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ON THE CAUCHY PROBLEM FOR A SINGULAR
PARABOLIC EQUATION

XlANGSHENG Xϋ

The existence of a renormalized solution is established for the
Cauchy problem for the parabolic P-Laplacain equation in which
p is allowed to be close to 1 and the initial data are only assumed
to be locally integrable.

1. Introduction.

We shall be concerned with the existence of a solution to the following problem

(1.1a) — u - div (|V«|p-2Vu) = 0 in Στ = RN x (0,T),

(Lib) u{x,0) = uo(x) on R^

in the case where T > 0, 1 < p < 2, and u0 G L\QC (R^). The restriction on p
makes the equation (1.1a) singular because the term |Vu|p~2, which measures
the modulus of ellipticity of the principal part of (1.1a), is unbounded at points
where |Vu\ is 0. Thus we are dealing with a singular parabolic problem.

It is observed in [DH] that in the generality considered here an estimate of
the form

(1-2) \Vu\eLlc(Έτ), q>l

is no longer possible. This suggests that solutions of (1.1a) display new phenom-

ena that cannot be incorporated into the classical weak formulation. To define

our notion of a weak solution, we follow the approach adopted in [XI]. Let

A = {θ G C(R) : θ is a Lipschitz function whose derivative θ'(s) exists except

at finitely many points and θ'(s) = 0 for \s\ sufficiently large}. If a measurable

function υ on Σ τ is such that θ(v) G Lp (o, T; W^ξ (R*)) for all θ e A, then we

can define a measurable function g : ΣT —> R N so that

g — VPM(V) almost everywhere on {|v| < M}

for all M > 0, where PM(S) = min{|s|,M}sign(s). The function g is viewed as
the spatial gradient of v, and is also denoted by Vυ. We are ready to present
our definition of a solution.

Definition. A measurable function u on Σ τ is said to be a renormalized
solution of (1.1) if:
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2. For each θ € A, θ(u) G U (θ,Γ; Wf£ (R")) and V0(u) = θ'(u)Vu
almost everywhere on Σ τ , where θ'(u) is understood to be 0 if u G
Bθ = {5 G R : 0'(s) does not exist};

3. IVu\v-1 G L1 (0, T; L,1^ (R")) and

- / I θ(s)dsφtdxdt + / | Vu\p~2Vu (Vθ{u)φ + θ{u)Vψ) dxdt
JΣT JO JUT

r PUQ(X)

= / φ(x, 0) / θ(s)dsdx
JnN Jo

for all 0 G Λ and all ψ G Cg° ( R " x (-00,T)).

The idea of a renormalized solution was originated in the study of the
Boltzmann equation; see [DL1, DL2] for details. An elliptic version of this
idea appears in [BGDM]. The definition here is a slight modification of that
in [XI]; also see [X2] where it is evident that the notion of a renormalized
solution is the correct notion of solution for p-Laplacian problems. The
objective of this paper is to show that there exists a renormalized solution
to (1.1).

If u0 > 0, the existence and uniqueness of a solution to (1.1) are established
in [DH]. In [XI], the sign restriction on u0 is removed, but RN is replaced
with a bounded domain Ω. The stationary problem is considered in [X2] and
references therein. The question of existence and uniqueness of a solution to
(1.1) in the case where u0 may change sign was proposed as an open problem
in [DH]. In this paper, we solve the question of existence, while the question
of uniqueness remains open.

It is interesting to note that we obtain a renormalized solution to (1.1)
without imposing any growth condition on u0. This is in sharp contrast
with the case p > 2 [D]. Also, it is easy to infer from the argument in
[D, p. 188-192] that if u0 G Ls(RN),s = N(2-p)/p, Kp< 2N/(N + 1),
and N > 2, then the renormalized solution u constructed here will extinct
in finite time, i.e., there exists a positive number T* such that u(x,t) = 0
for all t > T*.

The main gap between the case u0 > 0, and the case where u0 may change
sign, is that in the latter case an estimate of the type

Js J{\a
dxdt < oo, se (0,T),ε > 0,R > 0

is no longer available. To overcome this difficulty, we develop an analysis
that combines the best features of the arguments in [DH] and [XI] with a
compactness theorem of Simon [S].
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This work is organized as follows. In Section 2, we prove a comparison
principle for classical weak solutions of (1.1a). This result is used in Section 3
to prove the existence of a renormalized solution.

