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UNIQUENESS FOR THE n-DIMENSIONAL
HALF SPACE DIRICHLET PROBLEM

D. SiEGEL AND E. O. TALVILA

In R”, we prove uniqueness for the Dirichlet problem in
the half space z, > 0, with continuous data, under the growth
condition u = o(|z|sec? §) as |z] & oo (z, = |z|cosd, v € R).
Under the natural integral condition for convergence of the
Poisson integral with Dirichlet data, the Poisson integral will
satisfy this growth condition with vy = n — 1. A Phragmén-
Lindeldf principle is established under this same growth con-
dition. We also consider the Dirichlet problem with data of
higher order growth, including polynomial growth. In this
case, if u = o|z|N*t!sec?0) (y € R, N > 1), we prove solutions
are unique up to the addition of a harmonic polynomial of
degree N that vanishes when z, = 0.

1. Introduction and notation.

We use the following notation. In R™ (n > 2) let 1 be the half space z,, > 0
and OII, the hyperplane z, = 0. For z € R", let y € R"~! be identified
with the projection of & onto 8Il,. For z € II,, write z, = |z|cos@ and
|yl = |z|sin@ (0 < 6 < §). Let B, be the ball of radius p, centre the origin
in R”, and d S,,_; its surface element. A ball with centre 2 # 0 is denoted
B,(z). The volume of the unit n-ball is w, = 7"/2/T(1 + n/2). When
integrating over regions in R"~! the integration variable is written y’ and
the angle between y' and y (for fixed y) is ;. Unit vectors are written with
acaret, e.g.,Z = z/|z|, and €; is the unit vector along the ith coordinate axis.
Finally, for k € Z, Py is the set of (real) homogeneous harmonic polynomials
of degree k and ) the set of (real) spherical harmonics of degree k (see [3])
with the proviso that P, = )) = {0} for £ < 0. If g is a function on the unit
sphere, then ||g||* = JoB, 19(2)]? dSs-1.
The half space Dirichlet problem is to find u satisfying

(1.1) u € C¥HI)NC°(I0)
(1.2) Au=0, zell
(1.3) u=f, z€0lly,
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where f is a given continuous function on R"~!. The Poisson integral is
defined

(1.4) Plfl(z / K(z,y) f(y) dy

where the Poisson kernel is

NE

(1.5) K(z,y) = ZZ" Y —yl*+ 2]

n

The integral will exist if

1f(¥)] dy’
(1.6) / St <

Since the kernel satisfies the mean value property for harmonic functions,
u = P[f] will then define a harmonic function in II,. If f is continuous then
u € C*(I1,) N C°(I1,) and satisfies (1.3) ([1], Exercise 16 of Chapter 7).

We will also consider continuous data of higher order growth. Let Dy
(N > 0) be the set of continuous functions, f, for which

L@ + 17 dy < 0.

In this paper we will consider uniqueness of solutions to (1.1)—(1.3) under
pointwise growth conditions and will extend the results of [12] from two to
n dimensions. It is a classical result that if u = o(|z|) then any solution to
(1.1)—(1.3) is unique [6]. However, we show below that the Poisson integral
behaves as o(|z|sec® ! §) when |z| — oo in II; and the order relation is sharp
in the sense that the exponents cannot in general be decreased. By an order
relation u = o(|z|sec” §) we mean u(r)/r — 0 as r — oo where p(r) is the
supremum of |u(z)| cos? 8 over z € Il |z| = r. It is thus desirable to have a
uniqueness theorem that allows this behaviour. Using a spherical harmonics
expansion we prove that under the growth condition u = o(|z|V*+! sec” §)
(y e R, N =0,1,2,...), solutions to (1.1)—(1.3) are unique up to the ad-
dition of a harmonic polynomial of degree N that vanishes when z, = 0.
Hence, if f € D, then u = P[f] is the unique solution to (1.1)-(1.3) under
the relaxed growth condition u = o(]z|sec” ! 6).

Closely connected with growth conditions for uniqueness are Phragmén-
Lindel6f principles. Using classical barriers, we prove a Phragmen Lindelsf
principle for the half space under the growth condition u = o(|z|sec §)
(v € R). This then gives another proof of the uniqueness theorem under
u = o(|z|sec” ). Using other techniques, H. Yoshida ([16]) has obtained a
more general Phragmén-Lindel6f principle.



