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RATIONAL PONTRYAGIN CLASSES, LOCAL
REPRESENTATIONS, AND UΓG-THEORY

CLAUDE SCHOCHET

Suppose that X and Y are connected, simply connected
Spinc-manifolds of the same dimension. Let G be a com-
pact connected Lie group with torsion-free fundamental group
which acts upon X and Y such that XG and YG are non-empty
and consist entirely of isolated fixed points. Suppose that
/ : X -* Y is a smooth G-map such that the induced map

r : KG(Y) -* K*G{X)

is an isomorphism. If X and Y are even-dimensional then for
each fixed point x £ XG', the local representations of G at x
and at f(x) are equivalent. If / : X -> Y is an equivalence then

/* :/Γ(F;Q)^iΓ(X;Q)

preserves Pontryagin classes.

1. Introduction.

Suppose that X and Y are compact smooth manifolds and / : X -» Y is a
smooth (homotopy) equivalence. In general, the map / does not preserve ra-
tional Pontryagin classes, which depend a priori upon the smooth structures
on X and Y, unless / happens to be a diffeomorphism. S. P. Novikov proved
in 1965 [Nl, N2] that if / is a homeomorphism then rational Pontryagin
classes are indeed preserved, and this remains the best general positive re-
sult on the subject. In 1981 Sullivan and Teleman jointly provided a proof
of Novikov's result using differential geometric and analytic techniques, and
recently Shmuel Weinberger gave a "short and conceptually simple analytic
proof" of Novikov's theorem drawing upon new ideas in index theory for
non-compact complete Riemannian manifolds. Baum and Connes [BC] have
studied the foliated version of the problem and have positive results in the
presence of negatively curved leaves.

In the early 1970's Ted Petrie developed a connection between the problem
of preservation of Pontryagin classes and another classical problem. If G is
a compact Lie group, X and Y are smooth G-manifolds, and / : X —> Y
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is a smooth G-map which restricts to a diffeomorphism on fixed point sets
then what are the relations among the local representations1 at the various
fixed points x, f(x) for x £ XGΊ The classic theorem of this genre is due to
Atiyah, Bott, and Milnor:

Theorem [AB, Theorem 7.27]. Let G be a compact Lie group acting dif-
ferentiably on a homology sphere X. Assume that G has just two fixed points
p and q and that elsewhere the action is free. Then the local representations
of G at p and q are equivalent.

This is a very sensitive result. There are counterexamples to the theorem
(due to Petrie [P 5, 6] and to Cappell-Shaneson [CS]) if the action is not
assumed to be free off the fixed point set. For instance, Cappell-Shaneson
construct an action of the group Z/8 on a homotopy 9-sphere with exactly
two fixed points p and q where the local representation at p is not equivalent
to the local representation at q.

Petrie [P 1, P 2] considered a very special situation. He took G — S1

and he assumed that the fixed point sets consist of isolated points which
correspond under /. In that situation, with some further assumptions on X
and Y, he showed that if

Γ : K*sι(Y)-> K*S1(X)

is an isomorphism then rational Pontryagin classes are indeed preserved
and the induced local representations at x and f(x) are equivalent for each

xexs\
In the present paper we shall focus attention upon the more general case

where G is a compact connected Lie group with 7Γι(G) torsionfree. Our most
precise results still require that fixed point sets consist of isolated points. 2

In that situation we are able to obtain results which are analogous to those
of Petrie.

Note: Throughout this paper a "manifold" is understood to be smooth,
compact (with the obvious exceptions of vector spaces) and without bound-
ary. Following [RS] we shall call a compact connected Lie group with tor-
sionfree fundamental group a "Hodgkin group" to recognize Luke Hodgkin's
fundamental contribution [H]. An action of a compact Lie group G upon a

1If x E XG is a fixed point then differentiation produces a linear action of "Ghon
the tangent space τXx\ this action is called the local representation of G at x. Two
local representations are said to be equivalent if they are linearly equivalent as G-
representations.

2If XG is allowed to be more complicated then Cappell and Weinberger have constructed
counterexamples to the following Theorem.
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manifold is understood to be a smooth action, and we may take this to be
an action by isometries without loss of generality by averaging the metric.
We shall assume that this has been done wherever necessary. If X is a G-
manifold then its underlying manifold is denoted uX, and if / : X -> Y
is a G-map then uf : uX —>> uY is the same map with all G-structures
forgotten.

Here is the main theorem.

Theorem 10.1. Suppose that X and Y are connected, simply connected
Spin0-manifolds of the same dimension. Let G be a Hodgkin group which
acts upon X and Y such that XG and YG are non-empty and consist entirely
of isolated fixed points. Suppose that f : X —^ Y is a smooth G-map such
that the induced map /* : KQ(Y) —» KQ(X) is an isomorphism. Then:

(1) If X and Y are of the same even dimension then for each fixed point
x £ XG, the local representations of G at x and at f(x) are equivalent.

(2) Ifuf :uX -ϊuY is an equivalence then uf* : H*(uY; Q) -» H*(uX; Q)

preserves Pontryagin classes.

Although the statement of the main results of this paper would seem to be
within the realm of classical algebraic topology, our proofs rely ultimately on
the Universal Coefficient Spectral Sequence [RS] which is a spectral sequence
which converges to the equivariant Kasparov group KKG(A, B) for suitable
G-G*-algebras A and β [K 2]. (In the present application A — C(X) and
B — C.) It may be possible to construct the special case of the spectral
sequence needed in this paper or, more likely, a spectral sequence converging
to KKG(C(X), C(Y)) by classical methods as suggested, for instance, in the
Seattle Notes of J.F. Adams [Ad]. This might be a worthwhile project in
order to eliminate the torsionfree hypothesis on πχ(G), or as part of a larger
project of studying bivariant theories (equivariant or not) of the form

EE*(X,Y) = [X,E ΛY]*

for some ring spectrum E.
It is possible that a version of this Theorem holds for arbitrary compact

connected Lie groups. The Hodgkin condition comes into play in the proof
of Theorem 10.1 in two completely different parts of the proof. First, it is
used in an essential manner in the proof of the Universal Coefficient Spectral
Sequence. The version of that spectral sequence which is needed here (4.1)
is very weak, and it is quite plausible that (4.1) generalizes to arbitrary
compact connected Lie groups. See Remark 4.14. Second, the Hodgkin
condition is used in §9 to show that certain non-equivariant if-orientations
give rise to if G-orientations. If one were given the KG- orientations a priori
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(for instance, by assuming that X and Y were complex G-manifolds) then
here too it would suffice to assume that G is a compact connected Lie group.

The remainder of the paper is organized as follows:

§2. The relative A-class and ίfG-orientations.

We briefly recall information on the Pontryagin classes and their relation-
ship to the A-class. Then we introduce the notion of UTG-orientations and
fundamental classes and demonstrate their utility in our context.

§3. The Theta invariant.

In this section the KG- Theta invariant ΘG(/) G K%(Y) of a G-map
/ : X —> Y is defined and its relation to the relative A-class Λ(ι/f) is estab-
lished. If / preserves .if-orientation, then

A(uf) = 1 Φ=> Θ(/) = 1 mod Z-torsion.

We switch attention to ίΓG-hoinology and demonstrate that

θG(/)n[y] = /.[*]

so that ΘG(f) measures the truth of the hypothetical equality

[Y] =L MX] e κ?(Y)

of If G-fundamental classes.

§4. Spectral sequences: moving from cohomology to homology.

We demonstrate under suitable hypotheses (4.9) that if

f* : K£(Y)—> K£(X)

is an isomorphism then the associated map on homology

Λ : K?{X) - > K?(Y)

and the Gysin map

are also isomorphisms. Our proof requires G to be a Hodgkin group, though
we believe that the result should be true for arbitrary compact connected
Lie groups.

§5. Localizations and fixed point sets.

In this section attention turns to the fixed point sets of the G-actions. Un-
der very general circumstances the Atiyah-Segal localization theorem allows
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us to restrict to fixed points, provided that the theory itself is suitably local-
ized. It turns out that if G is a Hodgkin group and K*(XG) is Z-torsionfree
then the map

is a monomorphism which induces an isomorphism on fraction fields. These
results help us to relate ίίG-orientations on X to those on XG and hence to
localize the data to fixed point sets.

§6. Isolated fixed points.

This section is devoted to a detailed analysis of the additional structure
that is forced by the assumption that the fixed point set XG consist of
isolated points. For example, under the usual hypotheses, if XG consists of
isolated fixed points then the induced map

if : KG{XG) —> KG{X)

is a canonically split monomorphism.

§7. The main theorem for KG-oriented Manifolds.

In this section we shall establish the main theorem on KG- oriented man-
ifolds, showing that Pontryagin classes are preserved and control is main-
tained at the fixed point sets. These results involve assuming that X and Y
have UΓG-orientations.

§8. Bilinear pairings.

In this section we pause to address two questions raised by Petrie in Part
II, §3 of [P 1]. Suppose that G is a compact connected Lie group. Define

Suppose that X is a UΓG-oriented G-manifold. Then there is a natural R(G)-
valued bilinear form on &Q{X) determined by Poincare duality and the Kro-
necker pairing. Petrie [P 1, page 144] asks the following two questions:

Question 1: When is the bilinear form on RQ(X) nondegenerate?

Answer: If G is a Hodgkin group and &Q(X) is iϊ(G)-free, then the form is

always nondegenerate.

