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UNIQUENESS FOR THE n-DIMENSIONAL
HALF SPACE DIRICHLET PROBLEM

D. SlEGEL AND E. O. TALVILA

In JRn, we prove uniqueness for the Dirichlet problem in
the half space xn > 0, with continuous data, under the growth
condition u = o(\x\secΊ θ) as \x\ —>• oo (xn = |#|cos#, 7 G ffi).
Under the natural integral condition for convergence of the
Poisson integral with Dirichlet data, the Poisson integral will
satisfy this growth condition with 7 = n — 1. A Phragmen-
Lindelδf principle is established under this same growth con-
dition. We also consider the Dirichlet problem with data of
higher order growth, including polynomial growth. In this
case, if u = o( |# | N + 1 sec7 θ) (7 G M, N > 1), we prove solutions
are unique up to the addition of a harmonic polynomial of
degree N that vanishes when xn = 0.

1. Introduction and notation.

We use the following notation. In Rn (n > 2) let Π + be the half space xn > 0
and ΘU+ the hyperplane χn = 0. For x G Rn, let y e IK""1 be identified
with the projection of x onto dH+. For x G Π + 7 write xn = |#|cos0 and
\y\ = \x\ sin0 (0 < θ < | ) . Let Bp be the ball of radius />, centre the origin
in Rn, and d5 n _i its surface element. A ball with centre x φ 0 is denoted
Bp(x). The volume of the unit ra-ball is ωn = τrn/2/Γ(l + n/2). When
integrating over regions in R n - 1 the integration variable is written y' and
the angle between y' and y (for fixed y) is Q\. Unit vectors are written with
a caret, e.g., x = x/|x|, and e, is the unit vector along the ith. coordinate axis.
Finally, for k G Z, Vk is the set of (real) homogeneous harmonic polynomials
of degree k and yk the set of (real) spherical harmonics of degree k (see [3])
with the proviso that Vk = Vk — {0} for k < 0. If g is a function on the unit
sphere, then \\g\\2 = fdBι \g(x)\2dSn^.

The half space Dirichlet problem is to find u satisfying

(1.2) Δu = 0, x G Π +

(1.3) « = /, χedπ+,
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where / is a given continuous function on R7 1"1. The Poisson integral is
defined

(1.4) V[f}{x)= I IC(x,y')f(y')dy'
Jmn-1

where the Poisson kernel is

•5) IC(χ,j/) = —JL[W-y\2 + χl] -

The integral will exist if

(1.6) / -: —- < OO.

Since the kernel satisfies the mean value property for harmonic functions,
u = V[f] will then define a harmonic function in Π + . If / is continuous then
u G C2(Π+) nC°(Π+) and satisfies (1.3) ([1], Exercise 16 of Chapter 7).

We will also consider continuous data of higher order growth. Let D^
(N > 0) be the set of continuous functions, /, for which

ly1 < oo.

In this paper we will consider uniqueness of solutions to (1.1)—(1.3) under
pointwise growth conditions and will extend the results of [12] from two to
n dimensions. It is a classical result that if u = o(\x\) then any solution to
(1.1)-(1.3) is unique [6]. However, we show below that the Poisson integral
behaves as o(\x\ sec""1 θ) when \x\ —> oo in Π + and the order relation is sharp
in the sense that the exponents cannot in general be decreased. By an order
relation u = o(\x\ sec7 θ) we mean μ(r)/r —> 0 as r —> oo where μ(r) is the
supremum of |^(a:)| cos7 θ over x 6 Π + , \x\ = r. It is thus desirable to have a
uniqueness theorem that allows this behaviour. Using a spherical harmonics
expansion we prove that under the growth condition u = o(\x\N+ι secΊ θ)
(7 G R, iV = 0,1,2,.. .), solutions to (1.1)—(1.3) are unique up to the ad-
dition of a harmonic polynomial of degree N that vanishes when xn = 0.
Hence, if / £ Do then u = V[f] is the unique solution to (1.1)—(1.3) under
the relaxed growth condition u — o(\x\ sec n - 1 θ).