We conclude this section by making some remarks on notation. Let R > 0,
and we denote by BR the ball centered at the origin with radius R. Fix
R > r > 0. We say that ξ is a cut-off function associated with R and r

if ξ e Co°° (β Λ ), 0 < ξ < 1, ξ = 1 on Br, and |Vf | < 7 ^ — . Let £ b e a
K — rmeasurable set in R^+ 1. We use \E\ to denote the Lebesque measure of E.

2. Preliminaries.

In this section we consider the problem

(2.1a) j^-u - div (|V«|p-2V«) = 0 in Σ τ ,

(2.1b) u(x,0) =uo(x) on KN

in the case where u0 £ Lfoc (RN) and 1 < p < 2. A function u on Στ is said
to be a classical weak solution of (2.1) if:

(i) u E C ([0, T]; Lfoc (R*)) (Ί If (θ, Γ; W^ (RN))

(ii) - / Σ τ uφtdxdt + /Σ |Vtt|p~2VuVφdxdt = fRN φ(x, 0)uo(x)dx for all
φeCZ°T(RNx(-oo,T)).

Let u be a classical weak solution to (2.1). Then we can easily deduce
from (ii) that for each p > 0,

(2.2) uteL

(2.3)
ut - div (|Vϋ|p"2Vu) = 0 in W'hp' (Bp) for almost every t e (0,T).

Here and in what follows p' —pjip— 1).

Lemma 2.1. Let u be a classical weak solution of (2.1). Then u0 G
L,~ (RN) irrψfte* .GL°° (0,Γ;Lg?c (R^)).

Remark. If w0 > 0, then this lemma is a direct consequence of Theo-
rem IΠ.6.2 in [DH].

Proof of Lemma 2.1. We modify a device in [DH]. Fix R > 0. For n =
0,1,2,... , define
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on

where M > \\UO\\L^>(B2R) W * ^ ̂ e s e l e c t e d later. Let ξn be a cut-off function
associated with pn and ρn+i Then we can derive from the chain rule [XI]

that the function t —> - / \(u — fcn)
+ ζζdx is absolutely continuous

2 JBn

 L J

[0.T], and

(2.4) ~

almost everywhere on (0, T),

where ( , •) denotes the duality pairing between W~lφ' (Bn) and WQ'P (B^).
Keep this in mind, use {u — kn)

+ ξ% as a test function in (2.3), thereby obtain

i l l [(u • *- ) +] a e j x + ίB
= -J \v(u-kn)

+\P 2V(u-kn)
+(u-

1 y I +

Consequently,

(2.5)

[(u - kn)
+]P dx.

rn^c / [(« - A;n)
+]2 ί ώ + / V (u - k n ) + " ξζdxdt

~ \R,

This, in conjunction with the Gagliardo-Nirenberg-Sobolev inequality, im-
plies

dxdt/ \(u-kn)
+ξn]

P

/ /• r + i2 \*
< Co sup / \(u-kn) ξn\ dx\

\0<t<TJBn

 L J /

v((u-kn)+ξn)\Pdxdt

\n / - \

[(u - fcn)
+]P dxdt

Bnx(0,T)

\JBnx(O,T)

Here, and in what follows, c^i € {0,1,2,...}, denote positive constants
depending only upon p, N. We estimate

Bn+1x(0,T)
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(2.6) < / \{u-kn+1)
+ξn]

Pdxdt
JBnx(0,T) L J

2 \ JV+2

O f JV+2 \

' Uu-kn+ι)
+ξn]

 N dxdt)
2(W)

2 (s+p) \Bn x (0,Γ) Π {« > kn+

N+p

( f \(u-kn)
+]Pdxdt]N+\

Observe that

/ \(u — kn) dxdt
JBnx(O,T) L J

"" JBnx(OyT)n{u

Bnx(O,T)

Y dxdt
>kn+1}

n + 1 ) \Bn x (0,T) Π {u

This, together with (2.6) shows that

\{u-kn+1γ]Pdxdt

According to a result in [LSU, p. 95], lim^oo fBnX<0 ^ \(u — &n)+] dxdt

0, provided we can select M > H ôllL ̂ ίβaR) s o

P

. [ 2 Πv+2) I

<

This can be easily done, and hence

/ [(« - 2M) + ] P dxdί < lim / Uu - kn)
+]" dxdt = 0.
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To see that u is also bounded below, note that v = —u is a classical weak
solution of the following problem

^ - div (IVv\p~2 Vv) = 0 in Σ τ ,
at

υ(x,0) = -uo(x) in ΈLN.

