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ENDPOINT INEQUALITIES FOR BOCHNER-RIESZ
MULTIPLIERS IN THE PLANE

ANDREAS SEEGER

A weak-type inequality is proved for Bochner-Riesz means
at the critical index, for functions in LP(R?), 1 < p < 4/3.

1. Introduction.

For a Schwartz-function f € S(R?) let f(¢) = [ f(y)e " dy denote the
Fourier transform and define the Bochner—Rlesz means by

i) = o [ (1= 50) e a

we set S* = S}. It is a classical theorem of Bochner that S* extends to
a bounded operator on LP(R?), 1 < p < oo if A\ > 1/2. The theorem of
Carleson and Sjélin [2] states that S* is bounded in LP(R?) if 0 < A < 1 and
3 +2 Trox <P < 1= 2 755 1t is well known that the L” boundedness fails if p < < 3 +2 EF
and C. Fefferman [11] showed that S° is not bounded in LP(R?) if p # 2.

In this paper we are concerned with endpoint estimates for the critical
exponent po(A) = z755. In [4, 5] M. Christ proved that S* is of weak
type (po(N),po(A)) if 1/6 < X < 1/2 (for related results see also [6, 15]).
A combination of L?-variants of Calderén-Zygmund theory (as used first
by Fefferman [10]) and the L? — L? restriction theorem for the Fourier
transform (valid for p < 6/5 = po(1/6)) is essential in Christ’s analysis; this
accounts for the restriction A > 1/6. It had been an open problem whether
the weak type inequality for the critical index A(p) = 2(1/p — 1/2) — 1/2
is true for 6/5 < p < 4/3 (although for radial functions this was proved by
Chanillo and Muckenhoupt [3]).

Theorem 1.1. Suppose that 0 < A < 1/2. Then for all a > 0 there is the
weak-type inequality
||f || 4

2: A < P
{z € B 1 |97@)| > a}] < O, po= =,
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where C' does not depend on f or a.

By scaling the same estimate holds for S3, uniformly in R, and a standard
argument gives that limg_,o, Spf = f in the topology of the weak type space
LPo= provided that f € L (R?).

We shall also prove an L? endpoint version of the Carleson-Sj6lin theorem.
Define

(1-1EP)2
1.1 = .
( ) m)\ﬁ(é) (1 — lOg(]. _ ]éxlg)),y

Theorem 1.2. Suppose that 1 < p < 4/3 and \(p) =2 (—71; - %) — 5. Then

Mxp),y 18 a Fourier multiplier of LP(R?) if and only if v > ;7.

The necessity of the condition v > 1/p was proved in [14], the sufficiency
for p < 6/5 in [15].

In what follows ¢ and C will always be positive numbers which may assume
different values in different formulas.

2. Strong type estimates.

For an interval I on the real line denote by I* the interval with same midpoint
and double length. Suppose J = {I;};>0 is a collection of intervals such that
I; € (1/4,4) and 27973 <|I;| < 277 and such that
onr =0 ifj#j.
For each j > 0 let ¢; be a C*-function supported in I; with bounds
[ <2 e=0,1,2.

Let 7 € C5(R?) such supp(n) C {€ € R? : |¢, /6] <1071, & > O},
Define the operator T} by

(2.1) T, (€) = n(€)w; (€] f(€)-

T; is a bounded operator on L' with operator norm O(27/?), and Cérdoba
[8] showed that the L*/3 operator norm of T} is O(j/*). We note that in
order to prove results such as Theorem 1.2 for p > 1 it is not sufficient to
derive sharp L? bounds for the individual operators 7;. Our main result is

Theorem 2.1. Suppose that 1 < p < 4/3 and \(p) = 2 (11—7 - %) — 1 and 3,

T; are as above. Then there is the inequality

,, <c (z 272 ufjn,,]”)

=

(2.2)

J

Zijj
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In particular if

(23) m = 3270 a;n(); (€]

then m is a Fourier multiplier of L? if {a;} € ¢? (simply apply Theorem
2.1 with f; = a;2792®) f). It is easy to see that the multiplier m, , in (1.1)
is a finite sum of a smooth compactly supported function and rotates of
multipliers of the form (2.3), with a; = ¢j~”. Therefore Theorem 2.1 implies
Theorem 1.2.

