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RAMANUJAN'S MASTER THEOREM FOR SYMMETRIC

CONES

HONGMING DING, KENNETH I. GROSS AND DONALD ST. P. RICHARDS

Dedicated to R. A. Kunze, on the occasion of his sixty-fifth birthday

The Master Theorem of Ramanujan (1913), so named be-
cause of its centrality in much of Ramanujan's work on definite
integrals, hypergeometric functions, and series expansions, re-
lates coefficients in the Taylor's expansion of a function to the
Mellin transform of the function over the interval (0,oo). In
this paper we extend the setting of this classical theorem to
apply to spherical series and spherical transforms on symmet-
ric cones (also known as domains of positivity). To illustrate
the range of applications of this theorem we obtain higher
dimensional analogues of Carlson's uniqueness theorem for
holomorphic functions, Newton's interpolation formula, and
Mellin-Barnes integrals for certain hypergeometric functions.

Introduction.

Srinivasa Ramanujan Aiyangar, otherwise known as Ramanujan, needs no
introduction, either to professional mathematicians or mathematical histo-
rians. He was born in poverty in India in 1887 and died not far from his
place of birth at age 32. He was a self-taught mathematical genius possess-
ing exceptional mathematical powers and a special originality and insight
that defies comparison. Upon his death Ramanujan left a mountain of un-
published work, a great amount of which was contained in three Notebooks,
together with three Quarterly Reports that were written in 1913 and com-
municated to the Board of Studies at University of Madras, where he was
supported by a small research scholarship. Remarkably, only in the last
decade, with the appearance of the wonderful book [1] by Berndt, has the
material contained in these notebooks and reports been organized, analyzed,
and published.

The subject of this paper is the generalization to symmetric cones (also
known as domains of positivity) of Ramanujan's fundamental discovery de-
scribed in his first quarterly report. Because this result was a touchstone for
Ramanujan throughout his work on definite integrals, hypergeometric func-
tions, and series expansions, it is known as Ramanujan's Master Theorem.
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Here is what Ramanujan wrote of his discovery in the cover letter to his first
Quarterly Report [1, p. 297]:

"The Progress Report is merely the exposition of a new theorem I have discovered in

Integral Calculus. At present there are many definite integrals the values of which we

know to be finite but still not possible of evaluation by the present known methods. This

method will be an instrument by which at least some of the definite integrals whose values

are at present not known can be evaluated. ... The investigations I have made on the

basis of this theorem are not all contained in the attached paper. There is ample scope

for new and interesting results out of this theorem. ... I beg to submit this, my maiden

attempt, and humbly request that the Members of the Board will make allowance for any

defect which they may notice to my want of usual training which is now undergone by

college students and view sympathetically my humble effort in the attached paper."

With the above as historical introduction, let us begin to describe our
work in higher dimensions by first stating Ramanujan's Master Theorem in
the classical case of one dimension. The objects of concern are real-analytic
functions of a real variable having a power series expansion

(1) F(x) = Σ i- f- q(m)xm

that converges on some interval about zero, where q is an analytic function
on a domain in C containing the non-negative integers. The thrust of the
theorem is to recapture the analytic function q of the complex variable λ
from the Mellin transform

dx(2) F(λ) = ΓF(X)X-X~1

Jo

of F, or equivalently by Mellin inversion

i r σ+ioo

(3) F(x) = — / F(X)xλdX

where σ £ R. One can view Ramanujan's Master Theorem as providing the
"interpolation" formula

(4)
Γ(-λ)

for the coefficients q(m) in (1).
In his Quarterly Report, Ramanujan gave literally scores of applications

in which he computed definite integrals and found series expansions. His
"proof of the Master Theorem, however, was a formal procedure, in the
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words of Berndt [1], "fraught with numerous difficulties," and the hypothe-
ses he listed were far too weak and simplicial for its validity. As one can
see immediately from the case q(λ) = sin πλ, for which the function F in
(1) vanishes identically, there exist analytic functions q for which (4) fails.
Thus, the problem is to prescribe classes of functions q for which the Mellin
transform of the function F given by (1) exists and satisfies Ramanujan's
formula (4). In 1920, using complex methods, G. H. Hardy [11] provided
a rigorous proof for a class of functions F of at most exponential growth.
One should note, however, that the Hardy class, although robust, does not
exhaust all of the situations for which (4) is true.

In this paper we generalize Hardy's method to apply to symmetric cones.
Roughly speaking, an open cone Ω in a real Euclidean space is said to be
symmetric if it is a symmetric space under its (connected) group G of au-
tomorphisms. That is, Ω = G/K where G is a noncompact reductive Lie
group and K is its maximal compact subgroup. Symmetric cones are inti-
mately related to formally real Jordan algebras. More specifically, irreducible
symmetric cones are in one-to-one correspondence with simple formally real
Jordan algebras, and up to isomorphism an irreducible symmetric cone Ω is
the interior of the set of squares in a simple formally real Jordan algebra J.
As an example, the cone Ω of positive-definite real symmetric r x r matri-
ces is an irreducible symmetric cone, the ambient Jordan algebra being the
vector space of all r x r real symmetric matrices with the anticommutator
\{χV + Vx) &s Jordan product. The case r = 1 is the classical setting of
Ramanujan's original work.

Consider an irreducible symmetric cone Ω realized in a simple Jordan
algebra J . Let r be the rank of Ω, n the dimension of J , set μ = n/r and
v = 2 ( μ - l)/(r— 1), and denote G-invariant measure on Ω by d+x. Let ε be
the identity in J , write the inner product in J as ( | ), and define the trace in
J by tr x = {x\e). We say that an r-tuple m = ( m i , . . . , mr) of non-negative
integers is a partition if πii > ra2 > ••• > raΓ, and we call the number

\m\ = mi H h mr the length of m. To each partition m is associated a K-
invariant polynomial function Zm on Ω known among statisticians as a zonal
polynomial and by mathematicians as a normalized spherical polynomial. We
will call an infinite series of the form

where the summation is over all partitions, a spherical series. When r = 1,
a spherical series reduces to a Taylor series. The analogue for the cone Ω
of the classical Mellin transform is the spherical transform (also known as
the Harish-Chandra transform) F —> F, defined for integrable K-invariant
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functions F on Ω by the integral

(6) F(λ)= ί F(x)φx(χ-1)d,x
Ja

where λ = (Xλ,... , λ r) is an r-tuple of complex variables and φ\ is the

corresponding spherical function. Formally, the inversion formula is given

by

(7) F(x) = co / F(λ)φx(x) d λ

J C{λ)C{-λ)

where σ E R r , c0 is a constant depending only upon Ω, and λ »-> c(λ) is
Harish-Chandra's c-function for Ω. Finally, the gamma function ΓΩ for Ω is
defined by

(8) Γ Ω ( λ ) = [

for each λ = ( λ 1 ? . . . , λ r) 6 C r for which the integral converges, and else-

where by analytic continuation. The function Δ λ in (8), called the general-

ized power function for Ω, reduces to the ordinary power function xλ in the

classical case r = 1.
We can now state the main result of this paper. In what follows, we set

p — ( p 1 ? . . . ? p r ) where pj = (2j - r - 1)^/4, and we write the complex
variable Xj as Xj ~ GJ + itj where Gj = Re λ̂  and tj = Im λ̂  .

