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PREPOLAR DEFORMATIONS AND A NEW LE-IOMDINE
FORMULA

DAVID B. MASSEY

In this short paper, we wish to describe a class of deforma-
tions of affine hypersurface singularities. These deformations,
which we call prepolar deformations, are the ones which we
found to be important in our work on the Le numbers of a
hypersurface singularity. However, the results of this paper
are not directly related to our work on the Le numbers.

Introduction.

The main result of this paper is to use prepolar deformations to put lower
bounds on the top Betti number of the Milnor fibre of a non-isolated hyper-
surface singularity. These lower bounds are a corollary of a generalization
of the formula of Le and Iomdine.

Let U be an open neighborhood of the origin in C n + 1 , let / : (ZY, 0) —»
(C, 0) be an analytic function, and let Σ / denote the critical locus of /. Let
L : C n + 1 —> C be a generic linear form (we need for L to be prepolar with
respect to /; we shall define this in section 2).

The formula of Le and Iomdine says that, if d i m 0 Σ / = 1, then, for all
large j , / + Lj has an isolated singularity at the origin and

KU + U) = μU + U) = bn(f) -K-df) + i Σ > A ( / ) ,
V

where 6t() denotes the 2-th Betti number of the Milnor fibre of a function
at the origin, μ denotes the Milnor number of the isolated singularity at
the origin, the summation is over all components, u, of Σ/, mv is the local
degree of L restricted to v at the origin, and #„(/) is the Milnor number of
a generic hyperplane slice of / at a point p E i ^ - 0 sufficiently close to the
origin.

This formula has, at least, two possible generalizations. One generaliza-
tion is in terms of Le numbers; this is the formula which appears in [Masl],
[Mas3], and [M-S]. But, while there are Morse inequalities between the Le
numbers and the Betti numbers of the Milnor fibre, the Le numbers are not
themselves (generally) Betti numbers of the Milnor fibre. So, one might ask
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for a generalization of the formula of Le and Iomdine which generalizes the
Betti number information.

In this paper, we prove that, if dimoΣ/ = s ^ 1, then, for all large j ,
dim0Σ(/ + Lj) = s - 1 and

where T)L denotes the relative polar curve ([L-T], [Tel], [Te2]) of / with
respect to L and (•) denotes the scheme-theoretic intersection number. In
the case where / has a one-dimensional critical locus at the origin, it is easy
to show that this new formula reduces to that of Le and Iomdine.

We consider this new Le-Iomdine formula interesting because it implies
that

In terms of deformations, this says that the top possible non-zero Betti
number of the Milnor fibre of f\v(L) is greater than or equal to (Γj L V(L))Q

for any / which has V(L) as a prepolar slice. Thus, if we define / to be a
prepolar deformation of f\v(L) precisely when V(L) is a prepolar slice of /,
we obtain a class of deformations of f\v(L) which give lower bounds on the
top Betti number of the Milnor fibre. This also suggests that it might be
useful to study prepolar deformations for which (Tx

f L V(L))Q obtains its
maximum value.

1. The Relative Polar Curve.

Throughout this section, U will denote an open subset of Cn+1 containing the
origin. We denote the coordinates of C"+ 1 by (z0,..., zn). We use vertical
lines, ||, to denote the underlying set of an analytic scheme.

Let W be analytic subset of U and let a be a coherent sheaf of ideals
in Όu. At each point, x, of V(a), we wish to consider scheme-theoretically
those components of V(a) which are not contained in the set \W\.

Definition 1.1. Let A denote OUx; we write α x for the stalk of a in A.
Let S be the multiplicatively closed set A — \Jp where the union is over all
prime ideals p G Ass(A/ayi) with \V(p)\ $£ \W\. Then, we define a^/W to
equal S^a^ΠA.

Thus, ax/W is the ideal in A consisting of the intersection of those primary
components, q, (possibly embedded), of α x such that \V(q)\ <£ \W\.

Now, we have defined a^/W in each stalk. By [Si-Tr], if we perform this
operation simultaneously at all points of V(α), then we obtain a coherent
sheaf of ideals called a gap sheaf we write this sheaf as a/W. If V = V(a),
we let V/W denote the scheme V(a/W).
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It is important to note that the scheme V/W does not depend on the
structure of W as a scheme, but only as an analytic set.

