°-function /^ such that

0 < /ii < 1 in (di,bi) and /i2 = 0 outside. Each hi has compact support

[α^δi]. Set rrii = m&x^dihi/ds^s)], s E [a2,62], 0 < j < i} . Then 0 <mτ <

oo. Let pi be a positive real number such that m, < ^ ( l / 2 ) \ i = 1, 2, .

Define ft(s) = Σ J = 1 hι(s)/pι, i — 1,2, ••• . Clearly ft(s) is a c°°-function

and satisfies (ii). From the choice of ^ ' s , djgi/dsj converges to djg/dsj

uniformly in any compact subset of i?, where g(s) = lim^^oo ft(s). Hence,

g = g(s) is a c°°-function. With this choice of g and ft's, (i), (ii) and (iii)

are satisfied.

Lemma 5. Let J7 be a codimension one complete totally geodesic foliation

of a connected open subset U C H™. Furthermore, assume that all the leaves

are non-degenerate. Let c(s) be the curvature of a maximal orthogonal

trajectory of the foliation T. Then there is a c°° -function G defined in

H™ of the following form:

G o ΣZ(s){s,t) = g(s)k(s)/(cosht - c(s) sinhί), V(s,ί) E (α, b) x R]

G(x) = 0, \/x E H? - U.

Here Έz(s)(s,t) is the restriction of the global coordinate mapping to the

span of <J(S) and Z(s), s E (α, 6) and k : (α, 6) —> R is a c°°-function.

Proof. Define Gι to be the c°°-function defined in H™ by

Gi o ΣZ(s)(s1t) = ft(«s)/j(«s)/(cosh^ - c(θ) sinhί), (5,ί) E (aτ,bi) x i?;

G t (a ; )=0, VxeH^-Ui.
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The <7J'S are given in Lemma 4 and Ui = Σ((α^, 6̂ ) x i ? n - 1 ) , i = 1, 2, .
Since /fj1 is diffeomorphic to i ϊ n , there are global coordinate systems
in H™. Choose one of them and denote it by (ui, , nn)? —°° < u^ < oo.
Indeed, we might as well assume that it is the Cartesian coordinate system in
Rn. Then a function in H? is of c°° if all the partials in the u{, 1 < i < n,
exist and continuous . Define a positive real number Bi by

Bi = msLx[\djGi/duadup{Σ{s:Z))\ :

a + β = j,0<j<i,\Z\ <h(s,Z) e (α,6) x r 1 } .

These ί^'s are bounded by positive constants. Let r{ be positive number

such that Bi < τ;(l/2)\ i = 1,2, • . Then define G as follows:

(11) G(x) =

Expressing g = Y,<^=1{l/τi)gi(x)^ G has the desired form.

Next let A{ be a symmetric tensor field of type (1,1) in H™ defined as

follows:

s), Σ ( 5 , Z ) G U\

Ai{x) =0, xeH? -U.

Ai is obviously a c°°-symmetric tensor field of type (1,1). Let {ei, ,en}
be the orthonormal frame field in H™ obtained from the global coordinate
vector fields {d/duu • , d/dun} through the Gram-Schmidt orthonormal-
ization process. Then A{ can be expressed as a c°°-matrix-valued function
of H^ which we denote by

(12) Ai{x)

The components Aι

pq(xys of Ai are c°°-functions of H™ and vanish
outside Ui. Just as in the proof of Lemma 4, we make the infinite sum of
these Aρq's with appropriate weights if necessary. The sum will be denoted
by A — A(x). A can be expressed in terms of the base Έ*(d/ds) and
Σ*(Zi), , Σ s | e(Zn_1), where {Zi, , Zn_χ} forms an orthonormal basis
for Rn~\

A(x)(Σ*(d/ds)) - Ψ(x)

A(x)(Zj) = 0, \/x = Σ(s, Z) E C/ (1 < j < n - 1)

A(x) = 0, Vx G ̂ "Γ - [/.
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Here, Φ is a c°°-function of the form given in (11) with an appropriate
function ψ replacing g.

Lemma 6. A satisfies the Gauss and Codazzi equations in H™.

Proof. We first show that each A{ satisfies these equations. Since rank
A% < 1, the Gauss equation is automatically satisfied. Since Aτ is a tensor
field, it suffices to show that in U

(13) (VΣ, ( 9 / 9 s )Λ) (Zj) = ( V Σ ^ } Λ ) (d/ds).