Question 2: When the preceeding question has an affirmative answer, can
one relate the algebraic invariants of the bilinear form to the representations
of G on the fibers normal to the fixed points sets?

Answer: Yes, and in a very concrete fashion when each fixed point is isolated.
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§9. Invariant Spinc orientations.

In this section we recall the relationship between lf-orientations and
Spinc-structures. Then we generalize these results and demonstrate that
.fΓG-orientations are fairly common as indicated by the following theorem.

Theorem 9.12. Suppose that G is a Hodgkin group. Let X be a connected,
simply connected G-manifold. Suppose that w2(X) is the reduction of an in-
tegral class, or equivalently that τX has a (non-equiυariant) Spinc structure.
Then τX has a G-inυariant reduction to Spin0 which is (non-equiυariantly)
equivalent to the given Spinc-structure, and thus X has a KG-orientation.

§10. Conclusion.

In this short section we pull together the results of the previous sections
in order to establish the main theorem stated in the Introduction.

It is a pleasure to thank Sylvain Cappell, Peter May, Jonathan Rosenberg,
Julius Shaneson, and Shmuel Weinberger for their generous assistance.

2. The Relative A-class and UΓG-Orientations.

In this section we briefly recall information on the Pontryagin classes and
their relationship to the ^4-class. Then we introduce the notion of KG-
orientations and demonstrate their utility in our context. The question of
existence of such orientations is a classical problem in bundle theory. In
order not to interrupt the flow of the argument, we put off the question of
existence of such structures until Section 9.

Definition 2.1. Suppose that X and Y are manifolds and that / : X -» Y
is an equivalence. Denote the stable normal bundle (the formal difference in
ifO-theory) by

The relative A-class A(vf) G H**(X-,Q) is defined by

The relative Λ-class measures the extent to which / fails to respect Pσn-
tryagin classes. The following proposition is well-known:

3We let H**(X) denote the Z2-graded cohomology theory
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Proposition 2.2. Suppose that X and Y are manifolds and f : X -> Y is
an equivalence. Then A(iSf) — 1 if and only if the map

preserves Pontryagin classes.

Next we recall the basic structure of if ^-orientations and Poincare duality
in a context suitable for applications. In the non-equivariant setting this ma-
terial is presented in the seminal paper of Atiyah, Bott, and Shapiro [ABS].
The equivariant case is presented in the context of generalized equivariant
cohomology theories in [LMS]; we follow their treatment but specialize im-
mediately to equivariant Jf-theory. Following [LMS] we index the theory
by elements a G R(G) with the understanding that in applications it suf-
fices by the equivariant Thom isomorphism theorem to focus upon the cases
a = 0,1. Let G be a compact Lie group and let e : R(G) —» Z be the
augmentation map. If ξ is a vector bundle over a space Y then its Thom
space will be denoted Tξ. If W is a finite-dimensional G-representation then
Sw denotes the one-point compactification of W with its associated G-space
structure. If j : G/H —> Y is the inclusion of an orbit then j*ξ is of the form
G XH W —> G/H where W is the fibre //-representation at jH and thus

T(fξ) * G+ AH Sw.

Definition 2.3. A KG-orientation of ξ is an element a G R(G) such that
e(a) is the fibre dimension of ξ together with a class μ — μ(ξ) E KQ(T^) such
that the restriction of μ to K£(T(fξ)) 9* K*H(SW) is a π?(KG) generator
for each orbit inclusion j : G/H —> Y with fibre representation W.

This makes sense, since Kχ{Sw), regarded as graded over -R(G), is a free
π^(i(TG)-module on one generator, where π^(KG) is also understood in the
ϋ(ίί)-graded sense. 4 In the present paper we may take μ G KQ(T£) via
the equivariant Thom isomorphism, where d = 0 or 1 is the mod 2 reduction
of e(α).

Definition 2.4. A G-manifold X is said to be KG-orientable if its tan-
gent bundle rX is ifG-orientable. An orientation μ of r is also called an
orientation of X.

A KG orientation μ of a compact G-manifold X determines a Poincare
duality isomorphism as follows. Let μ G KQ(T(TX)) be an orientation of X

4Note that -πξ{KG) = R(H) and πf*(KG) = 0.
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where e(a) = dimX. Embed X in a G-representation V and let v denote
the normal bundle of the embedding. Let

λ G Kυ

G-
a(T(v))

be the unique orientation such that λ Θ μ is the canonical orientation in
KQ(ΈVX+). Multiplication by λ determines the equivariant Thorn isomor-
phism

Since T(v) is stably equivalent to the equivariant Spanier-Whitehead dual
of X by the result of Atiyah [At 1], there is a natural duality isomorphism

kG(τ(u)) -> K? (X).

Definition 2.5. If X is a KG-oήented G-manifold, then the composite

D = Dx : Kξ.(X) -> JSΓ

of the Thorn isomorphism and the Spanier-Whitehead-Atiyah duality iso-

morphism is the Poincare duality isomorphism. The element

is called the fundamental class associated to the orientation.

The map Dx depends upon the class of the orientation μ but is inde-
pendent of other choices made in the construction. The map is of the same
mod 2 degree as X\ that is, it preserves mod 2 degree if the dimension of
X is even and switches mod 2 degrees if the dimension of X is odd. It is
important to note that the map D above is given by the usual cap product
as

(2.6) D(x)=xΠ[X].

The fundamental class of a ίίG-oriented G-manifold admits a local de-
scription, as in the nonequivariant case.

Definition 2.7. Let X be a G-manifold. For x G X, let

tx : X + -> G + AH Sz

be a local Thorn map at x where H is the isotropy group of x and Z is the
fibre at x of the normal bundle of Gx C X. A KG-fundamental class
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of X is an element a E R(G) such that e(a) = dim X and an element
[X] E KG(X+) such that the image of [X] under the composite

KG(X+) - H KG (G+ AH Sz) s

is a π f (ifG)-generator of K*(SL+Z) for each x E

Proposition 2.8 [LMS, p. 159]. Let X be a G-manifold smoothly embed-
ded in a G-representation V. Then the. Spanier-Whitehead-Atiyah duality
isomorphism

Kυ

G-°(T(v)) -Ξ» KG

a{X+)

restricts to a bijectiυe correspondence between KG-orientations of τ x {and
thus of T and X) and KG-fundamental classes of X.

Proposition 2.9. Let X be a KG-oriented G-manifold with associated
KG-fundamental class [X] E KG{X).
(1) Suppose that w <Ξ K%(X). Then w Π [X] e KG(X) is also a KG fun-

damental class if and only if w is a unit.

(2) Suppose that W E KG(X) and the map

ΠW : Kβ

G(X)—> KG_β(X)

is an isomorphism. Then W is a KG-fundamental class.

Proof. (1) Suppose first that w is a unit. Let tx : X+ —> G+ AH SZ be a local
Thorn map. Then the class

tx.[X) E Kξ (Sz) S R(H)

is a generator of R(H) since [X] is a fundamental class. Since

and tl(w) is a unit, the class tx*(wΠ[X]) is also a generator of R(H). This is
true for each local Thorn map, which implies that w Π [X] is a fundamental
class.

Conversely, suppose that w Π [X] is a UTG-fundamental class. Define

E : K*G{X) -> K°{X)

by
E(x) = in(«ιΠ [X]).
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Then E is an isomorphism by assumption. Let v G KQ(X) be the unique
element with E(υ) = [X]. Then

v n (w n [X]) - [X]

and hence

i x n [X] = [X]

= υΠ(wΓ\ [X])

= (υw) Π [X] since in general (rs) Πt = r Π (s Πt).

Cap product with [X] is an isomorphism, and so υw — lχ and w is a unit
as required.

(2) Define F : K^(X) -> iff (X) by

F(x) = x Π W.

Let
v = ^ ^ ( l x ) = Dγ{lx ΠW) = D~x

ιW.

Then v is a unit with inverse F~ιDx(lx) and hence the class v Π [X] is a
fundamental class by (1). However,

υΠ[X] = Dx{v) = D x ^ x ) - 1 ^ = W

and hence W" is a fundamental class. D

With strong control of orientations and fundamental classes, it is then
possible to define a Gysin map associated to any continuous map / : X —> Y.

Definition 2.10. Let G be a compact Lie group. Suppose that X and Y
are If G-oriented G-manifolds. Let / : X —> Y be a G-map. Then the Gysin
map

is defined to be the composite

K*G{X) -A-> K*G(Y)

Note that the degree of the Gysin map is given by dim X - dim Y mod 2.
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If X is a compact G-space and £ is a real G-bundle over X with a com-
patible Spinc(n)-structure, 5 then the equivariant Euler class

is defined to be the restriction of the Thom class of ξ to the zero section
X —> E(ξ). If ξ is a complex G-bundle then

(2-11) χG(ξ) = λ_1(ξ) = Σ(-iγXi(ξ)

(complex exterior powers). If / : X -» Y is a G-map then

It is easy to show that χG(ξ φ £') = χ

Proposition 2.12. The Gysin map satisfies the following properties:

(1) The Gysin map /, : KG(X) -> K*G{Y) is R(G)-linear.

(2) //X Λ r Λ Z in the KG-oriented setting then (gf), = g,f,.

