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ON THE CAUCHY PROBLEM FOR A SINGULAR
PARABOLIC EQUATION

XIANGSHENG XU

The existence of a renormalized solution is established for the
Cauchy problem for the parabolic P-Laplacain equation in which
p is allowed to be close to 1 and the initial data are only assumed
to be locally integrable.

1. Introduction.

We shall be concerned with the existence of a solution to the following problem

(1.1a) %u —div (|VulP>Vu) =0 in Zr = RN x (0,7),

(1.1b) u(z,0) = uo(z) on RN

in the case where T > 0, 1 < p < 2, and up € L} . (R"). The restriction on p
makes the equation (1.1a) singular because the term |Vu|P~2, which measures
the modulus of ellipticity of the principal part of (1.1a), is unbounded at points
where |Vu| is 0. Thus we are dealing with a singular parabolic problem.

It is observed in [DH] that in the generality considered here an estimate of
the form

(12) !VUI € L{Ioc (ET) ) q Z 1

is no longer possible. This suggests that solutions of (1.1a) display new phenom-
ena that cannot be incorporated into the classical weak formulation. To define
our notion of a weak solution, we follow the approach adopted in [X1]. Let
A = {6 € C(R) : 6 is a Lipschitz function whose derivative §'(s) exists except
at finitely many points and 0'(s) =0 for |s| sufficiently large}. If a measurable
function v on X7 is such that 6(v) € L? (O, T; WP (RN )) for all § € A, then we

can define a measurable function g : 7 = R" so that
g = VPy(v) almost everywhere on {|v| < M}

for all M > 0, where Py(s) = min{|s|, M} sign(s). The function g is viewed as
the spatial gradient of v, and is also denoted by Vv. We are ready to present
our definition of a solution.

Definition. A measurable function u on Y7 is said to be a renormalized
solution of (1.1) if:
1. ue C([0,T); L, (RM));

loc

277



278 XIANGSHENG XU

2. For each 0 € A, 6(u) € L?P (0, T; WP (RN)) and Vl(u) = 0'(u)Vu
almost everywhere on X7, where 6'(u) is understood to be 0 if u €
By = {s € R: 0'(s) does not exist};

3. |Vu|r~' € L'(0,T; L}, (RV)) and

loc

—/ / 0(s)ds<ptda:dt+/ [VulP~2Vu (VO(u)p + 0(u) V) dzdt
Xr JO Er

ug(
0

- /R _p(z,0) / ” o(s)dsda

for all 6 € A and all p € CP (RY x (—00,T)).

The idea of a renormalized solution was originated in the study of the
Boltzmann equation; see [DL1, DL2] for details. An elliptic version of this
idea appears in [ BGDM]. The definition here is a slight modification of that
in [X1]; also see [X2] where it is evident that the notion of a renormalized
solution is the correct notion of solution for p-Laplacian problems. The
objective of this paper is to show that there exists a renormalized solution
to (1.1).

If ug > 0, the existence and uniqueness of a solution to (1.1) are established
in [DH]. In [X1], the sign restriction on u, is removed, but R" is replaced
with a bounded domain §2. The stationary problem is considered in [X2] and
references therein. The question of existence and uniqueness of a solution to
(1.1) in the case where uy may change sign was proposed as an open problem
in [DH]. In this paper, we solve the question of existence, while the question
of uniqueness remains open.

It is interesting to note that we obtain a renormalized solution to (1.1)
without imposing any growth condition on u,. This is in sharp contrast
with the case p > 2 [D]. Also, it is easy to infer from the argument in
[D, p. 188-192] that if uy € L*(R"),s = N(2—p)/p, 1 <p < 2N/(N + 1),
and N > 2, then the renormalized solution u constructed here will extinct
in finite time, i.e., there exists a positive number T* such that u(z,t) = 0
for all t > T™.