Closely connected with growth conditions for uniqueness are Phragmen-
Lindelδf principles. Using classical barriers, we prove a Phragmen-Lindelδf
principle for the half space under the growth condition u = o(\x\secΊ θ)
(7 G IK). This then gives another proof of the uniqueness theorem under
u = o(\x\secΊ θ). Using other techniques, H. Yoshida ([16]) has obtained a
more general Phragmen-Lindelόf principle.
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In the last section of the paper we consider data / £ DN (N > 1).
A modified Poisson integral may then be used to give solutions to (1.1)-
(1.3) satisfying u = o ( | x | N + 1 sec"" 1 θ). These solutions are unique up to the
addition of a harmonic polynomial of degree iV, vanishing when xn = 0. The
kernels for these modified Poisson integrals are no longer positive. Our final
result is the non-existence of positive solutions to (1.1)—(1.3) when / > 0
such that the integral in (1.6) diverges.

In the conclusion we indicate directions for further work and connections
with the integral growth conditions studied by H. Yoshida ([17]).

2. Growth estimates.

When u is a solution of (1.2), (1.3) various estimates on the Lp norm of u
and of uXn (where uXn(y) = u{x)) are given in [1] and [2]. However, as we
are concerned with pointwise behaviour of u we give the following estimate
of \u\. (See [1] for estimates when u is in a harmonic Hardy space.)

T h e o r e m 2 1 L e ί α > 1 , 0 < 6 < α + n - l o r o = l , 0 < 6 < n . / / /

is measureable such that fRn^ \f(y')\a{\y'\b + I)'1 dj/ < oo then (1.6) holds
and u = V[f] satisfies u = o( |x |( 6 - n + 1 )/ α sec( n - 1 ) / α ^) as \x\ -» oo in Π + .

Proof. Let 0 < a < n/2 and p, q Holder conjugate exponents {p~ι + q~~ι — 1,

p > 1). Using the notation in the Introduction, the Poisson kernel, (1.5),

may be written

/Cίs, y1) = — ( 1 - sin0
nωn

< 2 2» ί ΎlosZ
TILϋγi COS ι7

Let I a: I > 1. For p > 1, α < n/2, the Holder inequality gives

/. 9 2 α + 1 i

(2.3) / IC(x,i/)\f(i/)W< ixlsec^OI'I
where

(2.4) h= I
JMn~1 (\y'\ + \*

(2.5) < 2
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and

(2-6) h= f [\y'-yf + xl]-^-a)dy'.

To evaluate 72, introduce spherical coordinates centred on y, i.e., p — \y' — y\.
Then

[pl + xl]-^-") / dSn_2dp
,=0 JdBp

= (»- i n . ! Γ [p2+χir^-°) f
Jp=0

(2.7) =(n-l) u n - i ^ " 1 " ^ " 2

This integral converges whenever n — q(n — 2ά) < 1 or 2ap < p + n — 1.

When p = 1 (a < rc/2), (2.3) holds with 72

9 replaced by

sup
α - l

And, if α = n/2, (2.3) holds with J2 = 1.
Now, put a = p, b = 2ap. Hence, (1.6) holds and ^ = V[f] exists on Π+.

Furthermore, by dominated convergence and (2.5), 7i -> 0 as \x\ —> CXD. The
theorem follows by putting (2.5) and (2.7) into (2.3). D

Corollary 2.1. // (1.6) holds, then u = V[f](x) = o(\x\ sec""1 θ).

Proof. Let a = 1, 6 = n. Π

Remarks . Corollary 2.1 with n = 2 was obtained by F. Wolf ([15]). If
α > 1 and / £ i α then the Holder inequality shows that (1.6) holds and
lw(#)| — cn,a\\f\\a^n(<n~l^a' The above constant is given in terms of the Beta
function,

2 Γ ( n - l ) ω n _ l

and c n l = 2/(nωn). It is obtained by evaluating (2.7) in the case a — 0 ([4],
1.5.2). In [1], Theorem 7.11, an inequality of the same form is derived by a
different method.