(3) ForxeKG(X),yeKG(Y),

(4) If X —» Y is an equivariant embedding with normal bundle v, then

Proof. This follows exactly as in the non-equivariant case; c.f. [Kar, p. 233].

D

Remark 2.13. The analogous results for ordinary cohomology are well-
known. We shall have occasion to use the theories KQ, K*, and H* in
this paper. Each theory has duality maps, Gysin maps, etc. When the
theory is not clear from context we shall append the superscript G, K and
H respectively, so, e.g.,

D% : K*(X) ->K*(X).

Similarly, fundamental classes in the three theories will be denoted [X]G >

[X]κ and [X]H respectively.

This is discussed in detail in §9, starting with Definition 9.4.
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3. The Theta Invariant.

In this section the KG- Theta invariant ΘG(/) of a G-map / : X —> Y is
defined and its relation to the relative A-class A(vf) is established. The
basic facts are:
(1) (3.2) Under the map K%{Y) -> K°(Y), ΘG{f) *-> θ(/) .

(2) (3.6) If / preserves iϊ-orientation, then

A(uf) = 1 <=> θ(/) = 1 mod Z-torsion.

Then we switch attention to if G-homology and demonstrate that

(3.9) θG(/)n[F] = Λ[X]

so that ΘG(f) measures the extent to which the hypothetical equality

[Y] I MX] € κ?(Y)

holds.

Definition 3.1. Let G be a compact Lie group. Suppose that X and Y are
ϋf G-oriented G-manifolds and / : X -> Y is a (7-map. Define the KG-Theta
invariant of the map / by

If G = {e} then write θ(/) = θ

Petrie calls the class Θsl(f) G K^ζY) the "torsion invariant" thereby
stressing the parallel with Whitehead torsion, but we prefer a more neutral
term, especially since in cases of interest the class ΘG(/) is a unit!

Lemma 3.2. Let G be a compact Lie group. Suppose that X and Y are
KG-oriented G-manifolds and f : X -» y is a G-map. Let J be some6 closed
subgroup of G and let

r : K G{Y) -> K}{Y)

be the natural map. Then r(ΘG(f)) = Θ J(/).

Proof. It is clearly enough to show that restriction to closed subgroups com-
mutes with Gysin maps, and for this it suffices to show that restrictiόn-to
closed subgroups commutes with the duality maps Dγ. This is the case,
since the basic duality is given by the equivariant Thorn isomorphism and
by Atiyah duality, both of which restrict to closed subgroups. D

The case J = {e} is of particular interest.
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The Theta invariant ΘG(/) is defined by means of the ifG-orientations
of X and Y and hence a priori would be expected to depend strongly upon
the smooth G-structures on X and Y. The Theta invariant controls the
behavior of Pontryagin classes as follows.

Proposition 3.3. Suppose that X and Y are K-oriented manifolds and
f : X —• Y is a smooth equivalence. Then

(3-4)

and more generally

(3.5) CΛ(θ(/)) n [Y]H = f,H (A(uf) n [X]H).

If in addition f*[X]ϋ — \X\H then

(3.6) A (yf) = 1 <=> θ(/) = 1 mod Z-torsion.

Proof. The Atiyah - Hirzebruch version of the Riemann-Roch theorem [AH
1] asserts that

Ch(f«(x)) = fH (ec^A(vf)Ch(x))

for x £ K*(X).7 Since / is an equivalence, Cχ(/) = 0. Take x = lx G K°(X)\
then the formula becomes

Ch(Θ(f)) = f» (A(uf))

which establishes (3.4). Write

Ch= {Dξy'CKD^

where CK : Kt{X) ->• H^(X Q) and recall that

Then the Riemann-Roch formula becomes

(D?)-1 CKD«Θ(f) = (I??)"1 / . " ! # ( i (i

7If the normal bundle Vf has a complex structure (and hence a stable Spinc-structure),
then eCl^A(uf) is the Todd class of v/ and hence (3.5) reduces to the familiar formula

Ch (f?(x)) = f\* {Todd (i//) CΛ(x)).
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which implies that

CKD«eu) = f?D» (A (»/,)) = /, (A {Vf) n [x]H).

Now

ChtD«Θ(f) = D«Ch (D*)-1 Dξθ(f)

= D?Chθtf)

= Ch(θ(f)) n [Y)H

and hence
CΛ(θ(/)) n [y]* = / * ( i (»/,) n [x)H)

which proves (3.5).
Suppose that A(vf) = 1 and /* preserves fί-orientations. Then

Ch(θ(f)) n [Y]H = f?[x)H - [Y}H.

Since cap product with the fundamental class [Y]H is an isomorphism in
cohomology, this implies that Ch(θ(f)) = 1. As Ch is a monomorphism
modulo Z-torsion, we have θ(/) = 1 mod Z-torsion as required. Conversely,
suppose that θ(/) = 1 mod Z-torsion. Then

[Y]H = \γ n [Y]H = /f (i(«//) n

We also know that [Y]H = I*[X]H The map / is an equivalence, hence ff*
is an isomorphism, and so

A{uf) n [X)H = [xH]

which implies that A(uf) = 1. D

It is clear from this proposition that the class θ(/) G K°(Y) provides the
link between Pontryagin classes and local behavior. In order to make this
matter more transparent, we prefer to work in AΓ-homology which is more
natural for this problem. So let us consider again the definition (3.1) of the
class ΘG(/) via the commutative diagram

K?(Y)
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In this diagram the class ΘG(f) — f\(lχ) arises as

lx -*-+ ΘG(f)

D x l .}DΫ1

Γ YΊ *̂ > f ΓYΊ

Since Dγ is an isomorphism, study of ΘG(f) is thus equivalent to the study
of f*[X] = Dγθ

G(f). This implies the following proposition.

Proposition 3.8. Let G be a compact Lie group. Suppose that X and Y
are KG-oriented G-manifolds and f : X —» Y is a G-map. Then

(3.9) ΘG(/)n[F] = MX\-

Thus our attention turns to the question of how the map

-> K?(Y)

treats KG-fundamental classes. This is the subject of the following sections.
Before we leave this section, however, note the case of Proposition 3.8 spe-
cialized to the case where G is trivial.

Corollary 3.10. Suppose that X and Y are K-oriented manifolds, and
f : X -> Y is a smooth equivalence with /*[X]H — \X\H- Then the following
are equivalent:

(1) The map f preserves Pontryagin classes.

(2) θ(/) = lγ β K°{Y) mod Z-torsion.

(3) f*[X]κ = [Y]κ e K0(Y) mod Z-torsion.

4. Spectral sequences; moving from cohomology to homology.

We begin by recalling some of the consequences of the Universal Coefficient
spectral sequence and the Hodgkin spectral sequence. We demonstrate under
suitable hypotheses (4.9) that if

Γ : K*G{Y) —> K*G{X)

is an isomorphism then so too is the associated map on homology
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and the Gysin map

/, : K*G(X) —• K*G{Y).

The Universal Coefficient spectral sequence used to prove these results is
constructed [RS] using operator-algebra techniques and machinery. The
spectral sequence cited below (4.1) is a very special case of the spectral
sequence of [RS] which for appropriate classes of G-C*-algebras A and B
converges to the equivariant Kasparov group KKQ(A,B) and has

The spectral sequence of Theorem 4.1 is obtained by setting A — C(X) and

Theorem 4.1. Universal Coefficient Spectral Sequence [RS]. Let
G be a Hodgkin group and let X be a compact G-space. Then there is a
strongly convergent spectral sequence of R(G)-modules which converges to

with

The edge homomorphism

(4.2) K?(X) -> Έf£ <-> E°S =* RomR{G)(KG(X),R(G))

is the Kronecker pairing. The spectral sequence is natural with respect to
G-maps X -> X'.

Theorem 4.3. Suppose that G is a Hodgkin group, X and Y are compact
G-ENR spaces* and f : X —> Yis a G-map which induces an isomorphism

f* : KG(Y) -> KG(X).

Then the map

(4.4) /. : K?(X) -»• K?(Y)

is an isomorphism.

Proof. The map / induces a morphism of spectral sequences of type (4.1)
which is an isomorphism at the E2 level. This implies that the two spec-
tral sequences are isomorphic for each En for n > 1 which implies that
/* : K^(X) —> K^(Y) is an isomorphism as required. D

8A G-space is a G-ENR (Euclidean neighborhood retract) if it can be embedded as a
retract of an open subset of some G-representation. For example, each compact locally
linear topological G-manifold is a G-ENR.
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Remark 4.5. It is possible that the theorem above holds for every compact
connected Lie group, but this would seem to be a deep fact. The lowest
dimensional compact connected Lie group for which the conclusion of the
theorem is unknown is SΌ(3). This group is a quotient of SU(2) which is
Hodgkin, and Ker(SU(2) -» 50(3)) = Z2. The problem may revolve about
characterizing K^O,ZΛX) as an appropriate functor of KgU(o^{X).

Theorem 4.6. Let G be a Hodgkin group, let X and Y be KG-oriented
G-manifolds with KG-fundamental classes [X] and [Y] respectively, both of
degree a, and suppose given a G-map f : X —>Y which induces an isomor-
phism

f* : K*G(Y)-> K*G(X).

Then the class f*[X] G KG(Y) is a KG-fundamental class for Y.

Proof. By (2.9)(1), it suffices to show that cap product induces an isomor-
phism

ΠΓ\f.[X] : Kβ

G{Y) —> KZ_β(Y).