The main gap between the case up, > 0, and the case where u, may change
sign, is that in the latter case an estimate of the type

T 2
Uy
——t___dgdt<oco, s€(0,T),e>0,R>0
/s /{izl<R} (1 + |uf)t+e ©.7)

is no longer available. To overcome this difficulty, we develop an analysis
that combines the best features of the arguments in [DH] and [X1] with a
compactness theorem of Simon [S].
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This work is organized as follows. In Section 2, we prove a comparison
principle for classical weak solutions of (1.1a). This result is used in Section 3
to prove the existence of a renormalized solution.

We conclude this section by making some remarks on notation. Let R > 0,
and we denote by Bpr the ball centered at the origin with radius R. Fix
R > r > 0. We say that ¢ is a cut-off function associated with R and r

2
if € €0 (Br), 0<€<1,€=10nB, and |[VE| < . Let Ebea

measurable set in RV*!. We use |E| to denote the Lebesque measure of E.

2. Preliminaries.

In this section we consider the problem

(2.1a) %u —div (|[Vuf?Vu) =0  in Zr,

(2.1b) u(z,0) = up(x) on RV

in the case where uo € L2, (R") and 1 < p < 2. A function u on Ir is said

loc
to be a classical weak solution of (2.1) if:

(i) u € C ([0,T); L, (RY)) N L7 (0,T; Wi (RY) );

loc
(ii) — [, woedzdt + [5_ |VulP>VuVedzdt = [gn o(z,0)ue(z)dz for all
0 € C® (RN x (—00,T)).

Let u be a classical weak solution to (2.1). Then we can easily deduce
from (ii) that for each p > 0,

(2.2) u, € LY (o,T; WL (B,,))

(2.3)
uy — div (|Vu|P2Vu) =0 in W% (B,) for almost every t € (0,T).

Here and in what follows p' = p/(p — 1).

Lemma 2.1. Let u be a classical weak solution of (2.1). Then uy, €
Le (RN) implies u € L*® (0,T; L, (RN)).

Remark. If uy > 0, then this lemma is a direct consequence of Theo-
rem I11.6.2 in [DH].

Proof of Lemma 2.1. We modify a device in [DH]. Fix R > 0. For n =
0,1,2,..., define

pn=R(1+2™),B, =B, kn=M(2-27"),
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where M 2> ||uo|| o (p,,) Will be selected later. Let &, be a cut-off function
associated with p, and p,;;. Then we can derive from the chain rule [X1]

2
that the function t — % / [('u. - kn)+] &Pdz is absolutely continuous on
B'I
[0.T], and
d1

(2.4) @3y [(u - kn)+]2 EPdz = (ut, (u—k,)* 55)

almost everywhere on (0,7),

where (-,-) denotes the duality pairing between W% (B,,) and W, ” (B;).

Keep this in mind, use (u — k,)* €2 as a test function in (2.3), thereby obtain

dl1

_— — P —_ P

=3 Bn[(u ka)* 5dm+/ ’Vu |§dz

p—2
~ [ V= k) TV (= k) (= k) 2 Venda
" 4
_ p-1 (P )" gp(n+1) P

_2/ |V (u - k)| €2da + 2 (R) 2 /B [(u— k)*] o
Consequently,
(2.5)

max [ [(u— k) ] P dz + |V (6 = ka)*| €t

0<i<T /B, B, x(0,T)

1AM +17
< (B opn+2) / — k)] dzdt.
- (R) B, x(0,T) [(u ) ] ’

This, in conjunction with the Gagliardo-Nirenberg-Sobolev inequality, im-
plies

/B o [~ ka)* g,,] " dzdt

g
<co (()ittlgT / [(u- kn)+ £n] )

. /B,.x(o,T) lV ((u ~ka)* 'fn)l dzdt
(B )n

<e i — k)] dzdt
=a RESR (Lnx(O,T) [(u )] ’ )

Here, and in what follows, ¢;,7 € {0,1,2,...}, denote positive constants
depending only upon p, N. We estimate

/ [(u - kn+1)+]p dzdt
Bn+1 X(O:T)