UNIQUENESS FOR THE n-DIMENSIONAL HALF SPACE DIRICHLET PROBLEM 573

In the last section of the paper we consider data f € Dy (N > 1).
A modified Poisson integral may then be used to give solutions to (1.1)-
(1.3) satisfying u = o(|z|V*!sec®~! §). These solutions are unique up to the
addition of a harmonic polynomial of degree N, vanishing when z, = 0. The
kernels for these modified Poisson integrals are no longer positive. Our final
result is the non-existence of positive solutions to (1.1)—(1.3) when f > 0
such that the integral in (1.6) diverges.

In the conclusion we indicate directions for further work and connections
with the integral growth conditions studied by H. Yoshida ([17]).

2. Growth estimates.

When u is a solution of (1.2), (1.3) various estimates on the L? norm of u
and of u,, (where u,, (y) = u(z)) are given in [1] and [2]. However, as we
are concerned with pointwise behaviour of u we give the following estimate
of |u|. (See [1] for estimates when u is in a harmonic Hardy space.)

Theorem 2.1. Leta >1,0<b<a+n-1lora=1,0<b<n. Iff
is measureable such that [g._.|f(¥')|*(|¥'|° + 1)~ dy < oo then (1.6) holds
and u = P[f] satisfies u = o(|z|®~"+D/3gec(r~1)/a§) as |z| = oo in II,.

Proof. Let 0 < o < n/2 and p, ¢ Holder conjugate exponents (p~'+¢~* =1,
p > 1). Using the notation in the Introduction, the Poisson kernel, (1.5),
may be written

K(e, o) = Z" (1 — sin 8 cos ;)"

n

/| - |e)? - ~(3-e)

2.1 [P oty ol] O - o+ 22
2o+1g (1 4+ sin ) , —2a -(2-a)
e2) < ETEOEIDT ) gy~ ol 427,

Let |z| > 1. For p > 1, @ < n/2, the Holder inequality gives

) N o 22 amlp ki
@3 [ K@)y < S lelsec O IF I,
where
|f(y)P dy
9.4 I =/ fW)Pdy
24 ' Jaoes Tyl + [al)eor

Rn-1 Iyl|2ap + |$|2ap
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and
(2.6) I :/R . [ly/ _ ylz +zi]—Q(§—a) dy'.

To evaluate I, introduce spherical coordinates centred on y, i.e., p = |y’ —y|.
Then

12:/ [Pz""xi]—q(%_a)/ dS,_»dp
p=0 9B,

= (0= Dwamr [ o+ 221 2 dp
p

=0

(2.7) =(n-1) wn_lzZ"l'Q(”‘z")/ 0[p2 + 1]“‘7("/2““)p"”2dp.
p=

This integral converges whenever n — g(n — 2a) < 1 or 2ap<p+n —1.
When p =1 (a < n/2), (2.3) holds with I replaced by

sup [y —yl? +22)"F Y = g (02,
y'€R™-1
And, if &« =n/2, (2.3) holds with I, = 1.
Now, put a = p, b = 2ap. Hence, (1.6) holds and u = P[f] exists on II,.
Furthermore, by dominated convergence and (2.5), I; — 0 as || — oco. The
theorem follows by putting (2.5) and (2.7) into (2.3). d

Corollary 2.1. If (1.6) holds, then u = P[f](z) = o(|z|sec”~!0).

Proof. Let a =1, b = n. O

Remarks. Corollary 2.1 with n = 2 was obtained by F. Wolf ([15]). If
a > 1 and f € L® then the Holder inequality shows that (1.6) holds and
lu(2)| € cnall fllaz; "~V/2. The above constant is given in terms of the Beta
function,

2 [(n—1)wa, <n—~ Y 1)}1“%
n,a — B s = h 1
on, nwn{ 2 2 '2a-1) T2 when @ >

and ¢, ; = 2/(nw,). It is obtained by evaluating (2.7) in the case o = 0 ([4],
1.5.2). In [1], Theorem 7.11, an inequality of the same form is derived by a
different method.