The following lemma is very useful for calculating V/W, and is merely an
exercise in localization (see [Mas2] and [Mas3]).

Lemma 1.2. Let (X, Ox) be an analytic space, let a,β, and 7 be coherent
sheaves of ideals in Ox, let f,g€ Ox, and let W be an analytic subset of X.

If V(a + 7) C W, then ((a Π β) + j)/W = (β + i)/W, and thus

((v(a)uv(β))nv(Ί))/w = (V(β)nv(Ί))/w

as schemes.

We will now use these gap sheaves to define the relative polar curve of a
map [L-T2], [Te2], [Te3] with respect to a linear form. Let

be an analytic map, let Σ/ denote its critical locus, and let L : C1"1"1 -» C
be a linear form.

Definition 1.3. After a linear change of coordinates, we may use
(L, 2χ,..., zn) as coordinates on U. Using these coordinates, we define the
relative polar curve of / with respect to L to be the subscheme of Ou defined

(*L
(again, see [Masl], [Mas2], [Mas3]). Thus, on the level of defining ideals,
Γ1

 L consists of those components of V (^-,..., -§£-) which are not contained
in | Σ / | . The key point of this definition is that the dimension of the singular
set of / is allowed to be arbitrary.

Of course, for arbitrary L, Γj L need not actually be a curve, even as a germ
at the origin. However, as we shall see in the next section, if L is prepolar
with respect to / at the origin - a genericly satisfied condition - then Γ1

 L

is, in fact, one-dimensional (or empty) at the origin. Moreover, it follows
immediately from the definition that whenever Γ1

 L is one-dimensional at

the origin, Γj L Π V (f£ J is zero-dimensional or empty at the origin.

When we take intersection numbers of schemes in this paper, we are of
course actually taking the intersection numbers of the associated cycles.
Thus, it will be clear from the context what structure we are using for the
polar curve, and we need not introduce any extra notation to distinguish the
cycle from the scheme.
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2. Good Stratifications and Prepolar Deformations.

As in the last section, we continue with U being an open subset of C n + 1

containing the origin, and / : (W, 0) —> (C, 0) being an analytic map.

In [H-L], a good stratification for / at 0 is an analytic stratification, <S, of
V(f) in a neighborhood of the origin such that: if p G S G <S, and we have
a sequence of p^ G U — Σf with Pi -> p and TPiV(f - /(p*)) -> T, then
TPS C T. We always assume that the smooth part of V(f) has been chosen
as a good stratum. Hamm and Le prove in [H-L] that good stratifications
always exist.

Definition 2.1. Let S be a good stratification for / at 0. A prepolar slice of
fatO with respect to S is a hyperplane H such that H transversely intersects
each stratum of S in a neighborhood of the origin except, perhaps, at the
origin itself.

We say simply that if is a prepolar slice of f at 0 if there exists a good
stratification for / at the origin with respect to which H is prepolar. For a
fixed /, prepolar slices are generic (see [H-L], [Mas3]).

We define prepolar deformations in the obvious manner. If W is an open
neighborhood of the origin in C n and / 0 : (W, 0) -» (C, 0) is an analytic
function, then a prepolar deformation of f0 consists of an open neighborhood,
U, of the origin in C n + 1 such that ( 0 x C n ) ί l W = 0 x W and an analytic
function / : (ZY, 0) -> (C, 0) such that 0 x C n is a prepolar slice of / at 0 and
/ | o x v v = fQm That is, a prepolar deformation is a one-parameter deformation
which has the original function as a prepolar slice.

Our primary interest in prepolar slices is due to the following result of Le:

Theorem 2.2 [Lei], [Masl]. If L : C1 4"1 -+ C is a linear form such that
V(L) is a prepolar slice for f at the origin, then Γj L is one-dimensional or
empty at the origin, Γ1

 h Π V(f) is zero-dimensional or empty at the origin,
and

bn(f) - &„_!(/) + &„-:(/,„„,) = (Γ)it • V(f))Q,

where 6j() denotes the ί-th Betti number of the Milnor fibre at the origin and

(•) denotes the scheme-theoretic intersection number.