Ramanujan's Master Theorem For The Cone Ω: Let δ be a real number
such that δ > | ( μ — 1) and let q be a function of X = ( λ i , . . . , λΓ) with the
following three properties:

(i) q is defined and holomorphic on the right half-space H(δ) in C r given by

Re Xj > —δ for j — 1,. . . , r.

(ii) q is symmetric in λ l 5 . . . , λ r.

(iii) There exist positive constants M, P and A with A < π such that

(9) f

for all λ € H(δ).
For x G Ω set

_ !-l)\m\
(10) F(x) = £ LJL- q(m - p)Zm{x)

I l i b
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and (with redundancy of notation)

(11) F(x)=cof Γn(-
Jσ+iRr

C{λ)C{-λ)

Then the following four properties hold.

(a) The spherical series in (10) converges on a neighborhood of zero in J',
and (10) defines a function F that is real-analytic on that neighborhood of
zero.

(b) Let —S<σj<—^(μ — 1) for j = 1, . . . , r. Then for any x G ί ί the inte-
gral in (11) is absolutely convergent and is independent of σ = ( σ 1 ? . . . , σΓ),
and the function F defined by (11) is a continuous extension to all ofΩ of
the function F in (10).

(c) For a real number σ0, set σ0 = ( σ 0 , . . . , σ0) € R r . Then F(X) exists in
the L2-sense for all λ of the form λ = σ0 + it with — δ < σ0 < — | ( μ — 1)
and ί G R r , and

(12) F(X) = Γa(-λ + p)q(λ).

Moreover, formula (12) is valid for any domain in C r containing such a
point λ = σ0 + it and on which F exists and is holomorphic.

(d) Assume now that δ > | ( μ — 1); let Cp denote the convex hull of the
the points wp £ R r where w varies through the permutation group on the
indices 1, . . . , r ; and let Es)P be the union of all translates σ 0 + Cp of Cp for
-δ + | ( μ - 1) < σ0 < —(μ - 1). ΓΛen £Λe integral (6) /or F(λ) converges
absolutely and formula (12) holds for all λ m α fa/6e domain E + iJ¥, where
E D EδtP.

We derive several consequences of this theorem.
The first corollary is the following uniqueness theorem: Let q be a holo-

morphic function on a half-space H(δ) with δ > | ( μ — 1), and assume that
q is symmetric and satisfies an estimate of the form (9) with A < π. If
q(m — p) = 0 for all partitions m, then q vanishes identically on H(δ).
The specialization of this result to the one-dimensional classical setting is
known as Carlson's theorem [3, 11]. Next, we refine this uniqueness theo-
rem by providing an explicit construction of the function q from its values on
the partitions. This generalizes the classical Newton's interpolation formula.
Finally, we derive some Mellin-Barnes integrals for the hypergeometric func-
tions PFP and p+iFp [5, 6, 7, 8, 9] on Ω: Under suitable restrictions on the
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parameters a{ and bi and on the real variable σ,

(13) x / ΓΩ -A + p v r / . \( ^
J ^ i Έ l ( t > + A ) Γ ( 6 + A )

ii(t>i + A) ΓΩ(6P + A) c(A)c(-λ)

and

Γn(6i)---ΓΩ(6P)
u . . . , α p + i ; 6 i , . . . , 6 P ; - a : ) = c 0 , . , .

i ( a ) • • l n ( a p + 1 )

(14) x
1 Ω(OI + A) Ί π(6p + Λ) c(Λ)c(-Λ)

/or α// a: G Ω. Other applications of the Master Theorem, especially to
integral formulas and series expansions for hypergeometric functions, will be
treated in a subsequent paper.

This paper is organized into five sections, as follows. Section 1 brings to-
gether necessary background material on the structure of symmetric cones,
Jordan algebras, and the relationship between them. Section 2 is a sum-
mary of the needed harmonic analysis on symmetric cones. The gamma
function, its properties, and related constructs are discussed in paragraphs
2.1 through 2.5. The decomposition of the polynomial algebra on J under
the group £?, zonal and spherical polynomials, and spherical series appear in
paragraphs 2.6 through 2.9. Invariant differential operators, spherical func-
tions, and the spherical transform form the subject matter of paragraphs
2.10 through 2.12. Section 2 concludes with paragraphs 2.13 - 2.21 that de-
scribe Harish-Chandra's c-function, spherical inversion, and the Plancherel
and Paley-Wiener theorems. In Section 3 we prove Ramanujan's Master
Theorem for symmetric cones, as stated above. The argument ultimately
reduces to the special case in which q(X) = 1. As an immediate corollary we
prove the uniqueness theorem described above. The remaining two sections
of the paper treat applications: Newton's interpolation formula for symmet-
ric cones appears in Section 4, and Section 5 is devoted to Mellin-Barnes
integrals.

We close this introduction by noting some points of contact of our work
with existing literature. The special case of the Mellin-Barnes integral for
the Gaussian hypergeometric function 2Fι is derived in [6] by an argument
completely different from ours. The generalized binomial coefficients used in
the proof of Newton's formula were first introduced in multivariate statistics
for the purposes of analysis on the cone of positive-definite real symmetric
r x r matrices. See, for example, the book [17]. In the general setting these
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coefficients have been studied in [15,16, 20]. A precursor to formula (12), in
the special case in which the function F is in the Schwartz class on Ω, appears
in [5, XIV.4.3]. In [4] the problem of analytically continuing a spherical series
of the form (5) is approached rather differently by generalizing to symmetric
cones a classical theorem by Leroy in complex function theory. Quite recently
- in work carried out contemporaneously with and independently of ours -
in his doctoral dissertation, announced in [2], W. Bertram gives an elegant
formulation of Ramanujan's Master Theorem for the special case of Schwartz
class functions. We wish to thank J. Faraut for calling our attention to [2].
Of course, the applications in our paper require the full generality of the
Master Theorem as stated above.

Acknowledgments. It is a pleasure to express our thanks to Nolan Wallach
for pointing out the applicability of his Paley-Wiener theorem [19] to our
work. Thanks are also due to Kenneth Johnson, who previewed an earlier
draft of the paper, for pleasant and helpful discussions related to estimates on
spherical functions. Finally, as an expression of our gratitude for his kindness
and generosity throughout his professional life, this paper is dedicated to Ray
A. Kunze, our teacher and friend, on the occasion of his sixth-fifth birthday.
All three authors are deeply appreciative of the contributions he has made
to our mathematical careers.

1. The structure of symmetric cones.

We review the definition and structure of symmetric cones, listing only those
properties that are needed for the analysis that follows. For a presentation
in more detail we refer to [5, 18].

1.1. Symmetric cones. Let Ω be a non-empty open convex cone in a
finite-dimensional inner product space (J, ( | )), and denote by Ω* the dual
cone of elements x £ Ω such that (x\y) > 0 for all y in the closure of Ω.
Let G(Ω) denote the automorphism group of Ω, consisting of all invertible
linear transformations of J which preserve the cone Ω. The cone Ω is said
to be symmetric if it is self-dual and homogeneous under G(Ω). That is to
say, Ω = Ω* and G(Ω) acts transitively on Ω. An example of a symmetric
cone is the set Ω(r, R) of all positive-definite r x r real symmetric matrices
endowed with the inner product (x\y) = tr(xy).