N+p
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(26) <[ o L6~ ) 6] dadt

S IBn X (O,T) ﬂ{u > k'n+1}|-ﬁ1—2

N42 =
) (/ [(u - kn+1)+ &n]p_ﬁ_ dil)dt)
Bn x(0,T)
- o (Fw 75 )
= R7‘P va :2?5)

. </B,.><(O,T) [(u = k) +]pd$dt

B, x (0,T) N {u > knys |77

)H‘%

Observe that

/ [(u = ka)*]" dadt
B, x(0,T)
> / (kngs — kn)? dzdt
B x(0,T)N{u>kn41}
= MP27P D) | B (0,T) N {u > knyr ) -

This, together with (2.6) shows that

/ [(u - kn+1)+]p dzdt
B,.+1 X(O,T)

ol KRR+ i | P Hw
C3 N / [(u — k) ] dzdt :
R Mot \UBax,1)

According to a result in [LSU, p. 95], lim,_, /| Bax(0,8) [(u — kn)+]p dzdt =
0, provided we can select M > ||uol| e (p, ) SO that

_Nt2

2.7 / w— M) dodt < |~
( ) Bar x(0,T) [( ) ] (R (N+2) MW—%EY
(pN+92+20) (%)
. (z—m—m—)
< c4R(N+”)M2.
This can be easily done, and hence

/ [(u — 2M)*]” dzdt < lim [(w— £.)*]" dodt = o0.
Brx(0,T)

n—0o BrXx (O,T)
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To see that u is also bounded below, note that v = —u is a classical weak
solution of the following problem

o _ div (|[Vo[P~2Vv) =0 in Zr,

ot
v(z,0) = —up(z) in RM.

This completes the proof of the lemma.

Before we continue, let us recall the following lemma from [O, pp. 145-147].

Lemma 2.2. Let z,y be any two vectors in RN and p € (1,2]. Then,
(a) (|zP~2z — |y[~2y) (& — y) > (p — 1) el s
(b) [|zlP~2z — lyIP~?y| < VB|z -yl

Lemma 2.3. Let uo, vo be two functions in LS, (RN). Assume that u
and v are classical weak solutions of (2.1a) with initial conditions ug and vy,
respectively. Then uy < vy tmplies u < v.

Proof. Fix R > r > 0. Let £ be a cut-off function associated with R and r. By
Lemma 2.2, u,v € L* (0, T; LS, (RY)). Thus for each ¢ > 1, [(u —v)*]"¢% €
L (0, T; Wy P (BR)). We can conclude from (2.3) and the chain rule [X1]
that

(2.8)
;}lt-;% [ (=)™ ¢
+ /B (VP Va2 V0) g [(u = )] V(- v)eide
- / (Va7 = [VoP~91) [(u - v)*]" 2% Vede
<z 2 - /B Va2 — [Vup-29u] [(u - 0)*]" ¢
Set

A ={a: (ule,0) — () 7 < 34|V (e, t) —0(a,1)*[€@) ).

We compute, with the aid of Lemma 2.2, that

2

1/ [|VulP=2Vu — |Vo|P2Vo| [(u — v)t]? édz
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< %/ IVuP~2Vu — |Vo|P~2Vo| [V (u — v)*| g [(u — v)*]" " €2da
BrNnA;

2 q
t Ry /BR\A, V5|Vu — Vol [(u - v)*] éda
< %/ (IVulP~*Vu — |Vol|P~2 Vo) V(u — v)q [(u — v)*]* ¢2dz
Br

+ R2_ r /;aﬂ V5 (q(;——r)(“ - v)+)p—l [(u ~)*]" da.