When / is majorised by a radial function a better estimate of \u\ is pos-
sible.
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Proposition 2.1. // \f(y)\ < F(\y\) for F such that JpZ0

F(p)(p2 +
I)'1 dp < oo then u(x) = V[f](x) = o(\x\secθ).

Proof From (2.1) and (2.2) (and the binomial theorem),

£{z,y') < ——ajn(l-sinβ cosβi)"*(|t/|n + l ί /P" 2 ! ^ 2 ) " 1 .

We then have

where

= ί (1-sinθ cosθ^-τdSn-2.
JdBi

The integral /3 is singular when θ — τr/2 (xn = 0). To determine the
nature of the singularity we use the method of spherical means [10] to write

/ 3 = (n-2)ωn_2 ί (1 + sin(9 cosφ)~* sinn"3

Jφ=O
φ dφ.

Using the substitution 1 — 2t = cos 0, an integral representation of the hy-
pergeometric function and quadratic and linear transformations ([4], 2.12.1,
2.11.4, 2.9.2) we have

2^Fα;n,2Γ(f) 2fi (α, 6; c; sin2 θ)
3

where a = n/A — 1,6 = n/4 — 1/2 and c = n/2 — 1/2. The hypergeometric
function, 2Fχ, (with these α, 6, c) is bounded above (and below) by positive
constants so that

\U(X)\<

where An is a positive constant. As \x\ —>• oo we have u(x) = o(|a;|sec^).

D

The following example will show that the estimate on the Poisson integral
in the above corollary is sharp. Define continuous data, /, to be zero except
on a sequence of balls along the a^-axis,

fly) = ( / i

10, otherwise,
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where /t , αt and r, are sequences of positive real numbers such that α, —> oo,
r, < 1 and the JBΓI (α, ei) are disjoint. If w = ^[/] then (1.6) is equivalent to
convergence of the series

We can write ΪZ as the superposition of translates of the solution to the
normalised problem

Thus, since u > 0,

. „ (x -

Consider the sequence x^ = α m e 1 + r m e n . We now show that if β+j < n
or β + 7 = n, 7 < 0, then u(x)\x\~β cosΊ θ -ft 0 along this sequence. Put
a, = e\ fi = en\ Γ{ = i~2. Then the series (2.8) converges and yet

(χW)iu(χW) rlfmu(en)

(2

emn u(en)

0 as m —> oo.

For any β and 7 such that /? + 7 < τ ι o r / ? + 7 = n, 7 ^ 0 , we then have that
u φ o(\x\β sec7 θ) as |x| -> 00 in Π + . The order estimate in Corollary 2.1 is
sharp.

This example provides a solution to (1.1)—(1.3) that does not satisfy the
classical uniqueness growth condition u = o(\x\). In the next section we
prove uniqueness for the half space problem under the relaxed growth con-
dition u = o(|x |sec 7^), for any 7 G R, thus allowing for the behaviour
encountered in Corollary 2.1.
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3. Uniqueness.

The classical Phragmen-Lindelόf principle [11] ensures uniqueness to (1.1)-
(1.3) under the growth condition u = o{\x\) as \x\ -» oo in Π+. However,
if / G DQ then u = V[f] is a solution even though f(y) needn't be o(\y\)
for the Poisson integral to exist. In fact, existence of the Poisson integral
does not imply any a priori pointwise behaviour of u on dϊl+. We now
establish a theorem that guarantees a unique solution to (1.1)—(1.3) with a
growth condition compatible with any data / G Do and gives uniqueness to
a harmonic polynomial when / G D^, N > 1.

We first prove the following.

Lemma 3.1. // h G Vk (k > 0) and p > 0 is an integer, then there are
hj G Vj such that

l O -LI Ju; IvXJU \ —

where i is a fixed integer, 1 < i < n.