Proof of Theorem 2.1 By duality the inequality (2.2) is equivalent to
. ’ q !
(2.4) (Z 27|z 1, ) <Clfly  a>4
J

As in [8] one decomposes each ;(| - |) into pieces which are essentially
supported in rectangles of dimensions (c277/2,¢277). To this end let 8 €
C$°(R) be supported in (—1,1) such that 302 B(s—v)=1foralls € R
Then define T} by

Ty (€) = @6 — VT;f ().
For n <j/2 let
3r={(vv)ez: 202-n=1 <y — | < 29/,
Notice that T}f Tj"'f = 0 if (v,v') € 3} and n < 0. Therefore

1
\ q
q

J

(Z 22|yl

Q=

1
J

> TITf

(v)E3]

— Z [2—21'/\(41')

J

2T S

(2.5) gi > 27

n=0 |\ j>2n

1
2

We shall show that for ¢ > 4 the n'® term in (2.5) is bounded by
C2~n(1/2=2/9)|| ||, from which (2.4) immediately follows. This is contained

m
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Proposition 2.2. For f,g € S(R?) let
Bi(f.9) = > TifT/g

(v,v')€e3}

Then for q > 4 there is the inequality
. g % ‘ —n(1-4
(2.6) (Z 272287 (£, )] ) < c27 D71l lgll.
j>2n

Proof. The inequality follows by complex interpolation for bilinear mappings
from the cases ¢ = 4 and ¢ = oo. The correct interpretation of (2.6) for
q = oo is of course

Yo THT | < C27flleollglleo

(vv')€3}

sup 2™’
J

But this is immediate since each operator T} is bounded on L* with norm
independent of j and v and since the cardinality of 3/ is bounded by C'27/2 x
21/2—n = Ci—n,

We shall now prove the required estimate for ¢ = 4 which is

1/2
(2.7) (Z HB}‘(f,g)lI§> < Cllfllallglla

j22n

uniformly in n.

We first use Plancherel’s theorem and C. Fefferman’s basic observation
([12, 8]) that for fixed j the sets supp(T"f) + supp(T" ) are essentially
disjoint; that is each ¢ € R? is contained in at most M of these sets where
M is independent of j. This yields the inequality

(2.8) S BN <Y > T T gl

ji>2n j22n (v,v')€37

It is crucial for this proof that a finer decomposxtlon can be made depending
on how far apart the supports of T"f and T" g are, that is, depending on n.
We define operators 7% by

() = "6~ WTT(€)

so that 1{;’“\1‘ is supported in a rectangle of dimensions (C2771", C277). Again
one can check that for fixed j and ﬁxed (v,v') € 3} each & er R? is con-

tained in at most M of the sets B/, = supp(T"“f) + supp(T" *g) where
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M is independent of j, v, v'. Each E}%, . is contained in a rectangle of
dimensions (C'277+" C'277). For ﬁxed j, v, V' there are -no more than
C"20=27) of these rectangles and they form an essentially disjoint cover of
supp(f;’\f) + supp(T7'g), the latter set being contained in a rectangle of di-
mensions (C279/2,C279/2~™). The disjointness property and Plancherel’s
theorem imply that

(2.9) SBAIR <Y Y ST T Ty vl

i>2n 322 o’ (v)€3D
For any integer k with || < 2" let
Wi, ={p€Z:[2"p—-2""x[ <277}
Then observe that
(2.10)

TP Ty ¥g=0  if (v,V) € 3}, p €W}, ' €5, |k~ w28
Indeed, if p € 207, p' € 27, T;”ffTJV”g # 0 then 2" Ty — 279/2y| <
273/2+1 and |2n—iy! — 27972 ’| S 279241 If (v,v') € 37 this implies that
[2r=9 (p — p')| < 279/242 4 27m < 5.27™ and therefore |k — k| < 7, hence
(2.10). Moreover we note that for . € 20%, the support of T} f is essentially

a rectangle with eccentricity 27" such that the directions of its sides depend

on x but not on p.
By (2.9) and (2.10) we obtain that

> B3 (£, 9)ll3

j>2n
H 3
oYY ¥ (z ZI?}”"fP) S S
ji>2n K K weWs; v w e v
|&'—k|<8 m 2
12 12
oYY ¥ (z o) | [ 2 S
iz kg pews, v wems, v
|k —k|<8 4 m 4
4\ 3

<c'| S (Z Z!T”“fP)

peW’
4

1
114 2

> (Z ZIT]-”“9|2>E

i>2n K uEQﬂ;.‘" v .
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Therefore the desired estimate (2.7) follows from the case ¢ = 4 of the
following lemma.