Use this in (2.8) to obtain
(2.9)

/ [(u ,U)+]q+1d < \/5(4+1)22p_1

- T —_— u—v + a+p—1 d.’l:d’r
. g Y(R—r)P /Bax(o,t) [( ]

Now we are ready to employ an argument in [DH]. Fix p > 0, and set

Pn = (Z 2—i> p, B.=B,,
=0

A, = sup [(u— 'v)"']'H'1 dz (n=0,1,2,...).
0<T<t /B,

We can infer from (2.9) that

op(n+1) _
n<c / [(w—v)*]"™" " dzdr
pp B"+1X(0,t)
_ _ +p—1 9p(n+1)
<tV T
3— 21’" (a+p—1)
= clt_q:ﬁi —(@-pN An-(:iﬂ)

(g+1)

m

g—ﬂ n t Si;-t‘li-)q =

<OAnyr + (2” "’) c(0) | —amm :
p"‘ (a+1)

Here § > 0 is arbitrary. This implies

g+l

1 o AN i
(210) Ay <0"A, + -C((S) N (621]%) .
6 PP @ =0
Now we select § > 0 and g > 0 so that

PH =2 and (g4 Dp-(2-pN >0,
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We conclude from (2.10) that

g+l
3—-p+ 2=
t T3] ) i

+79+1
su u—v dr <c| ————~
ogrgt B, [( ) ] - (p‘——m—'(—ul S eal

—0 as p — 0.
This proves the lemma. O
An easy consequence of Lemma 2.1 and Lemma 2.3 is that
lu(, )l @y < llwoll poo (revy
for each t > 0.
3. Existence.
The main result of this section is:

Theorem 3.1. Assume that uo € LL. (R"), and 1 < p < 2. Then there
exists a renormalized solution to (1.1).

Proof. If k € {1,2,...}, define

(3.1) fr(z) = min {uf (z), k},
(3.2) gr(z) = min {ug (z),k} .

For each k, consider the approximating problem
(3.3a) S —div (Ve Vur) =0 on 3,
(3.3b) u(z,0) = uox(z) = fr — gx in R".

The existence of a classical weak solution to (3.3) can be inferred from a
result in [DH, D). Since uox € L* (R"), Lemma 2.3 asserts the uniqueness.
The remaining proof is divided into several lemmas. a

Lemma 3.1. For each p > 0, there exists a c(p) > 0 such that

0<t<T

(3.4) max /B lui(z, )| de < c(p),

(3.5) / IVur|P " dzdt < c(p) (k=1,2,...).
B, x(0,T)
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Proof. For each k, let v, be the classical weak solution of the following
problem

(3.6a) %vk — div (|Vo " Vo) =0 in T,

(3.6b) ve(z,0) = fi(z) on RV,

and w;, be the classical weak solution of the following problem

(3.7a) %wk —div(|Vu? V) =0 in o,
(3.7b) wi(z,0) = —g(z) on RN,
In light of Lemma 2.3, we have

(3.8) wy < up < v almost everywhere on X

for all k. Since f; > 0 on RM, we can invoke a result in [DH, p. 260] to
obtain that there exists a ¢;(p) > 0 such that

(3.9) Jnax, s, vi(z,t)dz < ¢1(p) (k=1,2,...).
Note that z;, = —w; is the classical weak solution of the problem

0 . - .
&Z}c —div (lek|p 2 Vzk) =0 mn ET,
2(z,0) = gi(z)  on RNV

Thus, we can find ¢;(p) > 0 with

(3.10) / lwe(z, 8)| dz < ¢(p) k=1,2,...).

PRy
We see that (3.4) is a consequence of (3.8), (3.9), and (3.10). To see (3.5),
for each € > 0 define

1- Ll if s >
(3.11) bels) ={ e He20
—pe(—s) if s <0.

Let £ be a cut-off function associated with 2p and p. Then using ¢, (u) &P
as a test function in (3.3a), we derive from a standard argument [X1] that

(3.12)
uk(z, t)
di /B/ ()dsgr (@) + [ 4L ) [Vonl” €7
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= [ IVl Vusdh, () pE Ve,

2p

Note that .

¢ = A+ and  [¢| <1
and that
(3.13) ab<oad® +0 58, a>0,5>0, o> 0.