Proof. The proof is by induction on p.
If p = 0 the result is immediate.
If (3.1) holds for 0 < p < q then

(3.2) xΐ+1h{x) = Xi Σ \A2ίHk+q-2i{x) (Hj G VJ).
1=0

Writing λ̂  = [n + 2(j - I)]" 1 for j > 1 and λ̂  = 0 for j < 0, the function
Hj(x) = Xi Hj(x) - \j\x\2 Hf is in P i + 1 [3, p. 534]. Since |ff G ̂ - i , (3.2)
may be written

xrl h(x) = έ \x\2ί (Hk+q-u{x) + h+q-u \x
i=0

= Σ \X\U Hk+q+1-2i{x) (for some Hά G Vj)
1=0

and the result follows. D

The spherical harmonics of degree k are the restriction of elements
to the unit sphere. The lemma with i = n may be written

(3.3) coβP 0 Y*(ί) = J ] V M ( ί ) where YJ, 1} G %.
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We are now in a position to prove the following uniqueness theorem.

Theorem 3.1. If N > 0 (N e Z) and 7 G R then any solution u G

C2(Π+)nc°(ff+)o/

(3.4) Δu = 0, x G Π +

(3.5) t* = /, x G #Π+

(3.6) tt = o ( | x Γ + 1 sec7 θ) as \x\ -> 00 m Π +

25 unique to the addition of a harmonic polynomial of degree N that vanishes
on $ Π + .

Proof. It suffices to prove the theorem for 7 G Z+. Let υ be a solution to the
corresponding homogeneous problem (/ = 0). It is equivalent to prove that
v G VN and v — 0 on # Π + . By the Schwarz reflection principle any such υ
must be harmonic in Rn. The spherical harmonics expansion theorem ([3],
p. 535) gives

\O.ί) V(X) -

where we will write YJf* G 34 and 1^ vanish on 5Π_|- Π
Using (3.3) we have

(3.8)
1=0

and

(3.9) co^θυ(x) = J
k=l 1=0

Let j G Z + and 0 < m < 7. The series in (3.7) converges uniformly on
compact sets and so may be integrated over the unit sphere term by term.
With δab the Kronecker delta, orthogonality of spherical harmonics gives

^mix) cos1 θυ(\x\x)dSn.ι
Bi

(3.10)

k = l 1=0 J d B l

The notation υ(|a;|ϊ) indicates \x\ remains fixed for the integration. The con-
dition
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j + 7 - 2ra = k + 7 - 2£ is satisfied by only a finite number of k £ Z+,

0 < £ < 7. The right member of (3.10) is then a polynomial in \x\ with no

constant term. Integrating the order relation (3.6),

(x) co*Ov(\x\x) dSn-i = o(\x\N+1 ί

= o(\x\N+1)

shows the coefficient of \x\j in (3.10) vanishes when j > N, i.e., | | y ^ _ 2 m | | 2 =

0. From (3.8), Y{0) = 0 for k > N. Hence, by (3.7), v(x) = 0 if N = 0 and

if N > 1,

The theorem follows. D

Corollary 3.1. // (1.6) holds for continuous f then u = V[f] gives the

unique solution to the Dirichlet problem (1.1)-(1.3) that satisfies the growth

condition u = o (\x\ sec*1"1 θ) (\x\ —» oo in Π+).

Proof. Use Corollary 2.1 and put Λ̂  = 0 , 7 = n - l i n Theorem 3.1. D

4. Phragmen-Linde lδf principle.

In [12] a Phragmen-Lindelόf principle was proved in R 2 with growth con-

dition u = o(|#|sec0) (in our present notation). In this section we extend

this result to R n and to growth o(|z |sec 70) for any 7 G R. Proofs of this

type often involve barrier functions on half balls (e.g., [7], [11]). The weak

maximum principle is applied on a half ball of radius p and then p is allowed

to tend to infinity. It may be shown that if a barrier function has growth

\x\ sec7 θ on a half ball, then we must have 7 < 2. In the following proof we

employ a barrier on a convex polytope, Γp, (isosceles triangle in R2, pyramid

in R3, see below) all of whose sides make an interior angle less than τr/2 with

dΠ+. This allows us to define a barrier function with growth |# | sec 7 0 on

the sides of the polytope, for any 7 G R. The maximum possible angular

growth of a barrier function defined in the region Tp increases as the interior

angle that Tp makes with 9Π+ decreases. It is not known whether the the-

orem is true under growth u = o(\x\/φ(cosθ)) for arbitrary positive φ with

0(0) = 0. For n — 2, F. Wolf ([14]) proves the theorem holds whenever log</>

is integrable. H. Yoshida has provided an n-dimensional analogue ([16]).