1.2. Formally real Jordan algebras. A Jordan algebra J over a field F is
a finite-dimensional commutative algebra over F having an identity element
ε and satisfying the Jordan identity

(1) x2 o (x o y) = (x2 o x) o y

for all x, y G J . Here, o denotes the multiplication in J . If F is the real field
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R and J is equipped with an inner product ( | ), we say J is formally real
(or Euclidean) if

(2) {xoy\z) = (y\xoz)

for all x, y, z £ J. The trace in a formally real Jordan algebra is the linear
functional

(3) tτx = (x\ε).

As examples of Jordan algebras, let Λ be an associative algebra with
unit ε and J be a vector subspace of Λ closed under squares. Then with
the anticommutator x o y = \{xy + yx) as multiplication, J is a Jordan
algebra. Such Jordan algebras are called special. A special formally real
Jordan algebra to keep in mind is the space S(r, R) of all r x r real symmetric
matrices.

1.3. The cone of squares in J . Let J be a formally real Jordan algebra,
and denote by Q the subset of all elements x2 where x e J. The interior of
Q is a symmetric cone, and any symmetric cone is isomorphic to a cone of
this kind [5, III.3.1]. Consequently, the study of symmetric cones reduces to
the study of formally real Jordan algebras. In the case in which J = S(r, R),
for example, Ω = Ω(r, R) is the interior of the set of squares in J.

1.4. The symmetric space structure. Let G be the connected compo-
nent of the identity in the automorphism group G(Ω). Then G acts tran-
sitively on Ω, and Ω ~ G/K where K is the stability group of the identity
element ε in Ω; i.e., K consists of all k £ G such that k ε = ε. The group G
is a connected non-compact reductive Lie group, K is its maximal compact
subgroup, and considered as the homogeneous space G/K, the symmetric
cone Ω becomes a Riemannian symmetric space. In the example in which
Ω = Ω(r, R), the group G — GL+(r, R) of real r X r matrices having positive
determinant acts onΩby^ a; = gxg* for x £ Ω and g £ G. Then K = SO(r)
is the special orthogonal group and Ω(r, R) ĉ  GL+(r, R)/SO(r).

1.5. Invariant measure on Ω. Denote by r the real rank of the symmetric
space G/K, and let n be the dimension of J. Set

(1) μ = n/r.

The number μ is either an integer or a half-integer. The characteristic func-

tion φ of Ω is defined by

(2) φ(x) = /
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for all x G Ω, and the Koecher norm function Δ is given by

(3) Δ(x) = cφ{x)-1/μ

where c is a constant determined by the normalization Δ(ε) = 1. The
function Δ extends to a /^-invariant polynomial on J such that

(4)

for all ^ G G , from which it follows that the measure

(5) d+x = A(x)-μdx

on Ω is G-invariant. Note that when Ω = Ω(r, R) is the cone of real r x r
positive-definite symmetric matrices, Δ is just the ordinary determinant and

1.6. Irreducible symmetric cones. A Jordan algebra is simple if it
contains no proper ideals, and a symmetric cone is irreducible if it is not the
direct product of nonzero symmetric cones. A formally real Jordan algebra
is simple if and only if the associated symmetric cone is irreducible. In
general, any formally real Jordan algebra is a direct sum of simple ideals,
and correspondingly a symmetric cone is the direct product of irreducible
symmetric cones. The cone Ω(r, R), for example, is irreducible.

In the remainder of this section, and throughout the rest of the paper, we
will assume that Ω is an irreducible symmetric cone in the simple Jordan
algebra J.

1.7. Idempotents. An element e G J is idempotent if e2 = e. The scalar β
is an eigenvalue of e if there exists nonzero x G J such that eox = βx. If e is
idempotent, then the eigenvalues must be equal to 1, | , or 0. An idempotent
is primitive if it is nonzero and not the sum of two nonzero idempotents.
Two idempotents e and / are orthogonal if e o / = 0. A maximal system of
orthogonal primitive idempotents is called a Jordan frame, and any Jordan
frame has r elements where r is the rank of Ω. If {e^ . . . , er} is a Jordan
frame, then eH \-er = ε, where ε is the identity in J. When J = Ω(r, R),
for example, we may take βj to be the r X r matrix whose (j,j)-th entry is
1 and all other entries are zero.

1.8. The constant u. Fix a Jordan frame {ex,... , er} in J and define the
following subspaces: Vj = {x G J : e^ox = x} and Vij = {x G J : eiox = \x
and ej o x = | χ } . Then Vj = Re, for j = 1,... ,r are 1-dimensional
subalgebras, while the subspaces V^ for i, j = 1,... , r with i φ j all have a
common dimension. We denote the common dimension of the subspaces V^
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by the symbol v. Since J decomposes as the orthogonal direct sum

(!) J= [Σ®vή Φ ΣΦ^i

it follows that

and from (1.5.1) that

(3) μ-l = ϊ(r-l)

or

(4)
( r - 1 ) •

The decomposition (1) is known as the Peirce decomposition of J relative to
the given Jordan frame.

1.9. The principal minors. Fix a Jordan frame {e 1 ? . . . ,e r} in J . For
j — 1, . . . , r, let Ej = e\ + h βj, and set Jj — {x £ J : Ej o x = x}. Then
Ej is an idempotent and Jj is a subalgebra of J of rank j . Denote by Pj the
orthogonal projection of J on Jj^ and define

(A\ Λ (rλ — / > . f P TΛ
K1) ίAJ\X) — °3\Γ3X)

for x 6 J , where 5j denotes the Koecher norm function for J j . Then Δj is
a polynomial on J that is homogeneous of degree j . We call Δj(x) the j t h

principal minor of x.
Let λ 1 ? . . . , λ r be complex numbers, and define the function Δ λ on J by

(2)

The function Δ λ is the generalized power function on J . When λj = πij is
an integer and πii > > mr > 0, (2) defines a polynomial function Δ m

that is homogeneous of degree rriι + \- mr.

1.10. The polar decomposition of J . Denote by TZ the subset of J of
elements of the form

(1) a
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with f i , . . . , fΓ € R. Then for any x G J there exists k G K and £ 1 , . . . , £Γ G
R such that

Moreover, the scalars £ 1 , . . . ,£Γ are uniquely determined by x up to permu-
tations, and the element k G K is uniquely determined by # modulo the
centralizer M of x in K. We refer to (2) as the po/αr decomposition of a\
When x is written in the form (2),

r r

^OJ II ^XJ — y ^ ζj cLIlQ L\yX J -

When J = S(r, R) is the algebra of r x r real symmetric matrices, K =
SO(r) is the special orthogonal group and (2) is the spectral decomposition
x = kξk'1 in which k G K and ξ is the diagonal matrix ξ = diag(£i,... ,£ r)
whose entries £ 1 ? . . . ,£ r are the eigenvalues of a\

1.11. The quadratic representation. Denote by L the regular represen-
tation L(x)y = x o y of J , and set

for x £ J. The mapping # »->- P(#) is called the quadratic representation of
J . For example, when J = 5(r, R), the algebra of all r x r symmetric real
matrices, P(x) is given by matrix multiplication as P(x)y = xyx.