Note that A{ — 0 outside Uι hence, the equations are trivially satisfied
there. We calculate the terms in the above equation (12) by restricting
them to the totally geodesic surfaces ΣZ(s){s,t) of if™ given by (10).
Since Σ*(d/ds) = Έz{sU{d/ds) and Σ*(d/dt) = Σz{sU{d/Θt) form a
coordinate frame fields for i?2, the Lie bracket between them equals 0.
This fact together with Aι(Έ^(d/dt)) — 0 implies that the equation (12) is
equivalent to the following:

(14) (Σ,(d/dt))Gi-Gic(Σ(s,t))=0.

£)) is the conullity operator defined in (3) , which can be expressed

as

sinht — c(Σ(σ(s))) cosht

cosht — c(Σ(σ(s))) sinht'

where the σ(s) is the orthogonal trajectory of the foliation . Equation (13)

implies that dGι/dt - Gtc(Σ{s,t)) = 0. But

s^i ( r> l Is* I r* l

(5, t) G (αi, 6i) X i?
cosht - c(σ(s))sinht

Hence,

gτ(s)k(s)(smht — c(σ(s)) cosht)
(15) (dGi/dt)(Σ(s,t)) =

(cosht — c(σ(s)) sinht)2

Substituting this expression (15) in (14) , we get the desired equation. Using
the expression (12) for At, we see that the Codazzi equation (13) holds for
Aιη i = 1, 2, . Since by the definition of A, the convergence of all partials
is uniform in any compact subset of H™ , A also satisfies the Codazzi
equation (13).

Theorem 4. Given a c°°-lamination {U, T] , where U is a a connected

open subset of Jϊf, there is an isometric immersion of H™, into iff+
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so that the associated lamination is precisely {U,T}. In fact, there are
infinitely many such immersions, which are parametrized by the space of
differentiate functions k = k(s) 's.

Proof. Obvious from the proof of the previous lemmas and the fundamental
theorem of hypersurfaces in the ambient space of constant curvature.

Now let {[/, J7} be a c°°-lamination of H™. This means that U is given
as a disjoint union of countable connected open subset Ui, i = 1,2, , of
H± such that each Ui is endowed with a c°°-complete totally geodesic
foliation Ti. By Lemma 6 the lamination gives rise to a c°°-symmetric tensor
field Ai of type (1,1), which satisfies the Gauss and Codazzi equations. Let
us express each Ai as a matrix-valued function

,un)eH?, l < p , q<n

relative the orthogonal frame field {eu , en} in H™. Let M,, i
1, 2, • , be the positive real number given by

(16) Mi = Max
i υuj"υuιe

f'

[ O i Λ]; (Z(s),z(s)) < * j .

Here Σ* : (a^bi) x i ? n - 1 -» £/i is the global parametrization of £/» in (9).
Now set r\i to be a positive number such that Mi < ηi(l/2)1. Define A by
the following series:

oo

(17) A =
2 = 1

The series converges uniformly in any compact subset of H™. The com-
ponents of A are c°°-functions. Moreover, it is easy to see that A never
vanishes in U but vanishes everywhere outside U. Since the A^s satisfy
the Gauss and Codazzi equations, so must A. Hence, we have reached

Theorem 5. Given a c°° -lamination {£/, J7} there exist infinitely many
isometric immersions of H™ into H™*1 so that the associated lamina-
tions are precisely the given lamination. The space of such immersions is
parametrized by the set of countably many c°°-functions ki = ki(s) : /,- —>
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i?, where /; is an open interval of real numbers determined by the max-
imal integral curves of the orthogonal trajectory to the foliation in Ti of
Uu i = l,2,- .

Proof. From Lemma 6, we have a c°°-symmetric tensor field A of type (1,1)
defined in H™. A satisfies the Gauss (7) and Codazzi (8) equations. By
the fundamental theorem of hypersurfaces in H™+1, there is an isometric
immersion whose shape operator is precisely A. Rank A = 1 in U and
A Ξ O elsewhere. This completes the proof.

Remark. Let R = R\ be the preimage of the center circle under the
covering map in (2). Given a totally geodesic lamination {U.J7}, let
U = 1)^17j, where ϊ7/s are mutually disjoint connected open subsets, each
of which is endowed with a complete totally geodesic foliation of codimension
1. Then Uj Π R is an open interval J ,̂ 1 < j , in R. If the totally
geodesic foliation of Uj is non-degenerate, we may consider the curvature
function kj — kj(s) defined in a maximal integral curve of the orthogonal
distribution to the foliation as a differentiable function defined in Ij in
a natural way. If the foliation in Uj happens to be degenerate, then the
curvature function kj defined in the complementary null curve can be
regarded as a differentiable function in Ij. Thus, we may state that the
space of isometric immersions / : H™ —> H™+1 is parametrized by the
family of triples {Uj^Tj, kj — kj(s)} , 1 < j .
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