Our approach differs in that we use classical barriers.
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Theorem 4.1. Let 7 6 R. Ifu € C2(Π+) si/cΛ £/m£

(4.1) Δw > 0 in Π+

(4.2) limsup u(x) < 0 /or any x0 £ dH+

(4.3) u — o (\x\ sec7 θ) as \x\ —> 00 in ΪI+

then u < 0 in Π+.

Proof. It suffices to prove the theorem for 7 > 2. Let /> > 0 and m —
tan(τr/(27)) (0 < m < 1). Define

Tp = \ x e R n \ 0 < x n < m i n m ( / > - | x f | ) ; \xA < p , l < i < n -
I l<*<n- l

When n = 2, Γ p is an isosceles triangle with vertices (±p,0) and (0,mp)
and common angle 71-/(27). When n = 3, T^ is a square-based pyramid with
base corners (±p, ±/>, 0) and apex (0,0, ra/>). Write 9 + Γ p = dTp Π Π+ and
5 = {x e Tp\ xn = 0, 1̂ ,1 = p for some 1 < i < n - 1}. Note that Tp -> Π+

as p —> 00. A barrier function is a solution φp £ C2(TP) Π C°(TP\S) of

(4.4) Δ^V < 0, x G Γ p

(4.5) ΦP(x)> |x |sec 7^ xed+Tp

(4.6) φp > 0, x e T,\5

(̂ > is not defined on 5).
Define φp by writing

^ ^ a f ) = s i n > / ( 2 T ) ) r7 ±

and ^p = Σ Γ J I 1 ( ^ , + + ^i,-) F° r x € Tp, βf)± is the angle by which x is
above the # n = 0 hyperplane measured from the edge of Tp on dll+ through
Xi — ±p. Explicitly,

(the angle between the vectors (#,- =F p)έi + xnen and =Fe,). And, rf f± =
[(xt it p)2 + xl]1/2, the distance from x to the edge of Tp on <9Π+ through

Xi = ±p.
With the usual polar coordinates in E 2, x = rcosφ, y — rsinφ, the

function r~7 sin(70) is harmonic. Identifying x h-> />=F̂ , , y ^ xn, we see that
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each φi)± is harmonic in Tp. Each φit± is non-negative in Tp and although
φiy± does not have a limit as x —> x0 £ S it is true that as x —> x0 in
Tp, liminf φi}±(x) > 0 for any #0 G 5. Also, V^i vanishes when xn =
0, |a?j| < p (1 < j < n — 1). To show φp is a barrier function we need only
prove (4.5). Let x e #+Tp such that xn = m(p — a?i), 0 < a?i < /9, i.e.,
x is on the face through xx = p. We have a right triangle with vertices
P = x, Q = (p, a:2, ^3, , zn_i, 0), R = (xu x2, , 3n-i> 0), hypotenuse
ri ι +, side PR = xn = |x|cos(9, ZPQ# = βi,+ , ZPi?Q = ττ/2. Therefore,
r1>+ = |a:| cos0csc01)+. Also, β1 | + = π/(2y) and |z| < y/n^Ύp. Hence,

sin>/(2 T )) r7)+

Similarly when x is on one of the other 2n — 3 faces of d+Tp (xn — m(ρ ±
x, ), 0 < dza;,- < p). Hence, φp satisfies (4.4)-(4.6) and is a barrier function.

Fix x in Tp. We have

/ X \ x
I —-— I ~ —-
KpψXiJ p

X x
i + = arctan I — - — I ~ —- as p —ϊ oo,

KpψXiJ p
±p)2 + xl~ p as/9->oo.