In general, if x1/2 denotes the square root of x G Ω, then P(xx^2)e = #,
P(x 1/ 2) G G, and <j/|x> = <P(x1/2)y|ε> for all y G Ω. Moreover, [5, XIV. 1.2],
for a; and y in Ω there exists k G A' such that

1.12. Classification. The simple formally real Jordan algebras, or equiva-
lently the irreducible symmetric cones, were classified in 1934 by Jordan, von
Neumann, and Wigner [14] into four families of classical algebras together
with a single exceptional algebra. The first three families of classical algebras
are matrix spaces and the fourth is a Minkowski space. For the matrix spaces
the Jordan product is the anti-commutator xoy— \{xy + yx).

1. Real matrix space. J = S(r, R) is the space of all r X r symmetric
real matrices, Ω is the cone in S(r, R) of positive-definite matrices, the rank
of 5(r, R) is r, the dimension is n = ^r(r + 1), μ = | ( r + 1), and u = 1.
As noted earlier, the group G is isomorphic to the general linear group
GL+(r, R) of non-singular rxr real matrices with positive determinant, K
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is isomorphic to the special orthogonal group SO(r), and as a symmetric
space, Ω ~ GL+(r,R)/SO(r).

2. Complex matrix space. J — 5(r, C) is the space of all r X r
Hermitian matrices, Ω is the cone of r X r positive-definite matrices, the
dimension of S(r, C) is r2, the rank is r, μ — r, and v — 2. The group G
is isomorphic to the general linear group GL(r, C), K is isomorphic to the
unitary subgroup U(r), and Ω ~ GL(r, C)/ U(r).

3. Quaternionic matrix space. J = S(r, H) is the vector space of all
r x r Hermitian matrices over the quaternion division algebra H, Ω is the
cone of positive-definite such matrices, the dimension of 5(r, H) is r(2r — 1),
the rank is r, μ — 2r — 1, and v — 4. Here, G is isomorphic to the general
linear group GL(r, H), K is isomorphic to the compact symplectic group
Sp(r),and Ω~GL(r,H)/Sp(r).

4. Minkowski space. J = R(l,n) is the space R x Rn with the
Lorentz metric of signature (1, n). The corresponding cone is the light cone,
composed of all elements (λ,α) G R x R n such that |λ | 2-| |α; | | 2 > 0 and λ > 0.
The Jordan product is given by (λ1? xλ) o (λ2, ^2) = (AxA2 + (aji|a?2), A2^! +
λχa:2) for λx, λ2 £ R and #!, a:2 £ Rn. The dimension of R(l, n) is n + 1, the
rank is 2, μ = | (n + 1), and v — n — 1. The group G is the product of the
connected component of the Lorentz group SO0(l, n) with the multiplicative
group R + of positive real numbers, K is the special orthogonal subgroup
SO(n), and Ω ~ SO0(l, n)/SO(n) x R+.

5. The exceptional algebra. This is a certain space of 3 X 3 matri-
ces over the Cayley algebra, endowed with an anti-commutator as Jordan
product. The dimension of J is 27, the rank is 3, μ — 9, and v — 8. Here,
Ω ~ G/K with G ~ E6 xR + and K is isomorphic to compact F 4 .

2. Harmonic analysis on symmetric cones.

In this section we bring together a summary of the required background
from harmonic analysis. For a more detailed discussion, we refer to [5].
Throughout, Ω is an irreducible symmetric cone in a simple Jordan algebra
J, and Ω = G/K.

2.1. The gamma function on Ω. Let λ = (Ax,... , λΓ) £ CΓ, and let Δ λ

be given by (1.9.2). We define the gamma function Γn for the cone Ω by

(1) Γ Ω (λ)=

whenever the integral converges absolutely. By [5, VII.1.1], the integral in
(1) converges absolutely if and only if

(2) |
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where v is given by (1.8.4). Moreover, in the range (2) of the variable λ, ΓΩ

is evaluated in terms of the classical gamma function as

(3) Γn(λ) = (2τr)*<n-) Π Γ (λj - (j - \)\
j = l ^

and (3) defines the meromorphic continuation of ΓΩ to all of C r . Note that
ίλ) is an entire function on C r .

2.2. The Pochhammer symbol for Ω. We say that an r-tuple

(1) m = ( m i , . . . , m r )

of integers πij is a partition if

(2) m1 > m2 > > mr > 0.

We set

(3) \m\ = mi -\ \-mr

and call \m\ the length of the partition. Recall the classical Pochhammer
symbol (also known as the truncated factorial), defined for a 6 C and non-
negative integer j by

In analogy to (4) we define the (generalized) Pochhammer symbol for Ω by

where λ G C r and m is any partition. From (2.1.3)

(6) [λ]m =
J = I

2.3. Connection with the sine function. From the classical identity

(1) Γ(α)Γ(l - a) = -A-
v ' v } v y sinτrα
and from (2.1.3), we obtain

(2)
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where

(3) \' = {K,K-i,..-,Xi)

and, as always, μ = n/r.

2.4. The p-shift. The formula (2.1.3) for ΓΩ(λ) lacks a certain degree of
symmetry, due to the shifting of the variable λ̂  by the amount (j — l)z//2.
To compensate for that shift we introduce the r-tuple

(1) P=(pi... ,Pr)

defined by

(2) Pi = j(2j-r-l) = (i-l)£-|(μ-l)

where we have utilized the identity (1.8.3). Then

(3) Γ Ω ( λ + p) = ( 2 τ r ) ^ n r ^ | J [ Γ

In terms of /> we can rewrite (2.3.2) in the more symmetrical form

(4) ΓΩ(λ + / > ) Γ Ω ( μ - λ + />) = —

Note that

(5)

The importance of p in the harmonic analysis oΐG/K is due to its appearance
in the integral formula for the Iwasawa decomposition of the group G [13].
2.5. Notation. Because we will often make use of the constant elements
in CΓ, we introduce the notation

(1) α = ( α , . . . ,α) £ C r

for α G C . Thus

(2) ()

(3) ( 3 ) *
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and

When there is no cause for confusion, we drop the vector notation and write

Γ Ω (α), Γ Ω (α + p), [α]m, and [a + ρ]m for (2), (3), (4), and (5), respectively.