This may be verified directly. The cap product satisfies the identity

(4.7) ynf.[X\ = /.(Γ(y)n[X])

for y e KQ(Y). The map /* is an isomorphism by assumption and the map
/* is an isomorphism by (4.4). This completes the proof. D

Theorem 4.8. Let G be a Hodgkin group, let X and Y be KG-oriented
G-manifolds with KG-fundamental classes [X] and [Y] respectively, both of
degree a, and suppose given a G-map f : X -» Y which induces an isomor-
phism

Then θG(f) is a unit in K°G{Y).

Proof. We know that f,[X] is a UΓG-fundamental class, by (4.6), and hence

for some unique unit w 6 KQ{Y) by (2.9)(1). On the other hand, the map
f+[X] satisfies

by (3.9) and thus Θσ(/) = w is a unit. D

Theorem 4.8 is the key to a refined understanding of A(f) as will become
evident in Theorem 7.1.
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Next we introduce the Hodgkin spectral sequence.

Theorem 4.10. Hodgkin spectral sequence [H, RS]. Let G be a Hodgkin
group acting upon a compact space X, and let H be a closed subgroup of G.
Then there is a strongly convergent spectral sequence of R(G)-modules which
converges to Kχ(X) with

The spectral sequence is natural with respect to G-maps X —> X1.

Corollary 4.11. Let G be a Hodgkin group. If f : X -> Yis a G-map of
compact G-spaces which induces an isomorphism

Γ : KG(Y) ^ KG(X)

then for any closed subgroup J C G the map

Γ : K'j(Y) - » K}(X)

is an isomorphism. In particular (with J = {e}) the map

uf* :K*(uY)—+K*(uX)

is an isomorphism and hence the Chern character induces an isomorphism

uf* : H**(uY;Q) -^ H**{uX;Q).

Proposition 4.12. Let G be a Hodgkin group. Suppose that X and Y are
KG-oriented G-manifolds. Let f : X -> Y be a continuous G-map which
induces an isomorphism

Γ : Ka(Y) -* KG{X).

Then the Gysin map
/, : KG{X) -4 Ka(Y)

is an isomorphism.

Proof. By the definition of f\ (2.11) it suffices to prove that the map

K?(X) A K?{Y)

is an isomorphism. This follows from Theorem 4.4. D
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Corollary 4.13. Let G be a Hodgkin group. Suppose that X and Y are
G-manifolds and that each is KG-oriented. Let f : X -> Y be a continuous
G-map such that the induced map

Γ : K*G(Y) -> KG(X)

is an isomorphism. Then
(1) for any 9 closed subgroup J of G the maps

and

/,: K*{X) -> K'j(Y)

are isomorphisms.

(2) The induced map

uf*:H*{υY]Q) —> £

25 an isomorphism.

(3) TΛe induced maps

ufr. H*(uX;Q) ^ H*(uY;Q)

and

uf. : H.(uX;Q) —> H.(uY;Q)

are isomorphisms.

Proof. The proof of a) is immediate from Corollary 4.4 and Proposition 4.12.
To prove b), take J — {e} in part a) and apply the Chern character. Part c)
follows from b) and the fact that duality holds in homology as well. D

Remark 4.14. Theorem 4.1 also holds for G finite, by Bόkstedt [Bok].
It seems likely that Theorem 4.1 holds for arbitrary compact connected Lie
groups, and not just for Hodgkin groups. In contrast, the Hodgkin spectral
sequence would not be expected to generalize beyond Hodgkin groups.

9The case J — {e} is permitted and is interesting.
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5. Localizations and fixed point sets.

In this section attention turns to the fixed point sets of the G-actions. Under
very general circumstances the Atiyah-Segal localization theorem allows us
to restrict to fixed points, provided that the theory itself is suitably localized.
It turns out that if G is a Hodgkin group and K*(X) is Z-torsionfree then
the map

U : K?(XG) —> K?(X)

is a monomorphism which induces an isomorphism on fraction fields. These
results help us to relate UT^-orientations on X to those on XG and hence to
localize the data to fixed point sets.

Theorem 5.1 Localization Theorem. [Se 1, ASe] Suppose that G is a
compact Lie group which acts upon a locally compact space X. Let 7 be a
conjugacy class in G, and denote by p the prime ideal in R(G) of characters
which vanish on 7. Define

χi = (J χ9m

Then the inclusion ιΊ : XΊ -> X induces an isomorphism

ς : κG(x)p —> κG(xηp.

Note that this theorem holds even when XΊ is empty, in which case it
asserts that K£(X)P = 0.

Recall that if G is a compact connected Lie group then Segal [Se 1] shows
that R(G) is a Noetherian domain. Let F(G) denote its field of fractions. If
M is an iϊ(G)-module then write its associated F(G)-localization by

MF(G)=M®R(G)F(G).

Corollary 5.2. Let G be a compact connected Lie group and let X be a
compact G-space. Then the inclusion %: XG —> X induces an isomorphism

—> KQ(X )F(G)

For example, if XG is empty then KQ{X)F{G) = 0 &nd hence KQ(X)AS

an i?(G)-torsion module.

Proof. Since G is connected, F(G) = R(G){0} The ideal p = {0} corre-
sponds to XG and so the result is immediate from the Localization Theorem
(5.1) D
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The spectral sequences of Section Four must be slightly modified in order
to be of optimal use. (A similar modification has been made by Rosenberg
and Weinberger [RW].) As these modifications are purely algebraic, we state
the requisite results in that context.

Proposition 5.4. Let R be a commutative ring. Suppose that {Er,d
r}

is a spectral sequence of R-modules which strongly converges to some R-
module M and suppose that S is a set of prime ideals of R with associated
localization Rs Then {ErS,d

r
s} is a spectral sequence of R$-modules which

strongly converges to M$.

Proof. Localization is an exact functor, and thus it commutes with taking
the homology of a differential module. D

Proposition 5.5. Suppose that R is a commutative ring and M and N
are R-modules. Let S be a collection of prime ideals in R. Then for each
integer s there is a natural isomorphism

Torf (M, N)s = Torfs (M5, Ns).

If R is a Noetherian ring and M is finitely generated then for each s there
is a natural isomorphism of Rs-modules

=

Proof The proof of the property for Tor is very easy given the fact that Rs

is a flat i?-module. The Ext result is implied by [CE] Ch. VI, Exercise 11
and Ch. VII, Exercise 10, but we insert a proof for completeness. It is easy
to show that if P is a finitely generated projective i?-module then there is a
natural isomorphism

EomR(P,N)s = HomRs(Ps,Ns).

Since M is finitely generated and R is Noetherian, M has a projective R-
resolution Pm of the form

0 -> Pk -> P*_i -> • Po -> M -> 0

with each Pj finitely generated. Then

N)s S EomRs{PJS,Ns)
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for each j . This implies the result, since there are natural isomorphisms

Exts

R(M,N)s = Hs(BomR(P.,N))s

*Hs(ΐίomRs(P.s,Ns))

a
These techniques allow a refinement of the Localization Theorem as fol-

lows:

Theorem 5.6. Suppose that G is a Hodgkin group and X is a G-manifold.
Let

ι x : XG —> X

be the inclusion. Then the map

(5.7) (,f ) F : K?{XG)F(G) - > KG{X)F(G)

is an isomorphism. Similarly, there is an isomorphism of R(G)-modules

(5.8) (ιx*)F : KG{X)F(G) —> KG(XG)F{G)

and hence the kernel and the cokernel of the map

(5.9) (zx*)F : KG(X) - + KG{XG)

are R(G)-torsion modules. Suppose in addition that K*(XG) is a Έ-torsion-

free module.10 Then i induces a monomorphism

if : K?{XG) —> ϋff {X)

and Cok(ϊ^) is an R(G)-torsion module.

Proof. The map

(5.9) (ιx*)F : KG(X)F(G) —»> KG(XG)F(G)

10Since XG is a compact manifold, this is equivalent to the assumption that K*{XG) is
Z-torsionfree, and under this assumption the Kronecker map

K*(XG) -> H o m Λ ( σ ) ( / r (X σ ),Z)

is an isomorphism by the Universal Coefficient Theorem.
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is an isomorphism by (5.1). To proceed further in the proof we record a
preliminary lemma which may be of independent interest.

Lemma 5.10. Suppose that G is a Hodgkin group, X and Y are compact
G-ENR-spaces, and p is some prime ideal in R(G). Suppose that the map

Γ : K'G(Y)P - » Ka(X)p

is an isomorphism. Then the map

is an isomorphism.

Proof. This lemma is an obvious generalization of Theorem 4.4. It is proved
by localizing the proof of that theorem, using the fact that by (5.4) and (5.5)
there is a spectral sequence which converges to KG(X)P with

a

Continuation of Proof of 5.6. Statements (5.8) and (5.9) are restatements
of Corollary 5.2. Taking p = {0} in the Lemma yields a spectral sequence
which allows to to deduce (5.7) directly. In fact the situation is very simple,
since E%'* = 0 for p > 2. In order to prove that ι* is mono, consider the
commutative diagram

KG(XG) - ^ - > KG(X)

-ι
The map (ι*)F is an isomorphism by (5.7) and the map n is a monomorphism
since K?(XG) ^ K*(XG) ®R(G) is a free i?(G)-module. Thus the map ι* is
a monomorphism. Its cokernel is an i?(G)-torsion module by (5.7). D

In the following proposition a dimension condition appears for the first
time, namely that the difference of the dimensions of X and XG is even.
Eventually we shall assume that XG consists entirely of isolated points and
so X must be of even dimension to satisfy this hypothesis. Note that if X is
of odd dimension and XG consists entirely of isolated points then χG(v) £
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KQ(XG) = 0 so that there is no hope for arguing as in the proof of the
proposition.