We deduce from (3.12) that

(3.14)

uk (z,t) € Ivuklpfp
esds”:r:dac+—/ —————dzdT
L e g [ S

<[ | ) () dse? (a)da

1-p P
+ (E) (2) / 1+ |uk|)(1+€)(p_1) dzdr.
2 p B2, x(0,8)

Observe that fO""(z’t) ¢-(s)ds > 0 on Xr. Then select g, > 0 so that
(1+e0)(p—1) =1

It follows from (3.14) and (3.4) that there exists a ¢(p) > 0 with

p
/ ——'—V—%—dwdt < ¢(p)-
B,x(0,1) (1 + |ug|) ™

We estimate that

- V p-1 (1+eg)
/ IVukl" ! dzdt = / —I‘—’lﬁﬁl——h—gy (1 + Iukl) P dxdt
B, x(0,T) B,x(0,T) (1 + lukl)_’ro_
Eo |Vuklp
—-————E_E—odxdt

=2 B,x(0,7) (1 + |ugl)

1-p
+ (fg) / (1 + 'ukl)(l+eo)(11—1) dzdt.
2 B, x(0,T)

This implies (3.5). o
Lemma 3.2. For k € {1,2,...}, there hold

( ) B,x(0,T) (1 + |uk|)1+e | uk| I - ( )
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(3.16) |V’ dedt < Mc(p) (M > 0)

»/Bpx(O,T)ﬁ{IUkISM}
for some ¢(p) > 0.

Proof. Let p > 0 and £ be a cut-off function associated with 2p and p. Use
& (ur) € as a test function in (3.3a) to obtain

€
— |V, [’ dzdt
/B,,xm,:r) (1+ fug))'** Vs

1 —
< / luo(z)| dz + — |Vug [P~ dadt.
Bz, P JB2,x(0,T)

This, together with (3.5) implies (3.15). To see (3.16), for M > 0 let Py(s)
be given as before. Then use Py (ux) £ as a test function in (3.3a) to get

/ Pl (us) |Vuu|” dzdt < M / luo| dz + £ / Ve P~! dedt.
B, x(z,T Ba, P JB

20 X(O,T)
This completes the proof. O

Lemma 3.3. There exists a subsequence of {ux}, still denoted by {u},
and a function u € L., (RN x (0,T)) with

(3.17) ur — u almost everywhere on L.

Proof. Fix p > 0, and let £ be given as in the proof of Lemma 3.2. We
conclude from (3.3a) that
(3.18)

T/0 1 —2
— Uy, — dt + Vup|P™” Vur VEpdzdt
/o (at 1+ uZ g(P) B2, %(0,T) Vel £VEp

+/ Vg P2 VurtVodzdt
B, x(0,T) 1+"i! ¢ Ve

2uy,
Tk |V [P Epdzdt = 0
»/Bz,,x(OT) 1+ k)2| d"ee

for all p € C§° (B,, x (0,T)). Here, (-,-) denotes the duality pairing between
W-1# (B,,) and W,* (B,,). We infer from an argument in [X1] that

(gt Uks 7T 2§<p> (gi (¢ arctan uy) ,<p) almost everywhere on (0,T).
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This, combined with (3.18) indicates that

a . p—2
(3.19) N (¢ arctan uy) — div (1 n u%§ [V Vuk)
— 2'u,k
+ |V [P Ve VE — ——2 € [V [P = 0
| Vg ur V¢ (1+“12a)2§| ug|
in D' (B;, x (0,T)) .
Now set
F, = div ( ! £ |V |~ wk)
1+ u? ’

_ 2u
Gr = — |Vug| > Vu VE — (_1_+Tkz)2-£ IVuel? .
k

It is easy to verify from (3.5) and (3.15) that
{G} is bounded in L' (B, x (0,T)),
{F:} is bounded in L¥ (0,T; W7 (B,)),
{¢arctanuy} is bounded in L (0,T; W, (Bs,))
This puts us in a position to invoke Lemma 4.2 in [BM] to conclude that
{¢arctanu,} is precompact in L% (B, x (0,T)).