This completes the proof of the lemma.

Before we continue, let us recall the following lemma from [O, pp. 145-147]̂ .

Lemma 2.2. Let x,y be any two vectors in ΈtN and p E (1,2]. Then,

(a) (\x\"-*x - | yΓ 2 y) (x - y) > (p - 1) Qx\
x

+l%-P

(b) \\x\^2x - \y\»-2y\ <

Lemma 2.3. Let u0, v0 be two functions in Lf^RΛ). Assume that u
and v are classical weak solutions of (2.1a) with initial conditions u0 and v0,
respectively. Then u0 < υ0 implies u < v.

Proof. Fix R > r > 0. Let ξ be a cut-off function associated with R and r. By

Lemma 2.2, it, v € L°° (0, Γ; L,~ (R N )). Thus for each q > 1, [(u - v)+]q ξ2 £

V (θ,Γ; W^p (5 f l )) . We can conclude from (2.3) and the chain rule [XI]

that

(2.8)

dtq +

I q [(u - v)*]9'1 V(n - t;)ξ2ώ;

- \Vv\p~2Vv) [(« - υ) + ] 9 2ξVedx

—^— / ||V«|p-2Vu - |Vv|p-2Vυ| [(u - v)+]"ξdx.
JX r JBRIBR

Set

A = | x : (u(x,t) - v(x,t))+ -^-r < \q\v{u{x,t) - v(x,t))+\ξ(xή .

We compute, with the aid of Lemma 2.2, that

( u - v)+]qξdx
n — r
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||Vu|p-2Vu - |Vv|p"2Vt;| |V(tι - v)+\ q [(u - υ)^]9'1 ξ2dx
BRΠAt

2 f

R — r JBR\At

7v\p~~ Vv) V ( M — v)q \(u — v)"*"] ς dx

I (u _ ri+Y"1 r(u _ v)+]« dx

— r) J

2 JBR

Use this in (2.8) to obtain
(2.9)

[(« - v)+Y+1 dx < ^ ( * +

p

1 ) 2 T 1 I [(« - vΫ]**-1 dxdr.

Now we are ready to employ an argument in [DH]. Fix p > 0, and set

i=0

Λ n = sup / [(u-v)+]q+1dx (n = 0,l ,2, . .
0<T<t JBn

We can infer from (2.9) that

op(n+l) p

An < c- / [(u - v)*]9^-1 dxdr
PP JBn+1x(0,t)

( (3-P+9) \ 2=P

p P " (9+i) J

Here δ > 0 is arbitrary. This implies

(2.10) Λo < δnAn + \c(δ
0

Now we select δ > 0 and q > 0 so that

= - and (q + l)p - (2 - p)iV > 0.
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We conclude from (2.10) that

sup / [(u — v)+]q dx < c I ( + 1 ) ( 2 }

0<τ<tJBp \p ^ + Ϊ

-> 0 as p —> oo.

This proves the lemma. D

An easy consequence of Lemma 2.1 and Lemma 2.3 is that

for each t > 0.

3. Existence.

The main result of this section is:

Theorem 3.1. Assume that u0 e L\oc (RN), and 1 < p < 2. Then there

exists a renormalized solution to (1.1).

Proof. If k e {1,2,... }, define

(3.1) /fc(ίc) = min

(3.2) £*(#) = min

For each A;, consider the approximating problem

(3.3a) ^ _ d i v ( | V ^ Γ 2 V ^ ) = 0 on Σ Γ ϊ

(3.3b) u{x,0)=uok{x) = fk-gk in ΈLN.