Proposition 5.11. Let G be a Hodgkin group. Let X be a KG-oriented G-
manifold with XG nonempty. Suppose that the inclusion map
ι x : XG —> X is KG-oriented with [real) even-dimensional normal bundle v
and that χG{v) = 1. [This will be the case, e.g., when v is a trivial bundle,
and hence this condition holds whenever XG consists of isolated points.] Let
τXG have the unique KG-orientation compatible with the isomorphism

τXG 0 ^ ιx*rX.

Let [XG] e KG(XG) denote the associated KG fundamental class11. Then

(5.12) t? [XG] = [X] mod R(G)-torsion eKG{X)

and

ΘG(lχG)=lx mod R(G)-torsion eK%{X).

Note that if XG is empty then KG{X) and K£(X) are fl(G)-torsion mod-
ules and hence (5.11) holds in a trivial sense.

Proof. By (2.12) we have

ιx*ι? (x) = χG(v)x = x since χG{y) = 1

for any x G KQ(XG). Taking x = lxa and writing ι x = Dγι*DXG, this

equation becomes

% Dx ι*[X J = \XG — % l x .

Thus

Dχ\[XG]-lxeKeτ(ιx*)

and Ker(zx*) is an iϊ(G)-torsion module by (5.6). Since Dx is an isomor-

phism,

ι*[XG] = [X] mod #(G)-torsion.

The final statement follows by checking definitions. D

1 1 Since v is of even dimension we may take [X] to lie in this degree by the equivariant
Bott periodicity theorem.
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6. Isolated fixed points.

This section is devoted to a detailed analysis of the additional structure
that is forced by the assumption that the fixed point set XG consist of
isolated points. Theorem 6.5 improves upon Theorem 5.6: under the usual
hypotheses, if XG consists of isolated fixed points then the induced map

t? : KG(XG) —> KG(X)

is a canonically split monomorphism. The work starting with Theorem 6.7

is used to prove the main theorems of the paper.

Proposition 6.1. Suppose that G is a compact Lie group and X is a

compact G-space. The natural map

factors as

KG(X) - ^ Z ® Λ ( σ ) KG{X) - A K*{X).

The short exact sequence

0 —-> IG —> R(G) -ί+ Z -> 0

yields the exact sequence
(6.2)

( G ) > IG ®R{G) K*G(X) -1> K*G{X) A z ^ ( G ) K*G{X) -> 0.

Assume that G is a Hodgkin group. Then the map r is the edge homomor-

phism in the Hodgkin spectral sequence

(6.3) El. ^ Torf ( G ) (Z,i^(X)) = • K*{X).

Thus if KQ(X) is the direct sum of R(G)-torsion and R(G)-flat modules
then r is an isomorphism mod R(G)-torsion. If KG(X) is an R(G)-torsion
module then f is an isomorphism, Ύoτ^G\Z^ KQ(X)) = 0 and hence there
is a short exact sequence of R(G)-modules

0 -> la ® Λ ( σ ) KG{X) —> KG(X) ^ K*(X) -» 0.

Finally, if KG(X) = R(G)S then there is a short exact sequence of R(G)~
modules

0 -> IG ® Z s —> K*G(X) - ^ X*(X) -* 0.
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Proof. The short exact sequence (6.2) is immediate from the exactness prop-
erties of tensoring. When G is Hodgkin so that the Hodgkin spectral se-
quence (6.3) is available then use the fact that Torf^(Z,M) vanishes for
t > 0 when M is i?(G)-flat (by definition) and is an i?(G)-torsion module
when M is itself an i?(G)-torsion module (by (5.5)) to conclude that E^ is an
i?(G)-torsion module for t > 0. This implies that E™m is also an i?(G)-torsion
module for t > 0 and hence f is an i?(G)-isomorphism mod i?(G)-torsion.
If KQ(X) is an iϊ(G)-flat module then E^ = 0 for each t > 0 which implies
that f is an isomorphism. The rest of the proposition is immediate. D

Suppose that G is a compact Lie group and X is a G-manifold. Then XG

is a G-submanifold of X and ιx : XG -» X is a smooth embedding. If X
is ifσ-oriented and the map ιx is ifG-oriented then this gives XG a KG-
orientation by (2.10). For example, if the normal bundle of the embedding
is trivial (if XG consists of isolated points then this will be the case) then
the map ιx has a canonical UΓG-orientation and hence XG has a canonical
ifG-orientation.

The presence of only isolated fixed points allows the following improve-
ment of Theorem 5.6.

Theorem 6.5. Suppose that G is a Hodgkin group. Let X be an even-
dimensional KG-oriented G-manifold such that the fixed point set XG and
the inclusion map i: XG —> X are compatibly KG-oriented. Assume further
that XG consists of isolated points. Then the induced map

z? : K?(XG) - 4 K?{X)

is a canonically split monomorphism.

Proof. The map is a monomorphism by (5.6). Define

ί : KG(X) -> KG(XG)

to be the composite

KG{X) ( ^ 1

 K*G{X) iί; κz(xG) ^ κG(xG).

Then I is ii(G)-linear. We claim that l%*[XG] = [XG]. This is the case since
(writing " = " for "mod J?(G)-torsion") we have

iι?[Xa] = ί[X] by (5.11)

= Dχσtx (lx)

= Dχa(lχβ)

= [XG]
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so that ί%?[XG] = [XG] in the β(G)-free module KG(XG), and hence
ίι*[XG] = [XG] Since X G consists of isolated fixed points {#1,. . . , £ s } ,
the class [XG] decomposes as [XG] = Σfo] for [x{] G # 0

G({^}) = R(β).
(Note that each [x^] must be a free generator of R(G).) Hence

x\χ] — Σ \xλ

The [xi] are a free basis, and hence

(6.6) it?[Xi] = [zj

for each i. Thus h*(x) = rr for all x, and z* is a canonically split monomor-
phism. D

Henceforth when dealing with two even-dimensional manifolds we shall
assume that their UΓG-fundamental classes have been chosen to lie in the
same grading; for definiteness we take a — 0 below.

Theorem 6.7. Let G be a Hodgkin group. Let X and Y be KG-oriented
even-dimensional G-manifolds with XG andYG consisting of s isolated points
each. Let XG and YG have the induced KG-orientations. Suppose that
f : X —» Y is a G-map which is an isomorphism on fixed point sets. Then
the Theta class pulls back to z r *Θ G (/) <Ξ K% (YG) and satisfies

(6.8) (zy*ΘG (/)) n [YG] = Λ [xG] e κG (YG).

Proof. By (3.8) we know that

Proposition 5.11 implies that ι^ [YG] = [Y] modulo R (G)-torsion and simi-

larly for X and hence

But

ΘG(/)n*rfrG]=*r(*y*θG(/)n
and hence

ιϊ(ιγ ea{f)n\yσ])=ιΐf?[x
The map i^ is a monomorphism by (5.6), and hence
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There is no R (£?)-torsion in KG (YG) and so the equality holds. D

Theorem 6.9. Suppose that G is a Hodgkin group and suppose that X and
Y are even-dimensional KG-oriented manifolds. Let f : X -+Y be a G-map
which induces an isomorphism of finite sets XG == YG so that

τγ*ΘG(f)n[YG]=f,[XG]

by Theorem 6.7. Then with respect to the decomposition

1=1

we have

(6.10) /φ [XG] = έ λ_! ( r y / N - rXXi)
1=1

Proof. By additivity, it suffices to consider only one fixed point {x}. Identify
{/(x)} with {x} via / and let V = rXx and W = τYf(x). By a standard
argument (c.f. [ASi, p. 498]), we may assume that V is a subrepresentation
of W. Let j : V -> W be the inclusion. Then we must consider the diagram

ψv ψw

-^U K%{W)

Ψw

-*-> KG{{x})

where φv and ψw are Thorn isomorphisms, φy and φw are Atiyah duality
maps, and we recall that

Dv(lχ) = Φvψv(lχ) =

and

We compute:

- V)ψvψv(lx) =
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since ψv is iϊ(G)-linear,

since fj\(m) = λ_1(W — V)m

since φvj* = ψw and j\ψv = tw

Thus

(6.11) \-1(W-V)[xv] =

which implies the theorem. D

Remark 6.12 Suppose that G is a compact connected Lie group and sup-
pose that X and Y are JFΓG-oriented manifolds such that XG and YG consist
of isolated fixed points. Let / : X —> Y be a G-map which induces an
isomorphism on KQ(-). Clearly f(XG) C YG. The Localization Theorem
(5.1) implies that

KG(X )F(G) — KG(X)F(G)

= KO

G(Y)F(G)

and if W is a set of s points with trivial G-action then KQ(W)F(G)
 ιs a vector

space over F(G) of dimension s. Thus XG and YG have the same cardinality.
The only possible maps / : XG -> YG which induces an isomorphism on
KQ(-) are bijections. Thus / : XG —>- YG is a bijection of finite sets.