3. A New General Le-Iomdine Formula.

As before, we let U be an open subset of O1*1 containing the origin, and

let / : (ZY, 0) —> (C, 0) be an analytic map. Also, we use the coordinates
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We now take a new variable, u, and would like to apply 2.2 to the function
/ + u3; : (C x W,0) -> (C,0) and the hyperplane slice V(z0 - u). This is a
desirable thing to do because the Milnor fibre of / 4- u3 has the homotopy-
type of the one-point union of j — 1 copies of the suspension of the Milnor
fibre of / [Mas3], [Ok], [Sak], [Se-Th]. We first need to show that V(z0)
being a prepolar slice for / implies that V(u — z0) is a prepolar slice for
f + u3 - at least for all large j .

Proposition 3.1. Ifj^2 and S is a good stratification for f at the origin,
then

{V(f + u3) - Σ(f + u3)} U {0 x S I S is a singular stratum of S}

is a good stratification for f + u3 at the origin.

Proof. As j ^ 2, Σ(/ + u3) = {0} x Σf.
Let p = (0, q) G {0} x Σ/, where S e S, and let p^ — (i^, q̂ ) be a sequence

of points in CxU-{0}xΣf such that p* -> p andT P i F(/-f^ j -(/-f^) | p . ) ->
T. We wish to show that Tp({0} x S) = {0} x T q 5 C T.

If T — TpV(u) — {0} x C n + 1 , then we are finished. So, suppose otherwise.
Then, by taking a subsequence, we may assume that q̂  0 Σf and that

:

As Ttransversely intersects TpV(u), TPiV(f+uj — (f+uj)\) transversely

intersects TVιV(u — Ui) for all p^ close to p . Thus,

TΠ ({0} x (Γ+ι) = limTPiV{f + uj - (/ + u3')^) Π TPiV{u - Ui) =

UmTpV(f + u3 - (/ + ̂ ) |P i,u-u i) =limTPl.nf - /(qO^-tϋ) - {0} xη.
Now, as S is a good stratum for /, Tq(5) C η and the desired conclusion
follows. D

Corollary 3.2. If V(z0) is a prepolar slice for f at 0 then, for all large j ,

V(z0 — u) is a prepolar slice for f + u3 at 0.

Proof. In light of the proposition, all that we must show is that, for all large
j , Σ(/ + u>) Π V(z0 - u) = Σ(/ + uiW(Mo_J.

Now,

Σ(/ + uj) Π V(z0 - u) = ({0} x Σf) Π V(z0 - u) = {0} x {Σf Π

On the other hand,

uJ\v(J = ( c x Σ ( / + *o)) n
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But, near the origin and for large jf, Σ(/ + zl) — Σ/ Π V(z0) by Lemma 3.1
of [Mas2]. The conclusion follows. D

We are now in a position to apply 2.2 to / + v? and the hyperplane
slice V(z0 — u). First, however, we will calculate the intersection number

(

Proposition 3.3. // V(z0) is a prepolar slice for f at 0 then, for all large

h

i) Γ1 = fc x Γ1 ) V (|*- + juj-Λ as l-cycles;
' f+uJ,zO-u \ f,*oj \dz0

 J J v i

iv) fΓ1 .V(f + u>)) =j(r1

\dzoJJo'

v) ί/s := dim 0Σ/ ^ 1, ίΛen dimoΣ(/ + z$) = s — 1.

Proo/.

i) Using the coordinate system (z0 — u, z0, • • •, zn), we see that

M'o+juJ'1)n c x (Γ' -u R)

where i? consists of the union of the primary components of V ί J^j-,..., ̂  J

which are contained in Σ/ (for some primary decomposition of

\$k* "">'§£/)' R-egardless of the decomposition, R C Σ/ and so (C x

β ) n F ( S + J^'"1) ^ W x Σ ^ τ h e r e f o r e

?

 by 1-2,

l " ) n ( c x ^ - x
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But, if C were a component of V (J-£ + jυ?~x J Π (C x Γ* ̂  ) contained
in {0} x Σ/, then

n

which is impossible as Γ1

 z ΠV [§£-) is 0-dimensional.
Thus, up to embedded subvariety,

^+ju>-1) n f c x r 1 )
dz0 J \ f'zoJ

and so these schemes define the same 1-cycle (we know that Γ1 . is

1-dimensional since V(z0 — u) is a prepolar slice of / + uj). That this 1-

cycle equals V ( | £ + jV" 1 ) ( c x Γ j s J follows from [Fu, Prop. 7.1.b],

since C x Γ 1 has no embedded subvarieties and V (•§£- + juj~λ) contains

no components of C x Γ1

 z . This proves i).