Therefore, φiι±(x) ~ (n - l)^+1)/2psin(yxn/p) csc7(π/(27)) and

,4.7,

Now, let e > 0. Since u = o(\x\ sec7 θ) it follows that u < e φp on 9+Γp for
sufficiently large p. Write w = u - eφp. With p as above,

(4.8)
(4.9)

(4.10)

Aw> 0,
w<0,

lim sup

x € d+Ί

w < 0

0

n

for any

Note that (4.10) holds in particular when x0 is in the singular set 5 (onaϊϊ
edge in the xn = 0 hyperplane). For as x —> x0 in Tp

limsupκ (a ) < limsup^(a:) — € liminf φp(x)
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The weak maximum principle ([8], §3.1) applied to w shows that w < 0
in Tp. Finally, given x £ Π+, let p be large enough so that x £ Tp (p >
|a:|csc(7r/(27)) suffices). Then, using (4.7)

0 > \im[u(x) -eφp(x)]

-U{X) s ί n > / ( 2 7 ) )

and e was arbitrary so u(x) < 0. Hence, u < 0 in Π+. D

Remarks. Condition (4.3) may be replaced with the weaker condition

limsup< SVL\)[U(X)\X\~1COSΊ θ] > < 0.

Also, if u e C°(Π+) then (4.2) may be replaced by u < 0 on #Π+ .

For data / £ JD0, Theorem 4.1 provides an alternate proof of the unique-
ness result, Corollary 3.1: if uλ and u2 are solutions of (1.1)—(1.3) that satisfy
(4.3) then let v — uλ — u2 and apply Theorem 4.1 to υ and — υ.

5. A modified Poisson integral.

When the integral in (1.6) diverges and / £ DM for some M > 1 it is
possible to solve (1.1)—(1.3) with an appropriately modified Poisson integral.
Following [5] and [12] we define the modified Poisson kernel
(5.1)

ίlC(x,y'), \y'\<l

where Cm are Gegenbauer polynomials (see [13] for results concerning Gegen-

bauer polynomials used in this section). Write

(5.2) UM(x)= ί ICM(x,y')f(y')dy'.

A generating function for Gegenbauer polynomials is

oo

(5.3) (1 - 2tz + z2)~x =Σzm Cn{t), \z\ < 1, λ φ 0.
m=0



UNIQUENESS FOR THE n-DIMENSIONAL HALF SPACE DIRICHLET PROBLEM 583

Thus, in ICM the first M terms of the Taylor expansion of K in |#|/|y'| are
removed (for \yf\ > 1). Using the method in [12] we see that UM satisfies
(1.1M1.3).

We now show that UM satisfies the growth condition of Theorem 2.1 with
a = 1, b = n + M.

Theorem 5.1. If f e DM {M > 1) then UM = o (|a?|Atf+1secn-1 θ).

Proof. In order to determine the behaviour of KM we consider the series
SM-I{S) = Σm=o smCm{t) The Gegenbauer polynomials satisfy the recur-
rence relation

(5.4) (m + 2) C*+2(f) - 2(λ + m + 1) t C^(t) + (2λ + m) C^(t) = 0.

Following the method in [13] used to derive (5.3), we sum (5.4) from m = 0
to m = M — 1. This yields a first order linear ordinary differential equation
for SM-I(S) Solving this for £M-i(s), we find (for |y;| > 1)

(5.5) - (n + M-l)CJ|_1(sin(9cos6>1)/M f^}-, sin0cos0χ J 1,

where

IM(s,t)= f {\-2tζ + ζ2)τ-\Mdζ
Jζz=O

< Γ (l + ζ)n~2ζMdζ i f^>0and \t\ < 1.
Jζ=o

Using the bound

it follows that

where I(s) = £ = 0 ( l + C ) - 3 ^ " 1 + CM) <*C
Let E > 1 and |x| > 2E. Let Jx - [0,1], J2 - [1, £/], J 3 = [E, \x\/2] and

J 4 = [|*|/2,oo) and define J, = !w^JtK,M{x,y')f{yf)d}/ [i = 1,2,3,4) so
that UM = Ji + Ji + «/3 + ̂ 4.
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The integral Ji is equivalent to the Poisson integral with data having
compact support. Therefore, Jx = O{xn\x\~λ).