7. The Main Theorem for IΓ^-oriented Manifolds.

In this section we shall establish the main theorem on KG- oriented man-
ifolds, showing that Pontryagin classes are preserved and control is main-
tained at the fixed point sets. These results involve assuming that X and
Y have ΛΓG-orientations. In Section 9 we shall demonstrate that this condi-
tion is frequently satisfied. The results in Section 9 and this section will be
combined in Section 10 to demonstrate the results stated in the Introduction.

Theorem 7.1. Let G be a Hodgkin group and let X and Y be KG—oriented
connected G-manifolds of the same dimension such that XG and YG are
nonempty and consist of isolated fixed points. Let f : X —ϊ Y be a G-map
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which induces an isomorphism on fixed point sets. Suppose that ΘG(f) G
KQ(Y) is a unit. Then Θ(/) = 1 mod Z-torsion. If in addition the map
uf : uX —> uY is an H-orientation-preserving equivalence then
uf : uX -* uY preserves Pontryagin classes.

Proof. Since Θσ(/) is a unit in KQ{Y) and restriction is a ring map, the
class

is a unit. Thus for any copy of S1 C G the class

ϊ y * θ s l ( / ) i e κ*sι(Vi) s

is a unit. Using a characteristic class argument which takes advantage of the
specific formula for Θ5 1, Petrie [P 2, Lemma 6.3] shows that

for some integer n(i,Sι) and hence

is a unit of order 2 in K^i (j/<)- As i runs over the (finite) fixed point set and
(for ΘG(f) given) it suffices to check for a finite number of circles, there is
some sequence of integers n = (n x , . . . , nk) such that

is a unit of order 2 in K£(Yτ) where tn = t"1... tn

k

k and T is a maximal
torus for G.

Let Chγy denote the composite

(7.2) K*G(W) - ^ K*(W) -^ H**(W; Q).

Then
Chlr ( r n t y θ τ (/)) € iϊ** (FT;Q)

is a unit of order 2 in H**(YT; Q). The only units of order 2 in this ring are
±1 and it is easy to see that the degree zero term of ChγT(t~nΘτ(f)) is 1,
so it must be the case that

Chξrr {t-nιγ*Θτ(f)) = leH** (YT;Q) .

Since ChγT is a ring map and



RATIONAL PONTRYAGIN CLASSES 217

it follows that

(7.3) ChG

γG {ιY*eG(f)) = Chτ

γτ (tγ*θτ(f)) = 1 € H** {Yτ; Q) .

Consider the following commutative diagram:

K (uY) - ^ - > H**(uY;Q)

K*G{YG) —^-> K*(uYG) - ^ - > H**{uYG;Q)

The composite of the maps in the upper row is ChG by (7.2), and similarly
the composite of the maps in the lower row is ChG

a. Thus

ChGciγ* = ιγ*ChG = ιγ*Chr

and since Θ(/) = rΘG(/) e K*{uY) by Lemma 3.2, we see that

ιγ*Ch(θ(f)) = 1.

The map

%γ* : H°(uY; Q) —->• ί ί 0 (uFG; Q)

is a monomorphism provided that YG is nonempty and Y is connected, and
hence

CΛ(θ(/)) = 1.

The Chern character is a ring monomorphism mod Z-torsion, so Θ(/) = 1
mod Z-torsion. The final statement of the Theorem follows from Corollary
3.10. D

Proposition (7.4) (Petrie). Suppose that M and N are real represen-
tations of a compact connected Lie group G of the same dimension, and let
M and N be their complexifications. Suppose that λ_i(M) and λ_i(JV) are
non-zero and λ_i(M — N) is a unit in R(G). Then M and N are equivalent
representations.

Proof The complexification map RO(G) -> R(G) is an inclusion, so it suf-
fices to show that M and N are equivalent representations. Representations
are determined by characters and the obvious argument implies that it suf-
fices to prove the theorem for the case G — S1. This is the case which is
established by Petrie [P 2, p. 365]. The key fact is that both λ_i(M) and
X^ι(N) are products of cyclotomic polynomials so that classical algebraic
number theory in the Dedekind domain RiS1) may be applied. D
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It is now possible to prove the main technical theorem.

Theorem 7.5. Suppose that G is a Hodgkin group and X and Y are KG -
oriented connected G-manifolds of the same dimension such that XG and
YG are non-empty and consist of isolated fixed points. Let f : X -> Y be a
smooth G-map such that

Γ : KG(Y) -> K'a(X)

is an isomorphism. Then:
(1) If X and Y are of the same even dimension then for each fixed point

x G XG the local representations of G at x and at f(x) are equivalent.

(2) If the map uf : uX -» uY is an H-orientation-preserving equivalence
of the underlying manifolds then the map

uf*:H*(uY;Q) -> H*(uX;Q)

preserves Pontryagin classes.

Proof. Note first that the map / induces a bijection / : XG -» YG by Remark
6.12, so that the statement of the theorem makes sense. Further, the Theta
class ΘG(f) € KQ(Y) is a unit by Theorem 4.8, since /* is an isomorphism.

To complete the proof of (1) we argue as follows. The class ιγ*ΘG(f) E
KQ(YG) is a unit, since ΘG{f) is a unit and ιγ* is a ring map, and similarly
ιγ*ΘG(f)i 6 R(G) is a unit for each fixed point xt. However,

for each i by Theorem 6.9 (which uses the fact that X and Y are of the same
even dimension) and hence the class λ_i(τl/(x). — τXx.) is a unit in R(G).
Then Proposition 7.4 implies that

rXx. = τYf(x.)
x.

for each fixed point Xi E XG'.
To complete the proof of (2) we note that since uf is an iί-orientation-

preserving equivalence, then by Theorem 7.1 the map uf preserves Pontrya-
gin classes. G

Remark 7.6. Theorem 7.5 holds for the class of groups which satisfy the
conclusion of Theorem 4.1. In Remark 4.14 we note that this is expected to
be the case for all compact connected Lie groups, in which case Theorem 7.5
would also hold in that generality.
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8. Bilinear Pairings.

In this section we pause to address two questions raised by Petrie in Part II,
§3 of [P 1], First some notation. Suppose that G is a compact connected
Lie group. Define

&*G(X) = K£(X)/(R(G) - torsion).

Suppose that X is a iίΓG-oriented G-manifold. Then there is a duality iso-
morphism

D:K*G(X)-+K?(X)

and hence natural maps

KG{X) A K?(X) -^ EomR{G)(KG(X),R(G))

where e is the Kronecker pairing. This induces a bilinear form

KG(X) x KG(X)-^ R(G)

on KQ(X) with values in R(G) via the formula

(α,6) = (eD(a))(b)

which passes to a bilinear form on &G(X). Petrie [P 1, p. 144] asks the
following two questions:

Question 1: When is the bilinear form on &G(X) nondegenerate?

Question 2: When the preceeding question has an affirmative answer,
can one relate the algebraic invariants of the bilinear form to the represen-
tations of G on the fibers normal to the fixed points sets?

He comments further: "One hopes that the bilinear form ... is nonde-
generate when &Q(X) is free over R(G)" He then works out some very
specific situations where this is the case.

With the tools developed this paper, we can offer answers to these ques-
tions, under the assumption that the group G has torsion free fundamental
group. Theorem 8.1 gives a strong affirmative answer to the first question.

Theorem 8.1. Suppose that G is a Hodgkin group. Let X be a KG-oriented
G-manifold such that RG(X) is a free R(G)-module. Then the associated
bilinear form induced on &G(X) by duality and the Kronecker pairing 4s
non-degenerate.

Proof. It suffices to prove that the map

(8.2) e : K?{X) -» BomR(G)(KG(X),R(G))
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is an isomorphism modulo i?(G)-torsion. This map is the edge homomor-
phism in the Universal Coefficient spectral sequence

Es

2'* = Ext%G)(KG(X),R(G))

Since &Q(X) is a free i?(G)-module, there is an unnatural isomorphism

KG(X) £* MφΛG(X)

where M is the i2(G)-torsion submodule of KG{X). Thus for s > 0,

which is again an iϊ(G)-torsion module. [This fact follows from (5.5) and
the fact that M must be finitely generated. It would be false in general if
&G(X) were only torsion free.] This implies that E^ is also an i?(G)-torsion
module for s > 0, and hence the map e in (8.2) is an isomorphism modulo
i?(G)-torsion. D

Our response to Petrie's second question is not so precise unless there is
some condition on the fixed point set. Write

XG = X? U U X?

as a disjoint union of connected components. Each component Xf is a
manifold and clearly the bilinear form decomposes into the sum of bilinear
forms on each component. So we may analyze one component at a time.

Proposition 8.3. Suppose that G is a Hodgkin group . Let X be a KG-
oriented G-manifold. Let %: XG -> X be the inclusion of the fixed point set.
Then the associated bilinear forms on Ά*G(X) and on Ά*G(XG) are related as
follows:
(1)

(i\a,ιώ)χ = (a,χ(v)b)xa

fora, be&*G{XG).