2.6. Decomposition of the polynomial algebra. The algebra of all

polynomial functions on J , denoted by P ( J ) , decomposes as

d=0

where Vd(J) is the collection of polynomials homogeneous of degree d. The
space Vd{J) is finite-dimensional and the formula

(2) ( ^ )

gives its dimension as a binomial coefficient. Under the action of the group
G, the space Vd(J) is multiplicity free and decomposes as follows: For any
partition m such that \m\ — d, there exists an irreducible subspace Vm(J)
of Vd{J) such that

(3) Vd(J)= £ ®V™(J)
\m\=d

relative to which distinct partitions m (irrespective of length) correspond
to inequivalent subspaces Vm(J). The polynomial Δ m defined in paragraph
1.9 lies in Vm(J), and since G acts irreducibly on that space, Vm(J) may
be characterized as the space spanned by the translates of Δ m under G. We
set

(4) dm = dimVm(J)

and from (2) deduce the estimate

(5) dm<C{l + \m\)n-1

where C is a constant depending only upon n. From (1) and (3)

(6)

where the summation is over all partitions.
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2.7. Zonal polynomials. Let V(J)K denote the algebra of all /ί'-invariant
polynomials, i.e., elements p £ V(J) such that

(1) p(k-x) = p(x)

for all k £ K and x eJ. From (2.6.6),

(2) V{J)K =

where Vm(J)κ = Vm{J) Π V{J)K. Since the decomposition (2.6.6) is mul-
tiplicity-free, it follows that Vm(J)κ is one dimensional. That is to say, for
each partition m there exists a non-zero A'-invariant polynomial in P m ( J ) ,
and up to scalar multiples that polynomial is unique. Let Φ m denote the
unique element in Vm(J)κ such that

(3) Φm(ε) - 1.

We call Φm the spherical polynomial of weight m. The decomposition (2)
then takes the form

(4)

The spherical polynomial has the integral representation

(5) Φm{x)= I Am(k.χ)dk
JIK

where x £ J and Δ m £ Vm(J) is given by (1.9.2). From (3) and homogeneity,

for all ξ £ R. More generally, [5, XII.1.1], if x = ξ^ i + 6 e 2 H h£ re r £ Ω

(7)

A normalization different from (3) arises from the exponential function.
We set

(8) Zm{x) = vjmΦm(x)

where

(9) m. = % M
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Here, as always, μ = n/r and [μ]m is the Pochhammer symbol (2.5.4). With
this normalization for the /^-invariant polynomial in Vm(J),

(10) {tVx)d= Σ Z™W
\m\=d

for all x 6 J and all non-negative integers d. Hence,

for all x € J.
Of course, all of the considerations in this section apply not only to J

itself, but by analytic continuation to the complexification J c as well. In
particular, Φ m and Zm can be viewed as polynomial functions on J c , and
the expansions (10) and (11) are valid for all x £ J c . However, we are
primarily interested in the restriction to Ω.

2.8. Symmetric polynomials on R r. From the polar decomposition
(1.10.2), any A'-invariant function on J is determined by its restriction to
the subspace TZ composed of elements of the form (1.10.1). Moreover, since
the symmetric group on the elements e1,... , er can be realized as a subgroup
of UΓ, it follows that the restriction to TZ of a /^-invariant function on J is
a symmetric function of the r variables £ i , . . . ,£Γ. Let W = Wr denote
the symmetric (Weyl) group acting on the variables ξ i , . . . ,fΓ, let V(Rr)w

denote the algebra of all symmetric polynomials on R r , and in the obvious
way identify a polynomial function on TZ with a polynomial in £ i , . . . ,£ r .
Then the restriction mapping

(1) q*->q\π

is an algebra isomorphism oΐV{J)κ with V(Rr)w. Thus, any /^-invariant
function on J , or on the cone Ω, is essentially a symmetric function of the r
real variables £ i , . . . ,£ r .

As any symmetric polynomial on R r extends uniquely by analytic con-
tinuation to a symmetric polynomial on C Γ , it will be convenient to uti-
lize the algebra V(Cr)w of symmetric polynomials in the complex variables
λ i , . . . , λΓ rather than the algebra V(Rr)w in the real variables ξ i , . . . ,ξΓ.

2.9. Spherical series. We refer to a series of the form

as a spherical series. For example, (2.7.11) is a spherical series converging
for all x G J c . In general, the following estimate is useful in analyzing the
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convergence of a spherical series. Let x — ξiβi -\ \- ξnen with £,- G R. By
(1.8.3), (2.5.4), (2.6.5), and (2.7.7),

-Φ m ( ϊ )(2)

where C is a constant depending only upon n.
Denote by the expression 0 < x < x0 the set of all x £ Ω such that

x0 — x £ Ω. If a spherical series converges at # 0 £ Ω, then it converges
absolutely on 0 < x < x0. (More generally, [5, XII. 1.2], the series converges
for all z £ Jc with polar decomposition z — ux such that 0 < x < x0.)

2.10. Invariant differential operators. Let P(Ω) denote the algebra of
all invariant differential operators on Ω; that is, differential operators which
commute with the action of G. The following three algebras are mutually
isomorphic: X>(Ω), V{J)K, and V{Cr)w. The isomorphism of V{J)K with

r)w
V(Cr)w is outlined in paragraph 2.8 above. The isomorphism of V(Cr)
with Z>(Ω) can be described as follows: Let p be defined by (2.4.2) and
for λ £ C Γ let Δ λ be given by (1.9.2). Then to each q £ V(C)W there
corresponds an operator Dq £ £>(Ω) such that

(1) q(λ)Aλ+p

for all λ € C, and the mapping q >->•£), is an isomorphism of V(C)W with

2.11. Spherical functions. A spherical function on Ω is a C°°-function
which is normalized to have the value 1 at the identity ε of J and which is
an eigenfunction for every operator in P(Ω). For λ £ C r define the function
Φx by

(1) Φx(x) = / Δχ+P(kx)dk
JK

for all x £ Ω. Then φ\ is a spherical function, and if φ is any spherical
function there exists λ £ C r such that φ = φ\. By (1) and (2.10.1)

(2) Dqφx = q(λ)φχ

for all q £ V(Cr)w and λ £ C r . The spherical functions satisfy the following
properties:

(i) φχ = φχt if and only if there exists a permutation w such that λ' = wλ.
(ii) For all x £ Ω,

(3)
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(iii) From (1) and (2.7.5), Φm = φm-p for any partition ra, and conse-
quently

(4) DqZm = q(m - p)Zm

for all G-in variant polynomials q and all partitions ra.

(iv) For any g £ G and xGΩ,

(5) / φχ(gk x)dk = φx(g ε)φχ(x).
JK

Equation (5) is known as the functional equation for the spherical function

φx. In terms of the quadratic representation P (see paragraph 1.11), (5)

may also be written as

(6) /
JK

for x,y £ Ω.

2.12. The spherical transform. Let F be a /^-invariant measurable
function on Ω and λ G C r . We define the spherical transform of F by

(1) F(λ) = / F(x)φx(x'1)dmx

whenever the integral converges absolutely. Following [5, Ch. XIV] we de-
note by E(F) the subset of R r on which the integral in (1) converges abso-
lutely. The function F is defined on the tube E(F) + iW and is holomorphic
on its interior. From the definition (2.11.1) of φx and the A'-invariance of F,

(2) F(λ) = /
ίl

for \e E(F) + iRr. If F and (DqF)~ exist and are C°° for any polynomial
q e V(Cr)w then [5, XIV.4.2]

(3) (DqF)~(λ) = q(λ)F(\).