Lemma 2.3. For q > 2 there is the inequality

A

119
2

(2.11) DD ( > ZIT}”"fP) < Clifl,

j22n K uESHI;ﬂ v
q

where C does not depend on n.

Proof. 1t suffices to prove (2.11) for ¢ = 2 and ¢ = co. Let h;* be the Fourier
multiplier defining T7;*.

For fixed 1 and j there are at most three v such that T;* # 0 and since
the supports of the functions 1, are disjoint it follows that each £ € R is
contained in at most 6 of the sets supp 2%”. Moreover for fixed u and j there
are at most two « such that u € 20%,. Now (2.11) for ¢ = 2 is an immediate
consequence of Plancherel’s theorem.

In order to check the required estimate for ¢ = oo we consider for a fixed
a = {a,,} € £*(Z?) the multiplier

miF€) = Y. D a,hi(E)

uam v

and denote by KI* its inverse Fourier transform.

Let ef = (277K, V1 —27%7x2) and ef = (—V/1 — 272"x%,27"k) and let L,
be the symmetric linear transformation in R? with L ef = 2/ef, Lf,e5 =
2'"ey. Then h*(L%,-) is supported in a cube Q%" of sidelength 10 and for
fixed ] the cubes Q"" have finite overlap, uniformly in j. Moreover it is easy
to see that for p € 207,

Since the Sobolev-space L3 is a subspace of L' we obtain that

%[h;”(L;n-)]" <C, |of<2

o0

B = 127 K ((L5) 7 )L

<C Z Zawaéa [hvu (L}, )]

la| <2 1t 1ov

c’ (Z |avu|2)
v

2
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where C' does not depend on j, k and a. This implies

3
sup sup (Z Zﬂ}”“flz)
j>2n K news, v

i22n K z€R? |lafl,2(52,<1

<supsup sup K[l fllc < Clifllo

j22n K ““”12(252)S]

which is the desired estimate for ¢ = co. [l

Remarks.

(a) For ¢ = oo the inequality (2.11) is closely related to an estimate on
square-functions with respect to an equally spaced decomposition, see e.g.
[9, 13]; in fact it can be obtained from these estimates.

(b) A variant of the above proof can be used to obtain the known sharp
L* bound ||Tj||par+ = O(5'/*) without making use of the sharp L* bounds
for Kakeya-maximal functions. -

(c) The observation concerning the overlapping properties of supp 7% f +

supp Tj"'”' g can be used to improve on some bounds for sectorial square-
functions in Cérdoba [9]. This has been observed by A. Carbery and the
author.

(d) The decomposition in terms of the bilinear operators B} is related to
a decomposition used by Carbery [1] in his work on weighted inequalities for
the maximal Bochner-Riesz operator S?. The techniques above can be used
to prove new weighted inequalities for S7.

3. Weak type estimates.

Let J be a family of disjoint intervals as introduced in §2 and let 7} be as in
(2.1). Define
Tf =Y 27T f.

720

We shall prove the estimate

2 . |7A(p) ||f||§ 4
(3.1) }{xeR |7 f(m);>a}|gcap . p<3
where A\(p) = 2(1/p — 1/2) — 1/2 and C does not depend on f or a. Of
course Theorem 1.1 is a consequence of (3.1).
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As in [5] the proof is based on an interpolation. The argument uses
Theorem 2.1 and known estimates previously obtained in the proof of weak-
type (1,1) inequalities (see [4, 7, 15]).

Let f € LP(R?) where 1 < p < 3 and let @ > 0. In order to estimate
the quantity on the left hand side of (3.1) we apply the Calderén-Zygmund
decomposition to |f|? at height a?. We obtain a decomposition f = g + b
where |lgllc < Ca, llgll, < Clifllp, & = > b, suppbgy C @, the squares
Q are pairwise disjoint, HbQH’J < Ca?|Q, Xp QI < Ca™?||f|?; and as a
consequence o2 |g]}3 + [b]E2 < CILf2.