(2) // X is even-dimensional and if XG consists of isolated fixed points
with σ the canonical splitting of i\ described below, then

(a,b)x = (σ(a),χG(v)σ(b))xc

for a, be &G(X).
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Proof. Suppose that a G &*G(XG), c G 8Q(X) are represented by a G
K^(XG), c G K£(X) respectively. Then

{i\a,c)χ = (exDxiιa)(c)

= (eχt+Dxσa)(c)

= (z*eXGDχGa)(c)

Set c = τώ for some b G # G ( X G ) .
 τ h e n

(iιa,itb)χ = (a,ι*ιώ)XG = (a,χG(v)b)χG

since t*t!(y) = XG(v)y by (2.12)(4). This proves (1). If X G consists of
isolated points then

t. : Jff (Xσ) —+ UCf (X)

is a canonically split monomorphism with Cok^*) an i2(G)-torsion module
by Theorem 6.5, and by the definition of i\ the same is true for the map

Let σ : K%(X) -> K£(XG) denote the splitting. Then Ker(σ) is an Λ(G)-
torsion module. This implies that if y G KQ(X) is any element then y may
be written uniquely as

y = *!^(y) + (y - «ι.σ(y))

where the second term is in the kernel of σ, hence i2(G)-torsion. The pairing
(, ) vanishes whenever either entry is iί(G)-torsion, and hence

(a,b)x = (i\σ(a),i\σ(b))x

by part (1), and this proves (2). D

Thus the study of the bilinear form reduces down completely to the study
of non-equivariant bilinear forms on components of the fixed point set wheir*
XG consists of isolated points. The Ko-theory of a space with trivial G-
action is well-understood:

KG\Λj ) = K
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A ifG-orientation of Xf corresponds to a lf-orientation of Xf via this
isomorphism. If XG consists of s isolated points then the local fixed point
data may be read off from the bilinear pairing and hence Petrie's question
is resolved. If Xf is a connected manifold of dimension greater than zero
then K*(Xf) may well be non-trivial and hence the situation is much more
complex.

9. Spinc orientations.

In this section we recall the relationship between if-orientations and Spinc-

structures. Then we generalize these results and demonstrate that KG-

orientations are fairly common, at least in the context of interest in this

work when, for instance X is simply connected and has a non-equivariant

Spinc-structure.

First we recall the non-equivariant situation. Suppose that ξ is an oriented

n-dimensional vector bundle with total space E(ξ) over some compact space

X. Then it has an associated principal right 5O(n)-bundle

(9.1) SO{n)—±Q—>X

with

E(ξ) S Q Xsθ(n) V

where SO(n) acts on Q on the right, on a vector space V = Rn on the left,
and

{qs,v) = (g, sυ) for q e Q, s E SO(n), and v G V.

The bundle (9.1) is classified by a map fξ : X —> BSO(n) and determines a

Stiefel-Whitney class

There is a natural group extension

S1 —> Spinc(n) —> SO(n)

and hence a principal ί^-bundle

(9.2) S1 —±P^Q

where P is a right Spinc(n)-space and the map π is equivariant in the obvious
sense. The bundle ξ is said to have a reduction to a Spinc-structure if there
is an isomorphism of SΌ(n)-bundles
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Such a structure is classified by a class c £ H2(X;Z) which reduces to the
class w2(ξ).

The matter may be expressed entirely in terms of classifying spaces. The
exact sequence of groups

1 —•> Z/2 —> Spinc(n) —•> 5O(n) x 17(1) —> 1

gives rise to a fibration sequence

(9.3) B Spinc —> 5SO x K(Z, 2) - ^ if (Z/2,2)

with

κ*(ι2) = w2®l + 1 ® ί.

An oriented real vector bundle ξ over X is classified by a map fξ : X —> 5 5 0
and any class c £ H2(X; Z) corresponds to a map X —> UΓ(Z, 2). Thus the
pair (£, c) corresponds to a map

The bundle ξ reduces to a Spinc-bundle if and only if the map nφ is null-
homotopic, which (by the formula for K) is true if and only if w2 is the
reduction of c for some choice of c. For example, if i ϊ 3(X;Z) has no 2-
torsion then exactness of the sequence

H\X-Z) - ^ H2(X;Z) —+ H2(X;Z2) %> H3(X;Z) -^ H3{X;Z)

implies that each class w G H2{X\Z/2) is the reduction of some integral
class, and hence each oriented bundle over X reduces to some Spinc-bundle.

A manifold is said to have a Spinc structure if its tangent bundle has
this structure. The Spinc-structures on X are parameterized by the group
2H2(X\Z) corresponding to the various possible choices for the class c. If
τX is a complex vector bundle (for instance, if X is a complex manifold)
then

w2(τX) Ξ C I ( T I ) mod 2

and hence X has a Spinc-structure. If X is a Spin manifold then it also
inherits a Spinc-structure. As Lawson and Michaelson comment, it requires
some searching to find an orientable manifold which is not Spinc. For exam-
ple, RP4n+1 is Spinc although it is neither Spin nor complex. The simplest
example, noticed by Stong and Landweber, is perhaps the 5-dimensional
manifold SU(3)/SO(3). Its only non-zero mod 2 cohomology classes are 1,
w2, w3 and w2w3. Since Sq1(w2) = w3 Φ 0, one concludes that w2 is not the



224 CLAUDE SCHOCHET

reduction of any integral class. See [St, p. 292-3] and [LM, Appendix D]
for a general treatment of these matters.

Definition 9.4. Let G be a compact Lie group. Suppose that X is a G-
manifold and ξ is a real n-dimensional G-bundle over X. Let J —> O(n)
be some homomorphism of groups (the cases J = O(n), SΌ(n), Spinc(n)
are of central interest). We shall say that the bundle ξ has a G-invariant
reduction to J if there exists a space Q with the following properties:
(1) Q is a left G-space, a right J-space, and the actions commute. Give

Q/J its induced left G-action.

(2) J —> Q A Q/J is a principal J-bundle and X = Q/J as G-spaces.

(3) There is an M-vector space V with a left J-action and an isomorphism
of O(n)-bundles

(4) The isomorphism (3) is G-equivariant over X.

If J = O(n) then this is simply a restatement of what it means for ξ to
be a G-vector bundle.

If a G-bundle ξ has a G-invariant reduction to Spin0 then it has a KG-
orientation. The non-equivariant version of the following theorem is clearly
set out in [ABS]. Petrie [P 1, §4] discusses the equivariant construction in
somewhat different language but to the same effect. Certainly the result has
been well-known for many years.

Proposition 9.5. Let G be a compact Lie group. Suppose that X is a G-
manifold and ξ is a real n-dimensional G-bundle over X with a G-invariant
reduction to Spinc(n). Then there is an associated KG-orientation class
μ € KS(Tξ).

Proof. Suppose first that n is even. By assumption there is a space Q with
a left G-action, a right Spinc(n) action which commutes with the G-action,
a principal Spinc(n)-bundle

Spinc(n) —> Q -^> X

with π a G-map and an isomorphism of O(n)-bundles

= Q XSpin^n) V.

Let Δ+ and Δ_ be the canonical Spinc-representations. Following [ASi, p.
489] and [P 2], define a G x Spinc(n)-complex of vector bundles over Q xV
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of the form
Q x V x Δ + —^-> Q x V x Δ_

i i
QxV —!-> Q x l /

with
Φ(g,M) = (?,*>, L(υ)d)

where -L(υ) denotes left Clifford multiplication on A±. The G x Spinc(ro)-
action on Q x 7 is given by

and the action on Q x V x Δ± is given by

Since (υ,d) H-> (υ,L(t;)cί) is an elliptic pairing, this complex defines an ele-
ment

μ e ^ x s p ^ w (Q x v) - ifS(Q xs^in) v) - ^

We claim that this class is a iίG-orientation. In fact this class induces the
equivariant Thom isomorphism

K'G{X) = K*G(Tξ)

which is given explicitly by x H* xμ. Kasparov [K 1] shows that this map is
an isomorphism by showing that the class μ is KiίΓG-invertible. Since KKG-
invertibility is preserved under restriction to closed subgroups and the class
is natural with respect to restriction to subspaces of X, it follows that for
any local Thom map j : G/H —» X with fibre representation W the induced
map

sends μ to a Ifίί^-mvertible element which must then be a generator of
Kχ{Sw) as a free π f (ifG)-module. This completes the argument when n is
even.

If n is odd then apply the argument above to the (even-dimensional)
bundle ( x R Then use the canonical ίΓG-orientation on the equivariant
Thom space of the trivial line bundle to construct the corresponding KG--
orientation on Tξ. D

Thus our attention turns to the circumstances under which a given G-
bundle has a G-invariant reduction to Spin0. Suppose then that G is a
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compact Lie group, X is an oriented G-manifold, and G acts on X. As
remarked in the introduction, we may assume that the action of G is im-
plemented by orientation-preserving isometries on X. Suppose that ξ is a
real n-dimensional vector bundle over X and that ξ has given a G-invariant
reduction to SO(n). (In the applications ξ = TM.) Write

(9.6) E{ξ) s* Q xso(n) V

as in Definition 9.4. We wish to determine when ξ has a G-invariant re-
duction to Spinc(n). If ξ has a G-invariant reduction to Spinc(n) then the
class w2(ξ) must be the reduction of some integral class. Choose such a class
c E H2(X;Z). This corresponds to picking a (non-equivariant) Spinc(n)-
reduction for ξ. More precisely, there is a right Spinc(n)-space P, a principal
Spinc(n)-bundle

Spinc(n) —> P —-> X

and an isomorphism of SΌ(n)-bundles

(9.7) E(ξ) S P xS p i n C ( n ) V.