When \y'\ £ J2, I{\x\/W\) < 2 |x |M + n" 1 for sufficiently large |x|. Also,

<2 n |α; |- n for \x\ >2E.

Hence, from (5.6)

2^/M + nΛ ,y ^
ω» V n I \J

and J 2 = Oixnlxl™-1).
When \y'\ € J3,

M / i i i i \ n —1/ Irl \ / Irl \ / \τ\ IT
/ I I I / 1 1 1 / I I I

- 2 \2j \\y\

Also, [\y' - y\2 + zĵ j-f < 2n |z|-". Given e > 0 we now take E > 0 so that
I SJa f(y')\y'\~(n+M) dy'\ < e whenever \x\ > IE. Then J 3 = o(xn\x\M).

When \y'\ € J4,

Therefore,

IΛI < 3 " " ^ ( ^ M + J " X\ \x\M\J MM\-"lC{x, y') dy'

and J 4 = o d a ^ s e c " - 1 ^ by Corollary 2.1.
Hence, £/M = o (|x|M + 1 sec"-1 θ) as |x| -> oo in Π+. D

Corollary 5.1. 7/|/(y)| < F(|t/|) and F e -DM ίΛen f/M = o(|a;|M + 1 sec^).

Proof. The radial majorisation estimate of Proposition 2.1 is used with J 4

above. D
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The modified kernels, K,M (M > 1), are not positive. In fact we have the

following result.

Theorem 5 2 / / / > 0 such that / f f iΛ-i/(y') (\y'\n + I ) " 1 dtf = oo then
there are no positive solutions to (1.1)-(1.3).

Proof. Introduce a cutoff function, ξNj such that

N

N + l,*N~U 1*1 >
0 < £ΛΓ < 1 and ξN is continuous.

Suppose u > 0 and satisfies (1.1)-(1.3). Let uN = P[/&v]. Given 6 > 0,
we claim that u > uN - 6 on d i ^ Π Π+ for large enough />. Indeed, we have
Δ ^ v = 0 in Π+, uN = fξN on ΘΠ+ and uN = (^(^nlarl"1) as |ar| -> oo (since
/ ĵv has compact support). So, u > uN on 5 Π + and |^AΓ| < c on ^ B p Π Π +

for large enough /?. Therefore, u > uN - e on ^ 5 + ( 5 5 ^ = {# G Kn | |a?| =
/>, xn > 0}). Since e is arbitrary, « > uN on ^.B+. By the weak maximum
principle, u > uN in β + . But,

/
\y'\<N

—>• oo as ΛΓ —>- oo.

Hence, there can be no such u. D

This theorem can also be deduced from the general representation of non-
negative harmonic functions on Π+ (Theorem 7.24 in [1]).

6. Conclusion.

We propose three directions for further work in this area. Using the known
integral representation of solutions of the half space Neumann and Robin
problems it should be possible to obtain analogous results to those in this
paper. As per the remarks at the beginning of §4, a Phragmen-Lindelof
principle with maximum angular growth is desirable. Also, in [7] and [9],
the classical Phragmen-Lindelof principle is extended to uniformly elliptic
operators in Π+. Their methods do not rely on explicit representations of
solutions and it is possible their results may be expanded to include a growth
condition that has angular dependence, as in (4.3).

Work of H. Yoshida, [17], gives related results to ours using an integral
condition,

(7.1) / u(rx) cos θ dSn-1 = o(r) as r -* oo,
Jd+Bi
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rather than a pointwise one. Combining Theorem 3 and Lemma 3 of [17], we
have the result that if / satisfies (1.6), then u = V[f] is the unique solution
of the Dirichlet problem (1.1)-(1.3) that satisfies (7.1). From Theorem 2 of
[17], a Phragmen-Lindelόf principle holds with condition (4.3) replaced by
(7.1).
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