When f is majorised by a radial function a better estimate of |u| is pos-
sible.
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< F(lyl) for F such that [, F(p)(p* +

Proposition 2.1.  If |f(y)|
1(z) = o(|z|sech).

1)~'dp < oo then u(z) = P[f

Proof. From (2.1) and (2.2) (and the binomial theorem),

’ 2§+1 . -z /|\n n~ -
(2, /) < (L = sinf cost) F (1" + " ?laf?) "
We then have .
23tz r® F(p)dp
lu(z)]| < JIELi38
Wy Jp=0 P2+ |z
where
I3 = (1 —sin @ cos ;)™ % dS,_,.

(2231

The integral I3 is singular when 6 = 7/2 (z, = 0). To determine the
nature of the singularity we use the method of spherical means [10] to write

Iy=(n-2) w,,,_2/ (1+sin 6 cos¢)™ % sin” 2 ¢p d¢.
¢=0
Using the substitution 1 — 2¢ = cos ¢, an integral representation of the hy-

pergeometric function and quadratic and linear transformations ([4], 2.12.1,
2.11.4, 2.9.2) we have

_ 2y/Twa_ol(2) 2Fi(a, b; c;sin” )

I )
3 [(%2 — 1) cos?6

where a =n/4—1,b=n/4—-1/2 and ¢ = n/2 — 1/2. The hypergeometric
function, ,F;, (with these a, b, ¢) is bounded above (and below) by positive
constants so that

Aulz] [= F(p)dp

<
Iu(x)l cos B =0 p2+|$|2’

where A,, is a positive constant. As |z| — oo we have u(z) = o (|z|sec§).

O

The following example will show that the estimate on the Poisson integral
in the above corollary is sharp. Define continuous data, f, to be zero except
on a sequence of balls along the z;-axis,

fi(l - ;1',' |Z/ - aiall), yE€ Br.(aigl) c R™-!
0, otherwise,

f(v) ={
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where f;, a; and r; are sequences of positive real numbers such that a; — oo,
r; < 1 and the B, (a;€;) are disjoint. If u = P[f] then (1.6) is equivalent to
convergence of the series

(2. S i

We can write u as the superposition of translates of the solution to the
normalised problem

=0, zell
5 1*|y|, ¢ € B CR*!
$n:0,$¢B1.

Thus, since @ > 0,

-Eas(=28)

e (5.

Consider the sequence (™ = q,,&, +r,€,. We now show thatif 34+v < n
or f+v =mn, v <0, then u(z)|z|"Pcos” @ 4 0 along this sequence. Put
a; =€, f; = e, r; = i"2. Then the series (2.8) converges and yet

(@) u(e™) | fn T(E)
|x(m)|ﬁ+"/ - (a?n + rrzn)(ﬂ"l"Y)/z
o mTP e (E,)
- (eZm + m“4)(ﬁ+'1)/2

40 as m — oo.

For any 8 and + such that S++v < nor 8+v = n, v <0, we then have that
u # o(|z|’ sec” §) as |z| = oo in 1. The order estimate in Corollary 2.1 is
sharp.

This example provides a solution to (1.1)—(1.3) that does not satisfy the
classical uniqueness growth condition u = o(|z|). In the next section we
prove uniqueness for the half space problem under the relaxed growth con-
dition v = o(|z|sec? §), for any v € R, thus allowing for the behaviour
encountered in Corollary 2.1.
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3. Uniqueness.

The classical Phragmén-Lindelof principle [11] ensures uniqueness to (1.1)-
(1.3) under the growth condition v = o(|z|) as |z| — oo in II,. However,
if f € D, then u = P[f] is a solution even though f(y) needn’t be o(|y|)
for the Poisson integral to exist. In fact, existence of the Poisson integral
does not imply any a priori pointwise behaviour of u on 9II,. We now
establish a theorem that guarantees a unique solution to (1.1)—(1.3) with a
growth condition compatible with any data f € D, and gives uniqueness to
a harmonic polynomial when f € Dy, N > 1.
We first prove the following.

Lemma 3.1. Ifh € P, (k > 0) and p > 0 is an integer, then there are
h; € P; such that

(3.1) i h(z) = Z|$|2thk+p 2(),

where t is a fized integer, 1 < 1 < n.