The existence of a classical weak solution to (3.3) can be inferred from a

result in [DH, D]. Since uok E L°° ( R N ) , Lemma 2.3 asserts the uniqueness.

The remaining proof is divided into several lemmas. D

L e m m a 3.1. For each p > 0, there exists a c(p) > 0 such that

(3.4) OWTL \uk(x,t)\dx<c(p),

(3.5)
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Proof. For each A;, let vk be the classical weak solution of the following
problem

(3.6a) - ^ - d i v ( | V W * Γ 2 V ^ ) = 0 in Σ r ,

(3.6b) vk(x,0) = fk(x) on R",

and Wk be the classical weak solution of the following problem

(3.7a) — ^ f c - d i v ( | V ^ Γ 2 V ^ ) = 0 in Σ τ ,

(3.7b) wk(x,0) =-gk(x) on RN.

In light of Lemma 2.3, we have

(3.8) wk < uk < Vk almost everywhere on Σ^

for all k. Since fk > 0 on R^, we can invoke a result in [DH, p. 260] to

obtain that there exists a ci (p) > 0 such that

(3.9) max / υk(x,t)dx < cx(p) (k = 1,2,...).

Note that zk = — wk is the classical weak solution of the problem

= 0 in Σy,

zk(x,0) = gk(x) on R^.

Thus, we can find c2(p) > 0 with

(3.10) max/ \wk(x,t)\ dx < c2(ρ) (fc = l , 2 , . .
— — * rip

We see that (3.4) is a consequence of (3.8), (3.9), and (3.10). To see (3.5),
for each ε > 0 define

(3 U) ^ ^ Γ l Γ T Vl°n
{—φε{—S) if 5 < 0.

Let ξ be a cut-off function associated with 2p and p. Then using φε (uk) ξp

as a test function in (3.3a), we derive from a standard argument [XI] that

(3.12)

i ί Γ ^ Φ,(*)ds?(x)dx + I φ'ε (tit) \Vuk\
pξ"dx

ut JB2P JO JB2P
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Note that

and that

(3.13) ab < σaP + a'tv*, a > 0, b > 0, σ > 0.

We deduce from (3.12) that

(3.14)

/ / φ€(s)dse(x)dx + 5 / V γ ζ dxdr
JB2P JO 2 JB2pχ(oyt) (1 + \uk\) +

r ruok(x)

< φε(s)dsξp(x)dx
JB2p JO

Observe that /o

tt*(x><) ^ ε ( 5 ) ώ > 0 on Σ τ . Then select ε0 > 0 so that

It follows from (3.14) and (3.4) that there exists a c(p) > 0 with

\Vuk\>

Λ»,x(o,τ)(l + | u t | ) + o

We estimate that

/ IV^I dxdt = f | V" f c l" '1 dxdt = f | V" f c l" ' (1 +

This implies (3.5). D

Lemma 3.2. For k € {1,2,... }, there hold

(3.15) / - — u

JBpx(O,T) (1 + \Uk\)
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(3.16) / \Vuk\
pdxdt < Mc{p) (M > 0)

JBpx(0,T)n{\uk\<M}

for some c(p) > 0.

Proof Let p > 0 and ξ be a cut-off function associated with 2p and p. Use
Φε {uk) £ as a test function in (3.3a) to obtain

< / \uo(x)\ dx + - / IVtifcl1""1 draft.

This, together with (3.5) implies (3.15). To see (3.16), for M > 0 let P M (s)
be given as before. Then use PM (uk) ξ as a test function in (3.3a) to get

/ P'M {uk) \Vuk\
p dxdt <M ί |uo| dx + — / I V^Γ" 1 dxdt.