Further, this structure covers (9.6) in the sense that there is a principal
^-bundle

Sι —>P^Q

where S1 is acting on P on the right by regarding S1 as the center of Spinc(n)
via the canonical extension

S1 —» Spinc(n) —> SO{n).

The bundle (9.7) is classified (as a principal Srl-bundle) by a class K E
H2(Q',ΊJ) which depends upon the bundle ξ and upon the choice of the
class c E H2(X]Z) which specifies the non-equivariant Spinc(n) -structure.

Fix a basepoint q0 E Q. Define

ω:G—+Q

by ω(g) = gq0 and define
ώ : G x Q-+Q

by ώ(g, q) = gq.
The following theorem is the key to the rest of this section of the paper;

I am most grateful to Dan Gottlieb for calling it to my attention. His result
applies to principal torus bundles but we state only the case which we shall
use.
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Theorem 9.8 (D. Gottlieb [G]). Let G be a compact connected Lie group.
Let

S1 -4PΛQ

be a principal S1-bundle classified by K E i ϊ 2 ( Q ; Z ) . Suppose that Q is a left
G-space. Define

T{κ) = ώ*(/c) - (1 x K) € H2(G x Q; Z).

Then the action of G on Q lifts to an action of G on P with π a G-map if
and only ifΓ(κ) = 0.

Gottlieb comments that in general

where ωλ E H1{G\Hι{Q\rL)). He notes the following:

(1) ωλ = 0 whenever either Hχ(G) or Hι(Q) is a torsion group.

(2) ω*(κ) — 0 if the G-action on Q has a fixed point.

(3) χ(Q)ω* = 0 if Q is compact.

(4) ω* = 0 if Ui(G Z) is a free abelian group and Hι(Q;Z) is a torsion
group.

The conditions of (4) also imply that ω± = 0.

Corollary 9.9. Xeί G be a compact connected Lie group. Let X be an
oriented G-manifold. Suppose that ξ is a real n-dimensional vector bundle
over X and that ξ has a given G-invariant reduction to SO(n) and a (non-
equivariant) further reduction to Spinc(n) with associated principal bundle

Sι -^ P Λ Q

classified by K as above. Then the G-action on Q lifts to a G-action on P
with π a G-map if and only if T(tz) = 0. Further, if Hχ{G\ Z) is free abelian
and i ί i (Q Z) is a torsion group then T(k) = 0 and hence there is always a
7Γ-compatible lifting of the G-action.

Corollary 9.10. Let G be a Hodgkin group. Let X be a connected, simply
connected oriented G-manifold. Suppose that ξ is a real n-dimensional vector
bundle over X and that ξ has a given G-invariant reduction to SO(n) and
a (non-equivariant) further reduction to Spinc(n) with associated principal
bundle
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classified by K as above. Then the G-action on Q lifts to a G-action on P
with π a G-map.

Proof. The homotopy sequence of the principal bundle

SO(n) —> Q—> X

implies that τri(Q) = Z/2 or 0 and in either case Hχ(Q) is a torsion group.
The group HX(G; Z) = τrι(G) is torsionfree and finitely generated, hence free,
and so the conditions of (9.9) are satisfied. D

This is not quite the end of the story, since the left G-action on P which
is constructed above does not necessarily commute with the right principal
SΌ(n)-action on P. We shall deform the left G action constructed above in
order to repair this defect. The following proposition was proved in the case
G = S1 by Petrie [P 1, p. 117] and his argument generalizes immediately to
the present situation.

Proposition 9.11 (Petrie). Let G be a compact connected Lie group.
Suppose given an oriented connected manifold Q with a right SO(n)-action
and with G acting on the left. Let

sι -+ P A Q

be the associated principal bundle, where Spinc(n) acts on P on the right,
and Sι acts on P by regarding it as the center of Spin0 (n). Suppose further
that P is a left G-space and that the map π is a G-map. Then the action
of G on P may be deformed to a new left action of G on P with respect to
which π is still a G-map and the new action of G on P commutes with the
right Spin0(n)-action.

Proof. Define φ : G x P x Spinc(n) —> Sι by

This makes sense since the left G-action on Q commutes with the right
5O(n)-action. Then

for t € S1 since 51 is being regarded as the center of Spinc(n). Hence ψ
passes to quotients: define

ψ.GxQx Spinc(n) —> S1
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by

,*(p),8) =ψ(g,p,s).

The map φ satisfies the following conditions:

(1) ψ(lG, q, s) = φ{g, ςr, lSpin
c(n)) = Is*

(2) Ψ(gig2,P,s) = ψ{gug2P,s)ψ(g2,p,s)

(3) φ(g,p,s1s2) = φ{g,ps1,s2)φ(g,p,s1).

Choose a basepoint qo for Q. Condition (1) implies that φ = 1 on the wedge

GVQVSpinc(n)

and thus φ factors through a based map

φ:GAQA Spinc(n) —> S1 *έ K{Z, 1).
Since G, Q, and Spinc(n) are connected, the Kύnneth Theorem in ordinary
cohomology implies that Hι{G AQ A Spinc(n); Z) = 0 and hence φ is null-
homotopic. Thus there is a unique lift

Φ : G x Q x Spinc(n) —> R

of φ such that

Define 7 : G x Q -> R by

JSpinc(n)

where the integration is with respect to normalized Haar measure on Spinc(n).
Let 7 be the composite

GxQ-^R—>51.

Define a new action of G on P by

Then the invariance properties (2) and (3) of ^ imply that

(2)

(3)
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for all g, gu g2 G G, p G P, s G SO(n). This completes the proof of the
theorem. •

The results above immediately imply the following theorem.

Theorem 9.12. Suppose that G is a Hodgkin group. Let X be a con-
nected, simply connected G-manifold. Suppose that w2(X) is the reduction
of an integral class, or, equivalently, that rX has a (non-equivariant) Spinc

structure. Then τX has a G-inυariant reduction to Spin0 which is (non-
equivariantly) equivalent to the given Spinc -structure, and thus X has a KG-
orientation.

Proof By assumption the tangent bundle τX has a (non-equivariant) Spinc

structure. Corollary 9.10 of Gottlieb's theorem applies, and so there is a G-
action on the total space P of the associated Spin°-bundle. This action may
not commute with the given Spinc-structure, but Proposition 9.11 allows us
to deform the initial G action on P to a new G action which does commute
with the Spin0 action. Then τX has a G-invariant reduction to Spin0 and
Proposition 9.5 implies that X has a If G-orientation. D

Remark 9.13. The next question which might be asked is to deter-
mine the exact relationship between UΓG-orientations and invariant Spin°-
structures. Stong [St, p. 301] shows that every if-oriented vector bundle
has a stable Spin°-structure, but the if-orientation which arises from the
Spin°-structure may not coincide with the original if-orientation. Of course
the two may differ at most by a unit. Similarly, it is natural to ask how
many of the if G-orientations of a bundle arise in this fashion. The situa-
tion for Spin-manifolds and K0-orientations has been determined by Atiyah
and Hirzebruch [AH2]. It turns out that half of the ifO-orientations come
from Spin-structures. We presume that the analogous statements are true
equivariantly.

In principle the results in Section 9 should be derived from equivariant
bundle theory directly, rather then via the arguments we have made which
handle the non-equivariant and equivariant obstructions separately. Corre-
sponding to the sequence

Z/2 —> Spin°(n) —> SO(n) x S1

there is a sequence of equivariant classifying spaces [M]

(9.14) 5(Z/2, G x Spin°(n)) —> BG(Spin°(n)) ^ BG(SO(n) x S1).
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May's techniques imply that as a G-space,

B(Z/2, G x Spinc(n)) *£ ϋΓ(Z/2,1)

where G acts trivially on if (Z/2,1). Herice (9.14) becomes the sequence

(9.15) ϋΓ(Z/2,1) —* £G(Spinc(n)) ^ > 5G(S0(n) x S1) - ^ C{ηG)

which is analogous to (9.3). Determination of the coίibre C^G) and the map
K might lead to an equivariant analysis of the results of this section. However
this is apparently out of reach of current technology. The general area is now
under study by Costanoble, Kriz, May, and Waner.

10. Conclusion.

In this short section we pull together the results of the previous sections in
order to establish the main theorem stated in the Introduction.

Theorem 10.1. Suppose that X and Y are connected, simply connected
Spin0-manifolds of the same dimension. Let G be a Hodgkin group which acts
upon X and Y such that XG and YG are non-empty and consist entirely of
isolated fixed points. Suppose that f : X —> Y is a smooth G-map such that
the induced map f* : KQ{Y) —> KQ(X) is an isomorphism. Then:

(1) If X and Y are of the same even dimension then for each fixed point
x E XG, the local representations of G at x and at f(x) are equivalent.

(2) Ifuf :uX -*uY is an equivalence then uf* : H*(uY; Q) -> H*(uX; Q)
preserves Pontryagin classes.

Proof. The space X is a connected, simply connected manifold with the
Hodgkin group G acting by orientation-preserving isometries and with a
(non-equivariant) Spinc-structure. Theorem 9.12 implies that τX has a G-
equivariant reduction to Spin0 and hence X has a ϋΓG-orientation. The
same argument shows that Y also has a UΓG-orientation. Then we may
apply Theorem 7.5 (which is the version of Theorem 10.1 for ϋf^-oriented
manifolds) to complete the proof of the theorem. D
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