Proof. The proof is by induction on p.
If p = 0 the result is immediate.
If (3.1) holds for 0 < p < g then

q
(3.2) w?"'lh(x) =z Z || Hy 4 q—2¢() (H; € Pj).

£=0
Writing A; = [n 4+ 2(j — 1)]7" for j > 1 and A; = 0 for j < 0, the function
Hj(z) = z; Hj(z) — A\jlz|? 322 is in Pj4s1 [3, p. 534]. Since 3 € P;_y, (3.2)
may be written

q ~ OHjppq—
et h(c) = Z; ||* (Hk+q—2l(x) + Aktg-2e |2/ _t;z—u)
g+1 ~
=y |zf* Hk+q+1 2¢(2) (for some H; € P;)
=0
and the result follows. O

The spherical harmonics of degree k are the restriction of elements of Py
to the unit sphere. The lemma with 7 = n may be written

p A
(3.3) cos? Y, (Z Z etp—20(T) where Y;, Y; € ;.
£=0
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We are now in a position to prove the following uniqueness theorem.

Theorem 3.1. IfN > 0 (N € Z) and v € R then any solution u €
C*(I14) N C°(I) of

(3.4) Au = 07 T € H+
(3.5) U = f, T c 6H+
(3.6) u=o(z|"* sec’d) as|z|— oo inIl,

is unique to the addition of a harmonic polynomial of degree N that vanishes
on 6H+.

Proof. 1t suffices to prove the theorem for v € Z,. Let v be a solution to the
corresponding homogeneous problem (f = 0). It is equivalent to prove that
v € Py and v = 0 on OII,. By the Schwarz reflection principle any such v
must be harmonic in R™. The spherical harmonics expansion theorem ([3],
p. 535) gives

(3.7) v(z) = 3 Jal* O (@)

where we will write Y,c(i) € Y, and Y}C(O) vanish on 0l N 0B;.
Using (3.3) we have

y
(3.8) cos” 0Yk(0)(:'i) = Z Yk(ﬂ_u(i)
£=0
and
o0 i
(3.9) cos” Ou(z) = > [z|F STVE . (E).
k=1 £=0

Let j € Z, and 0 < m < 7. The series in (3.7) converges uniformly on
compact sets and so may be integrated over the unit sphere term by term.
With d,, the Kronecker delta, orthogonality of spherical harmonics gives

/aB Yj(&_zm(a?) cos” §v(|z|Z) dS, -1

(3.10)

~

oo ) R X R
= Z || 25j+7—2m,k+w—2£ /aB Yk(ily—ze(x) Y;c(-{-')y—Zl(x) dSnp_1.
= £ 1

k=1 =0

The notation v(|z|Z) indicates |z| remains fixed for the integration. The con-
dition
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J+7—2m = k 4+ v — 2{ is satisfied by only a finite number of k¥ € Z,,
0 < £ <. The right member of (3.10) is then a polynomial in |z| with no
constant term. Integrating the order relation (3.6),

S, Y an @ o578 0((012) dSnes = o(Jal™** | ¥ _n(@) dS.s)

=o(|zI"*)  (lz] = o0),

shows the coefficient of |z}’ in (3.10) vanishes when j > N, i.e,, ||Y;(_{_11_2m||2 =
0. From (3.8), Y” = 0 for k > N. Hence, by (3.7), v(z) = 0 if N = 0 and

N> 1,
N
v(z) =) |af* Y9(%) € Py.

k=1

The theorem follows. O

Corollary 3.1. If (1.6) holds for continuous f then u = P[f] gives the
unique solution to the Dirichlet problem (1.1)—(1.3) that satisfies the growth
condition u = o (|z|sec®18) (|z| = oo in II;).