2.13. The c-function on Ω. Inversion of the spherical transform, as

first constructed by Harish-Chandra [12] in his monumental work on the

harmonic analysis of semi-simple Lie groups, is described by what is called

Harish-Chandra's c-function, or just "the c-function" for short. In the case

of symmetric spaces G/K, the explicit calculation of the c-function is due to
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Gindikin and Karpelevich [7], For the symmetric cone Ω, their formula can
be calculated (see [5, XIV.5.2]) as

(1)

where λ = ( λ 1 ? . . . , λ r) G C r and

(2) BM I (α + b)

is the classical beta function.
In the following theorem we list a variety of properties of the c-function,

all of which follow directly from properties of the classical gamma function.

2.14. T h e o r e m , (i) Let v be even. Then l/c(λ) is a polynomial on C r that

vanishes on the hyperplanes λj — λk = 0, —1, —2,. . . , — | + 1 with k < j .

(ii) Let v be odd. Then l/c(λ) has singularities along the hyperplanes λj —

\k = — ( | -f t)} where 1 < k < j < r and £ is any integer such that £ >

(v — l)/2; and l/c(λ) vanishes where λj — λk is a non-positive integer (and

k<j).

(iii) For a € C and λ € C Γ ,

(1) c(λ+ 3) = c(λ)

where Oί is given by (2.5.1).

(iv) For λ = it purely imaginary (i.e., t G R Γ ), l/c(it) is a C°°-function of
t with polynomial growth at infinity.

Proof, (i) When v is even, we write (2.13.1) in terms of the Pochhammer
symbol as

which is polynomial since v is even.

(ii) For v odd,
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from which one can read off the zeros and singularities.

(iii) This result is an obvious consequence of the dependence of the c-
function on Xj — λk.

(iv) Using the classical estimate

(4) hm v

 ΎΛ/ / = 1
v } z-*oo zaT{z)

for I argz| < π — δ with δ > 0, we see from (2) and (3) that

\c(it)\ -

where \t\ — max{|ίj| : j = 1,. . . , r} . By (2) and (3), l/c(ii) has no singu-

larities with t G R r.

2.15. Inversion of the spherical transform. The inversion of the
spherical transform is stated as follows in [5]. The proof can be found in
[13, Ch. IV]. Suppose / is continuous on Ω, if-invariant, and integrable
with respect to invariant measure d*x. Then f(it) exists for all t G R r ; and
if

(1) Lιmιw^<oΰ

then there exists a positive constant c0 that depends only upon the cone Ω

and not upon /, such that

dt
(2) f(x) = co ί f(it)Φit(x)

for all xGΩ.

2.16. Shifting the axis of integration. In the inversion formula (2.15.2)
the integration takes place over the purely imaginary "axis" in C r . For our
purposes we require a parallel shift of the axis of integration, as follows. Let
σ0 G R, set ~σo= ( σ 0 , . . . , σ0) G R r , and write λ =σ0 +it with t E R r . From
the invariance property (2.14.1) of the c-function,

(3) |c(λ) | 2 = c(λ) C (-λ) = | φ ί ) | 2

for λ of this form.

2.17. Theorem. Suppose f is continuous on Ω and K-invariant, and

assume that

(1) / \f{x)\A(x)-°°d,x < oo.
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Then f(σQ +it) exists for all t £ R r ; and if

( 2 ) A •„ | / ( Λ ) I c(λ)c(-λ) < °°
Jσo+tΈlr C \ Λ ) C \ Λ)

where λ= σo + it, then

(3) f{x) = c

Proof Set F(x) = A(x)-σ°f(x). Then from paragraph 2.12, F(it) exists for
all t £ R r . By the definitions (2.11.1) of φλ and (1.9.2) of Δ λ + , , it follows
that

(4) Φϊo+it(x) = Δ(*)σoΦit(x)

for all x e Ω and t £ R r . Thus, F(it) = / ( σ 0 +it), and (3) follows from
(2.15.2).

2.18. The Plancherel Theorem. Denote by L2(Ω)K the space of all K-
invariant measurable functions on Ω that are square-integrable with respect
to d+x] and let L2(iΈC)w denote the space of all ty-invariant measurable
functions on iW that are square-integrable with respect to the Plancherel
measure for Ω

(1) d*λ = c0
c(λ)c(-λ)

where λ = it, t G R r . If F is in L2{Ώ)K and also integrable, then the integral
(2.12.1) for the spherical transform exists for all λ £ iR r , and the Plancherel
formula

(2) f\F(x)\2d.x= ί \F(λ)\2dtλ
JQ JiHr

holds. The Plancherel theorem then states that the mapping F —> F extends
uniquely from the integrable functions in L2(Ω)K to a unitary operator, the
Plancherel transform, from L2(Ω)K onto L2(iRr)w.

In particular, if a A'-invariant function F is square-integrable on Ω- but
is not integrable, then the spherical transform (2.12.1) exists as a limit-in-
mean; e.g.,

(3) ^ ( λ ) = R

 l i m , „/
x<Rε
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where the integration takes place over all x £ Ω such that x — δε £ Ω and

i t e - x G Ω .

2.19. A Paley-Wiener Theorem. In [19], Wallach has proved a strong
version of the Paley-Wiener theorem for the spherical transform, which we
adapt to our needs. Let δ be a real number such that

(1) ί > | ( / x - l )

and set E$ = {σ £ R r : -δ < σ; < -\{μ - 1) for j = 1,... , r}. Denote

by Cp the convex hull of the points wp £ R r, where w runs through W

(cf., paragraph 2.8), and let Es)P be the subdomain of E& consisting of all

translates σQ + Cp of the set Cp where

(2) _ 5 + I ( μ _ i ) < σ o < _ ( M _ i ) .

The following Paley-Wiener theorem is a consequence of Theorem 3.3 of [19]

and the fact that the spherical functions φ\ are bounded for λ G Cp + iW

[13, Theorem 8.1].

2.20. Theorem. Let the function g be holomorphic on the tube domain
Es + iΈC, symmetric (which means that g(λ) = g(wλ) for all w 6 W), and
assume that there exist positive constants M and Q such that

(1) |£(A) |<Me~ Q ^; = 1 ^l

for all X — σ + it £ Eδ + «Rr Then there exists a function F onΩ such that

(2) / \F(x)\Δ(x)σod*x <oo
Jet

for all σ0 satisfying (2.19.2), for which the integral (2.12.1) defining F(\)
converges absolutely and

(3) F(X) = g(λ)

for all λ in a tube domain E + iR r, where E D EsyP.

2.21 Remarks. Wallach's Theorem 3.3 actually implies the following stronger
conclusions than we have stated in the Theorem.

(a) The function F in Theorem 2.20 is infinitely differentiate. Moreover,
properties (2.20.2) and (2.20.3) of F can be drawn from a weaker estimate
(polynomial decay) than (2.20.1). However, these results are not needed in
this paper.
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(b) The domain E C R r in the Theorem contains a domain Eδ p even

larger than £ ^ p , but that domain is a little more complicated to describe.

For a non-negative real number α, let aCp = {aρf : ρf G Cp}. Then E'δ p is the

union of all translates σo+aCp where σ0 satisfies (2.19.2) and cro+aCp C Eδ.

In the case in which Ω is of rank 2, the set E'δ p is pictured in the diagram

below. Thus, the picture is an accurate visualization of Eδ p for all the light

cones, as well as the 2 x 2 matricial cones over the real numbers, complex

numbers, and quaternions.