In particular, we can extract a subsequence of {uy}, still denoted by {u},
such that

arctanuy converges almost everywhere on B, x (0,T).
Note that u; = tan (arctanu;). We may define
u(z,t) = klim uk(z,t) for almost everywhere (z,t) € B, x (0,T).
—00

To conclude that {u;} converges almost everywhere on B, x (0,T), we must
show that |u| < oo almost everywhere on B, x (0,7T"). However, this is an
easy consequence of Fatou’s lemma and (3.4). Since p > 0 is arbitrary, we
can appeal to the classical diagonal argument to conclude the proof. a -

Lemma 3.4. There ezists a subsequence of {uy}, still denoted by {uy},
and a measurable function F(z,t) on X such that

(3.20) Vu, = F almost everywhere on Xr.
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Proof. Fix p > 0, and let £ be given as in the proof of Lemma 3.3. Assume
(3.17) holds. According to Egorov’s theorem, for each 7 > 0 there exists a
measurable set E, C B, x (0,T) such that

|B, x (0,T)\E,| <n and wu;—u uniformly on E,,.

We may assume that {u;} is bounded in L™ (E,), and thus by (3.16),
(3.21) / |Vug|? dzdt < c(n, p)-
E'l

For § > 0, we can find a K(§) with
(3.22) |uk — um| <6 on E, forall m,k> K(4).

Let P; be defined as before. We can derive from (3.3a) that

d uk (z,t) —um(z,t)

s / / Ps(s)dst(c)dz +

dt Js,, Jo

/ (|Vuk|"‘2 Vg, — |Vim|P Vum) (Vug — V) E(x) Py (ug — Um) dz
B3,

- / (Ve Vs, = [Vt~ V) VE(@) Py (s — 1) s
B3,

6 p—1 p—1
< ;/sz (quk] + |V, )da;,

for k, m sufficiently large. Thus,

(3.23)
/ (|V’uk|"’_2 Vg, — [Vt |P Vum)
BZPX(O,T)
- (Vug, — Vu,,) &(z) Py (ur — up,) dzdt
Uok —UOm 5 p—1 p—1
Ps(s)dsdz + — (quk| + |V, ) dzdt
Bs, Jo

p Bz,, X (O,T)

IA

< c(p)d

for k,m sufficiently large. We estimate, with the aid of (3.21), (3.22), and
(3.23) that

(3.24)
/ |Vu — Vu,,|? dzdt
E,
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- (Ve = Vunl® (190, + |Vupl) “F* dodt

By (V] + [Vul) *

2-p

B
|Vuk—Vum| 2 / , -
> 5 dedt V| + |V dzdt
</E (V] + [Va])" , (Vtml + Vi)

< c(n,p) ( /B o (IVukl"'2 Vg — |V, Vum)

H
- (Vug — Vu,,) €(z) P§ (ux — ) da:dt)

< ¢i(n, p)6%

for k,m sufficiently large. We see that {Vu;} is a Cauchy sequence in
(L* (E,))". In particular, we can select a subsequence of {uy}, still denoted
by {ux}, so that

Vuyg converges almost everywhere on FE,,.

This is true for each n > 0, and so {Vu,} converges almost everywhere on
B,x(0,T). The lemma follows from the classical diagonal argument. O

Lemma 3.5. {IVukl Vuk} is precompact in L' (B, x (0,T)) for each
p>0.

Proof. Note that the function G(z) = |z[P~%z is continuous because
limyg0 |z|*~%2 = 0 = G(0). Thus, we may assume that

(3.25) {|Vui|""* Vu, converges almost everywhere on B, x (0,T).
p

1
Now for each ¢ € (0, g), we can choose ¢9 > 0 so that ¢ = 2—_—I_?p. We
0
deduce from (3.4) and (3.15) that

(3.26)
/ V| dodt
B, x(0,T)

1 ()]
/ )(1+so)-‘1 [V (14 lukl)(H—e )% dadt

B,x(0,T) (1 + |ug]
1

1
B x(0,7) (1 + |ux|)

IA

T ites IVuklp d$dt)
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) Al }
14