Proof. Use Corollary 2.1 and put N =0,y =n —1 in Theorem 3.1. O

4. Phragmén-Lindelof principle.

In [12] a Phragmén-Lindeldf principle was proved in R? with growth con-
dition v = o(|z|sec) (in our present notation). In this section we extend
this result to R™ and to growth o(|z|sec” §) for any v € R. Proofs of this
type often involve barrier functions on half balls (e.g., [7], [11]). The weak
maximum principle is applied on a half ball of radius p and then p is allowed
to tend to infinity. It may be shown that if a barrier function has growth
|z| sec” 6 on a half ball, then we must have v < 2. In the following proof we
employ a barrier on a convex polytope, T, (isosceles triangle in R?, pyramid
in R?, see below) all of whose sides make an interior angle less than 7 /2 with
OIl,. This allows us to define a barrier function with growth |z|sec” § on
the sides of the polytope, for any v € R. The maximum possible angular
growth of a barrier function defined in the region T, increases as the interior
angle that T, makes with 0I1, decreases. It is not known whether the the-
orem is true under growth u = o(|z|/$(cos@)) for arbitrary positive ¢ with
#(0) = 0. For n = 2, F. Wolf ([14]) proves the theorem holds whenever log ¢
is integrable. H. Yoshida has provided an n-dimensional analogue ([16]).
Our approach differs in that we use classical barriers.
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Theorem 4.1. Lety € R. If u € C*(Il) such that

(4.1) Au>0 inll,
limsup wu(z) <0 for any x, € Ol

:EEH+, T—=To

(4.3) u=o(|z|sec”d) as|z|— oo inlly
then u <0 in Il .

Proof. 1t suffices to prove the theorem for v > 2. Let p > 0 and m =
tan(7/(27)) (0 < m < 1). Define

T,= {xER"|O<mn<l<m<in 1m(,o—lw,-|); |zi] < p, lgign—l}.

When n = 2, T, is an isosceles triangle with vertices (+p,0) and (0, mp)
and common angle 7/(2y). When n = 3, T, is a square-based pyramid with
base corners (+p, £p,0) and apex (0,0, mp). Write 0T, = 07, NI, and
S={z€T, z,=0,|z;] =p for some 1 < i< n—1}. Note that T, — I,
as p — 0o. A barrier function is a solution ¥, € C*(T,) N C°(T,\S) of

(4.4) Ay, <0, z€T,
(4.5) b,(z) > |z| sec’ 8, =z € dtT,
(4.6) ¥,>0, ze€T,\S

(1, is not defined on S).
Define 1, by writing
(n = )E+0/2574 gin(y 6; 1)
sin(7/(27)) i+
and ¥, = S0 (i + ¥ _). Forz € T,, 6; 4 is the angle by which z is

above the z, = 0 hyperplane measured from the edge of T, on 911, through
z; = +p. Explicitly,

1/):',&:(/7; 37) =

pF s
Ot = ez ey (ShESYy
(the angle between the vectors (z; F p)é; + z,é, and Fé;). And, r;y =
[(z: & p)® + 22]'/2, the distance from z to the edge of T, on OII, through
z; = %p.
With the usual polar coordinates in R?, 2 = rcos¢, y = rsin @, the
function r~7sin(y¢) is harmonic. Identifying z — pFz;, y — z,, we see that
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each 1; 4+ is harmonic in T,. Each %; 1 is non-negative in T, and although
1; + does not have a limit as ¢ — zo, € S it is true that as ¢ — z, in
T,, liminf +; 4(z) > O for any z, € S. Also, %; + vanishes when z, =
0, |zjl < p (1 <j<n-—1). Toshow 9, is a barrier function we need only
prove (4.5). Let ¢ € 9*T, such that z, = m(p — z,),0 < z; < p, ie,
z is on the face through z; = p. We have a right triangle with vertices
P=2z Q= (p2z223 ,%n-1,0), R = (21,Z2,-*+ ,ZTn-1,0), hypotenuse
4, sidle PR = z, = |z|cos, ZPQR = 0, ,, ZPRQ = /2. Therefore,
ri 4+ = |z|cosfcsc b, 4. Also, 6, = 7/(2v) and |z| < v/n — 1p. Hence,

Yo(T) 2 ¥1,4(2)
_ (n= 1) g1 sin(n/2)
a sin”(m/(27)) 1 +
> |z|sec” 6.

Similarly when z is on one of the other 2n — 3 faces of 0T, (z, = m(p %
z;), 0 < *z; < p). Hence, 9, satisfies (4.4)-(4.6) and is a barrier function.
Fix z in T,. We have

[/ tn( Zn ) In asp 00
4 = arcta ~ =z
i,% P F T p P ’

rig=1\/(zitp)?+ai~p asp—roo.