-δ

In the diagram a = | ( μ - 1), and the points σ0 = (σ0, σ0) lie on the 45°-line

L. The large square is Eδ\ the shaded hexagonal region inside Eδ is E'δp]

and the rectangle positioned diagonally inside Eδp is EδjP. The complement

Eδ-Eδp of Eδ p inside Eδ is the union of two triangles. In E'Sp the spherical

transform F(X) is given by the absolutely convergent integral (2.12.1), while

in Eδ - Eδ p the spherical transform F(X) is defined as the L2 limit-in-mean

(2.18.3).

Note that only in the classical case of the real line, where p — 0 and μ — 1,

do Eδ and Eδ)P (or Eδp) coincide.

3. Ramanujan's Master Theorem.

We first state the Master Theorem formally, in the spirit of Ramanujan,

without concern for mathematical rigor, after which we give a careful proof.
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The object of interest is a symmetric function q holomorphic on a domain
in C r that contains all points of the form m — p where m is a partition.

3.1. The formal statement. Suppose that the spherical Fourier series

(1) F{x) = Σ V π ?(TO - P)Z^X)

converges on some neighborhood of zero in J c , and assume that the spherical
transform

(2) F(λ)= ί F(x)

exists on some domain in C r . Then Ramanujan's Master Theorem for Ω
asserts that

(3)

or, by inversion of the spherical transform (and holomorphic arguments),

(4) F(x) = c0 ί Γίι^X + p)q{X)φχ(x) fX

ΛT+IRΛ C(λ)c(-λ)

The problem is to prescribe conditions on the symmetric function q such
that these formulas are valid.

3.2. The Hardy class % on Ω. Throughout this section we adopt the
notation λ = σ + it with σ — (σ i ? . . . , σr), t = ( ί 1 ? . . . , tr) G R r . Let

(1) * > | ( μ - l )

where, as usual, μ = n/r, and denote by H(δ) the closed half-space of all
λ G C r such that σj > — δ. We will say that a function q of r complex
variables is of class Ή, = %{S) if three properties hold:

(i) q is holomorphic on H(δ).
(ii) q is invariant under the symmetric group.
(iii) There exist positive constants M, P, and A with A < π, such that

(2)

for all λ£H(δ).
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3.3. The constant function q(λ) = 1. If in (3.1.1) we set q(m) — 1 for
all ra, then

(1)
„ - tr x

defines an entire function on J c . In this case, (3.1.3) takes the form

(2) (e-tr*r(λ) = Γa(-λ + p)

for all λ € C r such that Re Xj < - ± ( μ - 1). For by (2.1.1), (2.11.1), and
(2.11.3),

= I e-tr*A_λ+p(x)dtx= f
JΩ Jn

We verify that the function g(λ) = 1 is in H(δ) for any δ > 0. That is, we
must exhibit constants M > 0, P > 0, and 0 < A < π such that

(3)
1

<MU oPσ3+A\t3\

for λ = σ + it with σj > —S\ or from (2.4.3) that the estimate

(4)
Γ (λ, + ψ) <

for the classical gamma function holds for all j = 1,. . . , r. But from standard
classical estimates, for any δ > 0,

(5)
1

iy)

uniformly for x > —ί, where e > 0 is arbitrary. Since (4) follows from (5),
this completes the proof that q(X) = 1 is in Ή{δ) for any δ > 0.

We remark that our proof of Ramanujan's Master Theorem ultimately
reduces to the special case in which q(λ) = 1.
3.4. Theorem. (Ramanujan's Master Theorem for Ω.) Let δ > | ( μ ~ 1)
and suppose that q £ Ή.(δ). Then

(a) The spherical series in (3.1.1) converges on a neighborhood of zero in J
and defines a real-analytic function F on that domain.

(b) For any σ £ R Γ such that -δ < σ, < - | ( μ - 1) for j = 1> ?Γ> and for
any x £ Ω, ί/ie integral in (3.1.4) converges absolutely and is independent of
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σ, and the function F defined by (3.1.4) is a continuous extension to Ω of
the function defined by (3.1.1).

(c) Let σ0 be a real number such that —δ<σo< — | ( μ — 1). Then

(1) / \F{x)\2Δ(x)2σ°d*x < oo
Jn

and F(λ) exists in the L2-sense for λ = σ 0 + it (for all t G R r ) and satisfies
(3.1.3). Moreover, (3.1.3) holds on any domain in C r which contains a
point, as above, of the form λ = σ + it and on which λ H-» F(λ) exists and
is holomorphic.

(d) Assume now that δ > §(μ - 1), and let -δ + | ( μ — 1) < σ0 < ~(A* ~~ 1)
Then

(2) / \F{x)\A(x)σod*x < oo

and F(X) exists for all λ £ EsiP + *R r, where Es,p is defined in paragraph

2.19, and (3.1.3) holds on a tube domain E + iR r where E D Es}P.

3.5. The classical case n = 1. To illustrate the proof of Theorem 3.4,

shorn of the complications inherent in higher dimensions, we outline a mod-

ification of Hardy's argument in the classical case n = 1 in which Ω is the

positive real axis 0 < x < oo. Here, λ = σ + it is a single complex variable

and q is a holomorphic function on the half-plane σ > —δ that satisfies the

growth condition

for constants M > 0, P > 0, and 0 < A < π. In this setting (3.1.1) has the
form

(2) F{x)=Σ ^}?Lq{m)xm

r\ Tib.
m=0

and one proves that this power series converges for all 0 < x < e~p. Formula

(3.1.4) takes the form

I ΛC7+IOO

(3) F{x) = f~. T(-\)q{λ)xxd\.
^7ΓZ Jσ — ioo

One proves that the integral on the right side of (3) converges absolutely
for all x > 0 (indeed, uniformly on any compact subset of (0,oo)) and all
—δ < σ < 0, and that the function F on the left side of (3) coincides with
the function F in (2) for all 0 < x < e~p. Finally, (3.1.3) states that

(4) F(λ) = Γ(-λ)g(λ)
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for — δ < σ < 0. One proves that

/•OO

(5) / \F(x)\χ-σ~ιdx<oo
Jo

from which F(λ) exists and is equal to Γ(-λ)g(λ) for all λ = σ + it. The
proof proceeds as follows.

Let C be the closed rectangular contour joining the vertices σ0 — itQ, σ0 +
^o, σΌ + i*θί a n d &Ό - ito in the order indicated. Let —δ < σ0 < 0 and
N < σ'o < N + 1 where N is a (large) positive integer. Set

(6) φ(λ) = Γ(-\)q(λ)xx

for Re λ > — 5, and apply the residue theorem to obtain

N

From (1) with λ = m,

(- i ) r

(8) < M{epx)m,
ml

which implies the convergence for \x\ < e~p of the power series on the left
of (7). By (1) and the identity (2.3.1) for the classical gamma function,

(9) |^(λ) | < M /, / x, xe < M ( x e ) e .
I sm ττλ| ~

From the estimate (9), by straightforward analysis, the contribution to the
integral on the right of (7) attributable to the top, bottom, and right sides
of the rectangle C goes to 0 as these sides go to infinity. In symbols,

r rσ0+ioo

(10) lim lim φ ψ(λ)d\= / Γ(-λ)q(λ)xxdλ.