«) By i),

But, for all sufficiently large j , this last intersection number equals

dzj)o
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iii) Again using i) and the coordinate system (z0 — u, z0,...,

V •
i

iv) By [Lei] or [Mas3], if Γ* is a curve, then

Therefore, iv) is a result of ii) and iii).

v) This follows at once by combining the prepolarity of V(z0) with
Lemma 3.1 of [Mas2], which says that, for all large j , Σ(f + z3

0) — ΈfΠV(z0)
near the origin. D

Theorem 3.4. IfV(zQ) is α prepolαr slice of f at 0 then, for all large j ,

In particular, fen-iί/μ^^) ^ (T)^ • V(*b))0

Proof. After applying 2.2 to / + uj and the slice V(z0 — u), we have

which, by 3.3, equals j ( r ) , o F ( f £ ) ) Q .

Now, as the Milnor fibre of / + uj has the homotopy-type of the one-point
union of j — 1 copies of the suspension of the Milnor fibre of / [Mas3], [Ok],
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[Sak], [Se-Th], we obtain

U ~ l)hn(f) ~ U - l)6n-i(/) + bn(f + 4) - J (r;> 2 0 V

Using 2.2 on / itself and rearranging, we get

bn(f + 4) = K(f) - bn-i(f)

Finally, using once again (as in 3.3.iv) that

we obtain the desired result. D

4. Why Look at Prepolar Deformations?

If h is a complex analytic function, the Betti numbers of the Milnor fibre
of h at the origin are invariants of the ambient topological type of V(h) at
the origin and, hence, these Betti numbers are important data in the study
of the topology of complex analytic singularities. Despite their importance,
there is no known general method for calculating the Betti numbers of the
Milnor fibre for a non-isolated hypersurface singularity. However, Theorem
3.4 provides some useful information: every prepolar deformation, /, of a
fixed /o yields a lower bound on the top Betti number of the Milnor fibre of

/o
In fact, dividing the equation of 3.4 by j and taking limits, one obtains

the interesting asymptotic formula

6n_i(/o) = (Γ1
 V(ZQ)) + lim — .

/,*0 0 J^OQ j

One might hope that, by considering a prepolar deformation, /, for which
* z • V(zo)j obtains its maximal value, one would actually obtain the top

Betti number of the Milnor fibre of /0. This seems unlikely however; certain
singularities seem to be "rigid" with respect to prepolar deformations - in
the weak sense that any prepolar deformation, /, has no polar curve at the
origin.

Nonetheless, the lower bounds provided by prepolar deformations give
new data which helps describe the Milnor fibre of a completely general affine
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hypersurface singularity; this data does not appear to follow from our Morse
inequalities between the Betti numbers of the Milnor fibre and the Le num-
bers of the hypersurface, as described in [Masl], [Mas2], and [Mas3].

As part of these Morse inequalities, we show that the O-th Le number of
/o, λ°o(O), provides an upper-bound on the top Betti number of the Milnor
fibre of /o Also, we show in [Mas3] that if / is a prepolar deformation of
/o, then

where λ^(0) is a Le number of / itself. Hence, for a fixed /0, a prepolar

deformation, /, with maximal (Γ1 V(z0)) will have minimal λUO). We

prefer to call such a deformation a minimal prepolar deformation, instead of

a maximal one.

It follows that, given a prepolar deformation, /, of /0, the top Betti num-
ber of the Milnor fibre of /0 is bounded by:

and a minimal prepolar deformation will not only provide the maximal pos-
sible lower bound on the top Betti number of the Milnor fibre, it will also
provide the smallest difference between our general upper and lower bounds.

One might hope that it is always possible to find a prepolar deformation,
/, for which λ}(0) = 0, for then we would have 6n_i(/0) = (?) ZQ V(zQγj
unfortunately, Proposition 1.28 of [Masl] implies that it is usually impossi-
ble to find such a deformation.

One final comment: the inequality 6n_1(/|v(z }) ^ (Γ1

 χ V(zo)j appear-
ing in Theorem 3.4 also follows from our Proposition 3.1 in [Masl], where
we describe a cancellation of handles in the Milnor fibre of /. However, this
handle cancellation argument requires far more technical machinery than
this paper does, and Proposition 3.1 of [Masl] still does not yield the gen-
eralized Le-Iomdine formula of Theorem 3.4.
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