JBpx(xyT) JB2p p JB2PX(0,T)

This completes the proof. D

L e m m a 3.3. There exists a subsequence of {uk}, still denoted by {uk},

and a function u G L,1^ (ΈLN x (0,T)) with

(3.17) uk ~* u almost everywhere on Σ r

Proof. Fix p > 0, and let ξ be given as in the proof of Lemma 3.2. We
conclude from (3.3a) that

(3.18)

(ί ) dt
ί |Vu,Γ2 VukVξφdxdt

+ ί TΓ-Ί I
JB2px(0tT) l+Uk

- ί n

2Uk

2λJB2PX(O,T) (1 + U%)

for all φ € C£° (B2p x (0, T)). Here, ( , •) denotes the duality pairing between
W-1*' (B2p) and WQ* (jB2p). We infer from an argument in [XI] that

( ΈlUk' T~i—2 ^ ) = ( ^7 (^ a r c t a n ^ ) > V) almost everywhere on (0, Γ).
\ot 1 + ui J \at J
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This, combined with (3.18) indicates that

(3.19) I (Cretanuk) - div

+ IVukΓ
2 VukVξ - *"* ξ \Vuk\

p = 0
(l + «*)

in £>'(£ 2 p x(0,T)).

Now set

Fk = div

Gk = - |

It is easy to verify from (3.5) and (3.15) that

{Gk} is bounded in L1 (B2p x (0,Γ)),

{Fk} is bounded in Lp' (θ,T; W~hp' (B2p)) ,

{ζarctaniijfe} is bounded in U (θ,T; W^p (J52p)) .

This puts us in a position to invoke Lemma 4.2 in [BM] to conclude that

{£arctanufc} is precompact in Lp

oc (B2p x (0,T)).

In particular, we can extract a subsequence of {uk}, still denoted by {uk},
such that

arctanuj. converges almost everywhere on Bp x (0,T).

Note that uk = tan(arctantί^). We may define

u(x,t) = lim uk(x,t) for almost everywhere (x,t) E Bp x (0,T).

To conclude that {uk} converges almost everywhere on Bp x (0,Γ), we must
show that \u\ < oo almost everywhere on Bp x (0, T). However, this is an
easy consequence of Fatou's lemma and (3.4). Since p > 0 is arbitrary, we
can appeal to the classical diagonal argument to conclude the proof. D

Lemma 3.4. There exists a subsequence of {uk}, still denoted by {uk},
and a measurable function F(x, t) on Σj such that

(3.20) ViAfc —)• F almost everywhere on
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Proof. Fix p > 0, and let ξ be given as in the proof of Lemma 3.3. Assume
(3.17) holds. According to Egorov's theorem, for each η > 0 there exists a
measurable set Eη C Bp x (0, T) such that

\BP x (0,T)\Eη\ < η and uk -> u uniformly on Eη.

We may assume that {uk} is bounded in L°° (Eη), and thus by (3.16),

(3.21) / \Vuk\
pdxdt<c{η,p).

J

For δ > 0, we can find a K(δ) with

(3.22) \uk - um\ < δ on Eη for all m,k> K(δ).

Let Ps be defined as before. We can derive from (3.3a) that

fUk(x,t)-Um(xj)

JB2, JO

ί (iVtίfcΓ2 Vu* - | V « m Γ 2 Vum) (Vu* - V«m) ξ(a;)Pi («fc - um) dx

A f fUk(x,t)-Um(xj)

TJ Pδ(s)dsξ(x)dx
at JB2, JO

-~PIB

for k, m suίficiently laxge. Thus,

(3.23)

( |Vu*Γ 2 Vuk - IVnra |
p-2 V«m)

B2f,x(0,T)

- Vura) ξ(x)P; («ft - um) dxdt

/ Pδ{s)dsdx + -
O PJB2PX(O,T

for k,m sufficiently large. We estimate, with the aid of (3.21), (3.22), and
(3.23) that

(3.24)

ί \Vuk-Vum\pdxdt
•* En
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(2-p)

<(7 J^Γl^LVί/ ' ) 2

< c(η,p) ( I (\Vukr
2 Vuk - |V

- (Vuk - Vum) ξ{x)P'δ (uk - um) dxdt

for k,m sufficiently large. We see that {Vuk} is a Cauchy sequence in
(Lp (Eη)) . In particular, we can select a subsequence of {i£&}, still denoted
by {̂ *}> so that

VIA* converges almost everywhere on Eη.

This is true for each η > 0, and so {Vuk} converges almost everywhere on
Bp x (0, T). The lemma follows from the classical diagonal argument. D

Lemma 3.5. {|Vufc|
p~2 VuΛ is precompact in L1 (Bp x (0,Γ)) for each

p > 0 .