. (/ (1 + |ug)) T d:z:dt)
B, x(0,T)

P9
P

< c(p) (/B o) (14 fuk]) d:z:dt) < ¢(p)-

Since0<p—-1< g, there exists a ¢ € (p -1, g) such that

/ |Vug|? dzdt < c(p),
B, x(0,T)

at least for k large enough. This implies that {]Vuk|p -2 Vuk} is uniformly
integrable. This, in conjunction with (3.32) and Vitali’s theorem, yields the
lemma. O

Lemma 3.6. {u;} is precompact in C ([0,T]; L* (B,)) for each p > 0.

Proof. For § > 0 let

1 ifs>4é
05(s) =<¢s if |s|<é ,
-1 ifs<—4

and £ be given as in the proof of Lemma 3.2. We can conclude from (3.3a)
that

(3.27)
ur(z,t) —um(z,t)
/ / 05(s)dsé(z)dz
B3, JO

+ IVukl"_z Vuk — |Vum|p_2 Vum)

Bz,X(O,t) (
- (Vug — Vuy,) €()05 (ug — ) dzdT

ugk () —uom (z)
= / / 05(s)dsé(z)dz
Bz, JO

- / ([Vuklp_2 Vg — [Vt |P Vum) 05 (ug, — u,) VEdzdr.
B2, x(0,T)
Observe that the second integral in (3.27) is nonnegative. Hence, we obtain

L luk(za t) -—um(a:,t)|d:1:
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1 _ _
< / |uor, — Yom| dz + = IIVuklp 2 Vu — |V, | 2 Vuml dzdt.
ng P szX(O,T)
Then the lemma follows from Lemma 3.5. O

Lemma 3.7. Let E C RY x (0,T) be bounded and measurable. Assume
that there exists an M > 0 such that

lug| < M almost everyshere on E  for k sufficiently large.
Then {Vuy,} is precompact in (L*(E))".
Proof. Let p > 0 be such that
B, x (0,T) D E,

and let ¢ be given as in the proof of Lemma 3.2. We conclude from (3.39)
that

uk (z,t)—um(z,t)
/ £(z) / Pone(s)dsdz
Ba, 0

+ (qukI”_2 V’U,k - |Vum|”_2 Vum)
B,, x(0,T)

- (Vug — Vuy,) Py, (ug, — uy) E(z)dzdT

UOk —UOmM
= &(z) / P,y sdsdz
Ba,

- / (quklp_2 Vg, — |[Vm|P Vum) Pyys (ug — ug) VE(z)dzdr.
BzPX(O,T)
Subsequently,
/ (|Vuk]"_2 Vug — |Vt [P Vum) (Vug — Vu,,) dzdr
E

S 2M/ |u0k - u0m| dx
B3,

2M
+___

> o vom “Vukl"’_2 Vug — |V, |~ Vuml dzdt.
2px 0;

A calculation similar to (3.24) yields

/ Vg — V| dedt
E

< (M, p) (/ |wor — Uom| dz
2

7
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3
+ [VugP~? Vg, — |V, P> Vuml dxdt) .

Ba,
This implies the desired result. O

Now we are ready to conclude the proof of Theorem 3.1. Let {v}, {ux}
be given as before. Note from Lemma 2.3 that

Vg < Vg1 on Xr forallk,
Wy > Wiyt on Xr forallk.
Define
v(z,t) = klirg) vi(z, 1),
w(z,t) = kliglo wy(z, t).
Consequently,
(3.28) w<u,<v almost everywhere.

By a result in [DH], there holds

————dzdt < T 0,e >0, 0,

/ s, (|z|+1)1+€ z c(e,s,p), T > s> 0,¢e p>

where z = w or v. The remaining proof is entirely similar to that in [X1].
The only difference is that in (3.23) of [X1] we require

@ € C (RN x (=00, T)).
This completes the proof.
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