Therefore, ¢; +(z) ~ (n — 1))/ 2psin(yz,/p) csc? (7 /(2v)) and

n— (v+3)/2 T,
(4.7) Jim 4, () = : sin”l()W/Jr(Q'Y);

Now, let € > 0. Since u = o(|z|sec” 8) it follows that u < €, on 9*T, for
sufficiently large p. Write w = u — €,. With p as above,

(4.8) Aw>0, z€T,
(4.9) w<0, z€dT,
(4.10) limsup w <0 for any zo € T, N IIL,.

€T, ,z—To

Note that (4.10) holds in particular when z, is in the singular set S (on am’
edge in the z, = 0 hyperplane). For as ¢ — 2o in T},

lim sup w(z) < limsup u(z) — € liminf ¥, (z)
<O0.
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The weak maximum principle ([8], §3.1) applied to w shows that w < 0
in T,. Finally, given z € Il;, let p be large enough so that z € T, (p >
|| csc(w/(27)) suffices). Then, using (4.7)

02 fim u(e) - (2]
2¢€(n—1)0+3)/2y g
S (/7))

and € was arbitrary so u(z) < 0. Hence, v < 0in Il,. O

= u(z) -

Remarks. Condition (4.3) may be replaced with the weaker condition

limsup { sup [u(z)|z| 'cos? 4] p < 0.
r—00 J:Elﬁ:

Also, if u € C°(TL,) then (4.2) may be replaced by v < 0 on J11,.

For data f € Dy, Theorem 4.1 provides an alternate proof of the unique-
ness result, Corollary 3.1: if u; and u, are solutions of (1.1)—(1.3) that satisfy
(4.3) then let v = u; — uy and apply Theorem 4.1 to v and —v.

5. A modified Poisson integral.

When the integral in (1.6) diverges and f € Dy for some M > 1 it is
possible to solve (1.1)—(1.3) with an appropriately modified Poisson integral.
Following [5] and [12] we define the modified Poisson kernel

(5.1)

K(z,vy), Iy’l < 1
Ku(z,y') = 2 |z|™ s
K(z,y') r 2 (sin 0 0 1>1
- w, n;olyl"‘*" Alsing coshy), - lyi>1,

where C/2 are Gegenbauer polynomials (see [13] for results concerning Gegen-
bauer polynomials used in this section). Write

(5.2) Um(z) = Kul(z,¥)f(Y)dy'.

Rn—1

A generating function for Gegenbauer polynomials is

(5.3) (1-=2tz+2%)" Z 2™ CA(t 2| <1, A#0.
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Thus, in Kjs the first M terms of the Taylor expansion of K in |z|/|y| are
removed (for |y’| > 1). Using the method in [12] we see that Uy satisfies

(1.1)-(1.3).
We now show that Uy, satisfies the growth condition of Theorem 2.1 with
a=1,b=n+M.

Theorem 5.1. If f € Dy (M > 1) then Uy = o (Jz|M+1sec”~16).

Proof. In order to determine the behaviour of K we consider the series
Sr-1(s) = 2 ¥ -1 smCA(t). The Gegenbauer polynomials satisfy the recur-
rence relation

(54)  (m+2)Crpn() =20+ m+1)tCh () + (2A+m) CL(t) =

Following the method in [13] used to derive (5.3), we sum (5.4) from m =0
to m = M — 1. This yields a first order linear ordinary differential equation
for Spr—1(s). Solving this for Syr_1(s), we find (for |y'| > 1)

Kul(z,y) =K(z,v) [MCA%,(sin 0 cos )1 (‘—lz—lll, sin 000s01)
(5.5) —(n+ M —1)CE_ (sin 8 cos ;) Iy (I‘yll sm0c0301)]

where
I (s,t) = /(’_0(1 — 24C + () 3ICM g

< / (14 ¢)"2¢Md¢ ifs>0and Jt| < 1.