Proof. Note that the function G{x) = |a;|p~2a; is continuous because
^o |^|p~2x = 0 = ̂ (0). Thus, we may assume that

(3.25) ||Vufc|
p~2 VuΛ converges almost everywhere on Bp x (0,T).

Now for each q E (0, - ), we can choose ε0 > 0 so that q — p. We
V 2/ 2 + ε0

deduce from (3.4) and (3.15) that

(3.26)

/ \Vuk\
qdxdt

BPX(0,T)

εθ1 J



ON THE CAUCHY PROBELM FOR A SINGULAR PARABOLIC EQUATION 291

ί \Ϊ
<c(p)(f (l + \uk\)dxdt) P <c(p).

S i n c e 0 < p — 1 < -, t h e r e e x i s t s a ? E ί p — 1, - ) s u c h t h a t

/ \Vuk\
qdxdt<c{p),

Bpx(O,T)

at least for A: large enough. This implies that j |Vufc|p~ Vuk [ is uniformly
integrable. This, in conjunction with (3.32) and Vitali's theorem, yields the
lemma. D

Lemma 3.6. {uk} is precompact in CflpjTj L1 (Bβ)) for each p > 0.

Proof. For δ > 0 let

( Ίΐs>δ

s if \s\ < δ ,

1 iίs<-δ
and ξ be given as in the proof of Lemma 3.2. We can conclude from (3.3a)
that
(3.27)

/ / θδ(s)dsξ(x)dx

+ I (|Vu*Γ2 Vuk - IVumΓ2 Vum)

- Vum) ξ(x)θ'δ (uk - tιm) dxdτ

= / / θδ(s)dsξ(x)dx
JB2p JO

- ί ίlV^Γ"2 Vuk - \Vum\p-2 VuΔ θδ (uk - um) Vξdxdr.
ij52px(0,T) V J

Observe that the second integral in (3.27) is nonnegative. Hence, we obtain

/ \uk(x,t) -um(x,t)\dx
JBO
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\uok - uOm\ dx + - ί \\VukΓ
2 Vuk - VuΔ dxdt.

Then the lemma follows from Lemma 3.5. D

Lemma 3 7. Let E C R^ x (0,Γ) be bounded and measurable. Assume
that there exists an M > 0 such that

\^k\ < M almost eυeryshere on E for k sufficiently large.

Then {Vuk} is precompact in (LP(E)) .

Proof. Let p > 0 be such that

Bpx (0,T) DE,

and let ξ be given as in the proof of Lemma 3.2. We conclude from (3.39)
that

/ ξ{x) Γ '' m ' P2M{s)dsdx
JB2p JO

- Vum) P2'M (uk - um) ξ(x)dxdτ

= ξ(x) P2Msdsdx
J B2p J

" I (lVufc|
p~2 Vuk - \Vum\p~2 Vum) P2M (uk - um) Vξ(x)dxdτ.

JBOOX(0,T) V '/β2px(0,T)

Subsequently,

<2M

— |Vϊim | Vumj (Vuk — Vum) dxdr

/ \uok — uOm\dx
J Bip

Γ i

dxdt.p -

A calculation similar to (3.24) yields

|Vufe-Vum|pcίa:<iί
E

<c{M,p) / \uok -uΌm\dx
\JB2P



ON THE CAUCHY PROBELM FOR A SINGULAR PARABOLIC EQUATION 293

dxdt
| | « v | wwf i v r v | * * «r |

* 2 ,

This implies the desired result. D

Now we are ready to conclude the proof of Theorem 3.1. Let {vk}, {uk}
be given as before. Note from Lemma 2.3 that

vk < vk+ι on Στ for all fc,

Wk > ̂ M-I
 o n Σ^ for all k.

Define

υ(x,t) = lim vk(x,t),
k-^oo

w(x,t) = lim wk(x,t).

Consequently,

(3.28) w < uk < v almost everywhere.

By a result in [DH], there holds

-dτrlt < Γ(F ς rl\ 7 1 ' > ς * > Π r > > Ω n *> Π

where z = w or v. The remaining proof is entirely similar to that in [XI].
The only difference is that in (3.23) of [XI] we require

φeC~{RNx(-oo,T)).

This completes the proof.
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