Let [(Q) be the sidelength of @ and B; = 3 4, 0)=2ibo if j > 0 and

BO == ZQl(Q)SO bQ Then
{z e R : |TPf(z)| >a} C QUQUQB U UY,

where ; is the union of the double squares Q* and

2 = {o e [P0y) > T

2 = {:c eR: |3 S 20T B, (a)

520 j>s

g
>g}
>g}_

Q= {x €R:|> 27T, By(x)

i20

DD IR INE

o>035>0

Q5Z{IER2\91:

By the disjointness of the squares () we have

CIEDGIE el

and Chebyshev’s inequality and the L?-boundedness of 7* imply

p
IS oIl o ol

o2

Q] < C
Next we choose r such that p < r < 4/3. We shall show that the following

estimates hold with e = 2(Z —1).
P

T
< C27=a" 7P| |b||?, s>0,

r

(32) > 27TB;

ji>s




BOCHNER-RIESZ MULTIPLIERS 551

(3.3) 272D, By I7 < C279a||b]l?, j=0,
p
(3.4) > 27 AMTB,,, <c27|bjr, o >0.
Jj=0 LP(R2\Q;)

From (3.2-3.4) it follows by applications of Minkowski’s and Chebyshev’s
inequalities that

9l + (0] + 1] < €10 < 1T

N
In order to prove (3.2-4) we use analytic interpolation (i.e. the Phragmen-
Lindel6f principle) similarly as in [5]. For Re (z) € [0,1] define

B, () = |B;(z)[!=**/" sign(B;(z))

and

Since 27770+ T} is a bounded operator on L' with norm independent of
7 we obtain

(3.5)
Y 2T || <C Yo IBjmerrirl < CUlIBIE
j>s 1 i>s
(3.6) 127700 T By 1y [l < ClIBolly < C" (1B
From estimates in [7] (or [15]) it follows that
2
(3.7) Y 2 UITB; || < C27aP|jb|lp
Jj>s 2
(3.8) 12777 0D By 4y |3 < G270l
and also that
(3.9)
> 27 ITB i < C27° Y |IBjyoasirll < C'277|Ib]2.
720 LIR2\) 120

2

Using the inequality ||F|l, < C|IF||; " |F|I>"" we get from (3.5), (3.7) and

from (3.6), (3.8) that

T

r—1

<C27%z

T

(3.10) Z 27T B o 1vir 114

Jj>s
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r—1

(3.11) 1277 IT By sy |l < C27757 PV o5,

Now by Theorem 2.1 it follows that

(3.12)
> 2B il <CY IIBj—siclls < C'lIbIE
ji>s r j>s

(3.13) 12797 T; By i, |7 < C|Boyir |IE < CJJb)I2

(3.14)

T

< CZ ”Bj+o,ir”: < C'”b”';

j20

Z 2—j'v(ir)Tij+ayiT

320

Now let h be arbitrary function in L? , p’ = p/(p — 1), with ||k||,, <1 and
define
h.(z) = |a(2)]/" sign(h(z)).

Moreover let g be an arbitrary function in L™ with ||g||,» < 1. We then apply
the Phragmen-Lindelof principle to the functions

2 Wis(z) = /Z2‘j7(l)1}Bj_s,z(x)g(x)dx

j>s

2 Wy (2) = / 91T By (z)g(x)de

20 Waa(2) = [ 327, By (@b (o) do

>0

and estimate these functions at z = 6 chosen such that 1/p = (1 —0) + 0/r.
From (3.10), (3.12), from (3.11), (3.13) and from (3.9), (3.14) it follows that

[Wh,.(0) < Ca™ P27 2D jp||7
|W2,;(0)] < Ca"”Z_%(g—l)”b”g

T

[Ws,0(8)] < C277G Vbl

and an application of the converse of Holder’s inequality yields (3.2), (3.3)
and (3.4).

Remark. Endpoint versions for more general classes of multiplier transfor-
mations have been formulated in [15]. By combining arguments in this and
the present paper one can prove similar results for radial Fourier multipliers
of L*(R?), for the full range 1 < p < 4/3.
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