¢=0

Using the bound
ICo ()] < Co(1)
(m +2) -1

m

) (Kl <1, m20)

it follows that
, M4n— , z
(5.6 Koae(e, ) < n( ! )x( a1 (1)

where I(s) = [[_o(1+¢)"2(¢M~1 + (M) d.
Let E > 1 and |z| > 2E. Let J; = [0,1], J> = [1, E], J3 = [E, |2|/2] and
= [|z]/2, 00) and define J; = [i,c 7 Km(z, ¥)f (V) dy (i = 1,2,3,4) so
that UM = Jl +J2 +J3+J4
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The integral J; is equivalent to the Poisson integral with data having
compact support. Therefore, J; = O(z,|z|™1).
When |y'| € T, I(|z|/|¥]) < 2|z[M*"~! for sufficiently large |z|. Also,

/1IN =7
Iy = o +o217% < foi (1 - 1)

|z
< 2%ez|™" for |z| > 2F.

Hence, from (5.6)
| /2] <

< ontly (M+ n — 1>|w|M'1
W n

and J, = O(z,|z|M~1).
When [y| € T,

()< () G i)
n—1 M+n
() ()

Also, [y — y|? + 22]7% < 2"|z|~". Given € > 0 we now take E/ > 0 so that
| [, FW)]y1-"+M) dyf| < e whenever |z] > 2E. Then J3 = o (z,|2|™).

When || € T,
lwl) ( II)"(lwl)M
1( Jzl
ly/| | ||

o ()
|y
Therefore,

ne1 [M4+n—-1 _ ,
il < 3 n( K )mM[ [ K G, v) |

and J; = o (Jz|M+1sec” 1 §) by Corollary 2.1.
Hence, Uy = o (|z|M*!sec” "1 6) as |z| — oo in IL,. O

[ 1) dy']

Corollary 5.1. If|f(y)] < F(ly|) and F € Dy then Uy = o (Jz|M*! sec ).

Proof. The radial majorisation estimate of Proposition 2.1 is used with J,
above. O
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The modified kernels, Kps (M > 1), are not positive. In fact we have the
following result.

Theorem 5.2. If f > 0 such that f;._. f(v) (|¥'|" + 1) dy = oo then
there are no positive solutions to (1.1)—(1.3).

Proof. Introduce a cutoff function, &y, such that

£y = 1, |z| <N
YT, el 2 N+,

0 < énx <1 and &y is continuous.

Suppose u > 0 and satisfies (1.1)-(1.3). Let uy = P[fén]. Given € > 0,
we claim that u > uy — € on 8B, NI, for large enough p. Indeed, we have
Auy = 0in I, uy = féy on 811, and uy = O(z,|z|™?) as |z| — oo (since
f&n has compact support). So, u > uy on 9Il; and |uy| < € on B, NIL;
for large enough p. Therefore, u > uy — € on dB} (0B = {z € R"||z]| =
p, o > 0}). Since € is arbitrary, > uy on dB}. By the weak maximum
principle, u > uy in Bf. But,

(@) 2 [ K@) @)y

ly'|<N
—+00 as N — oo.

Hence, there can be no such u. O

This theorem can also be deduced from the general representation of non-
negative harmonic functions on II, (Theorem 7.24 in [1]).

6. Conclusion.

We propose three directions for further work in this area. Using the known
integral representation of solutions of the half space Neumann and Robin
problems it should be possible to obtain analogous results to those in this
paper. As per the remarks at the beginning of §4, a Phragmén-Lindelof
principle with maximum angular growth is desirable. Also, in [7] and [9],
the classical Phragmén-Lindelof principle is extended to uniformly elliptic
operators in II,. Their methods do not rely on explicit representations of
solutions and it is possible their results may be expanded to include a growth
condition that has angular dependence, as in (4.3).

Work of H. Yoshida, [17], gives related results to ours using an integral
condition,

(7.1) / u(rZ) cos§dS,_; = o(r) asr — oo,
9+B,
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rather than a pointwise one. Combining Theorem 3 and Lemma 3 of [17], we
have the result that if f satisfies (1.6), then u = P[f] is the unique solution
of the Dirichlet problem (1.1)-(1.3) that satisfies (7.1). From Theorem 2 of
[17], a Phragmén-Lindeldf principle holds with condition (4.3) replaced by

(7.1).
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