Moreover, also from (9) the integral on the right converges absolutely for all
x > 0, and uniformly on compact subsets of (0, oo). This proves (3).

As for (4), the function gσ is in both Lx{—oo, oo) and L2(—oo, oo), where
gσ(t) = Γ(—σ — it)q(σ + it). To establish (4), we invoke a Paley-Wiener type
argument. We observe, as in the estimate (9), that

(11) |Γ(-λ)g(λ)| <MePσe~QW
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for all λ = σ + it with —δ < σ < 0, where Q = π - A > 0. It follows from
(11) that

(12) Γ \F(x)\xe-ιdx < oo
Jo

for all 0 < e < S. Indeed, for any σ such that — e < σ < 0, by (3) and (11)

/ \F(x)\xe~ιdx < MePσ ( I* xσ+*~ιdΛ ( Γ e-Wdt)
Jo \Jθ ) \J-oo )

which is finite since σ + e > 0. Similarly, for -δ < σ < -c

Γ \F(x)\x*-ιdx < MePσ ί Γ x-^-'-^dΛ (Γ e~Q^dt\

which is finite since - σ - e > 0. By (12), F(λ) exists for λ in the strip
-δ > σ > 0; and by (3) and Mellin inversion, F(λ) = Γ(-λ)ςr(λ). This
completes the proof of Ramanujan's Master Theorem in the classical setting.

The estimate in the following lemma is required in the proof of Ramanu-
jan's Master Theorem in the general setting of symmetric cones. By way of
notation we write 0 < x < y to mean that #, y G Ω and y — x £ Ω.

3.6. L e m m a . For λ = (A^.. . , λ r) 6 C Γ , set Gj = Re Xj and assume

that Gj > |(/i — 1) for all j . Let c be any positive real number. Then

\Φx(x)\ < c σ i + +σ" for all 0 < x < cε.

Proof Since (1.9.2) and (2.11.1) imply that \φχ(x)\ < φσ{x) where σ =
(σ i , . . . , σΓ), it is enough to prove the result for σ. Set

(1) Iσ(x) = ί e-M*-1>φσ(y)d.y.
Ja

We will prove that

(2) Iσ(x) = Γa(σ

in the range Gj > | ( μ - 1) for all j . To this end note from paragraph l . ί l
that (y\x~λ) = (P{x1/2)'ιy\ε) = triPix1/2)-^), and from (1.11.2) and the
/i'-invariance of φσ,
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for all x,yGΩ. Finally, note that Iσ(k x) = Iσ(x) for all k £ K. Then

Iσ(x)= ί Iσ(k x)dk
JK

= 1(1'-"*.
JK \Ja

= J (^j e-tr«φσ(P(y^2)k • x)dty) dk=Le~try

= ί e-tr»φσ(y)φσ(x)d>y
Ja

= φσ(x) ί e-tτ»φσ{y)d.y
Jn

by (2.11.6). But by (2.11.1), the last integral above is precisely Γπ(σ + />),
and we have proved (2). (We should remark that the right-hand side of (2)
is finite if and only if Oj > \{μ — 1) for all j , but (2) holds otherwise as the
statement that both sides of (2) are infinite.)

Finally, if 0 < x < cε, then for all y £ Ω we have — (ylx'1} < —(ylc"1^} =
—c~ι try; from which we conclude that

p)φσ(x) = Iσ{x) =

Thus, φσ(x) < φσ(cε) = cσi+-+σrφσ(ε) by (2.11.1), and since φσ(ε) = 1 the
proof of the lemma is complete.

3.7. The general case. We turn to the proof of Theorem 3.4 for the
general cone Ω. Let q G Έ(δ). By (2.7.8) and (2.7.9)

ml
— q(m - p)Zm(x) = (- q(m - p)Φm(x)

for x G Ω. Let x = ξε where ξ G R such that 0 < ξ < e p , and ε is the
identity in J. By (3.2.2), (2.2.5), (2.6.5), and (2.7.6), there exists AT > 0
such that

(-i)1

\m !
— q(m-p)Zm{x) < CMΓn{μ)(l + |m |) n - 1 e p | m | ί | T O |
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This estimate implies that the spherical series (3.1.1) converges absolutely
for all x G Ω such that x < e~pε. This proves part (a) of the theorem.

Next we consider the statement (3.1.4), which we write as

(1)
^ (~l)\m\ r dλ

Σ M r " rtm ~ PΪZ™W = c° / Γ " ( - λ + PMχ)ΦΛχ) -ΠΛTΊΛ'
m \m\ Jσ+iHr C{λ)C{-λ)

We establish (1) for all x G Ω such that x < e~pε and all σ G RΓ such that
—δ < Gj < — | ( μ — 1). In what follows we iterate the classical argument of
the previous section r times, a procedure that is complicated by the presence
of the c-function in the inversion formula and the difficulty of computing the
r-fold residues.

In analogy to (3.5.6), set

(2) φq{\) = φ(λ)q(λ)

where

(3) φ(λ) = c'o Ϊ £
c(λ)c(-λ)

Here, c'o = (2τri)rc0 and c0 is the constant that appears in the inversion
formula for the spherical transform. Because the two cases, v even and u
odd, are distinct in character, we separate the rest of the proof of (1) into
these two cases.

3.8. The proof for v even. By Theorem 2.14 the function l/c(λ)c(-λ)
is a polynomial that vanishes for λ̂  — \k — 0, —1, —2,. . . , — ( | — l) . Here,
1 ^ ji & < r and j φ k. In particular, the singularities of φq all result from
singularities of the factor ΓΩ(—λ + p) in the numerator of (3.7.3). Hence, by
(2.4.3), the singularities of φq occur when — λj - | ( μ - 1) is a non-positive
integer; i.e.,

(1) Xj-lj-fa-l)

with ij > 0 an integer.
Fix real numbers tr > 0 and σ r, σ'r such that

(2) -δ<σr<-\{μ-ΐ)

and
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with N a positive integer, and define a closed rectangular contour Cr in the
λr-plane (with λ 1 ? . . . , λr_χ fixed) by joining the vertices σr — itr, σr + z£r,
σ'v + itr, and σ'r — itr in that order. If we make sure that none of the variables
λ i , . . . , \r-\ are fixed at a value of the form I — | ( μ — 1) with ί > 0 and
integral, then φq has no singularities on this contour and by the residue
theorem

(4) Σ ( R e s r V?)(λi,. . , λ r _ i ; 4 ) = ΊΓ-.
er=o Zπt Jc<-

where

(5) (Resr V ί ) (λ i , . . . ,λ r _ 1 ;4)= lim fλr - 4 + ^ ) φq(X)

is the residue of the function λ r »—y φ(λ) at λ r = ίr — | ( μ — 1).

We proceed to the next variable λ r_i and perform the same contour inte-
gration in that variable, and so on through all of the variables. After having
taken r contour integrals we arrive at the iterated form of (4)

where ί — {ίx,... ,£r) is an r-tuple of non-negative integers and

(7) (ft.*) (t-μ-^)= λJ}T{^ Π (*i " <>

is the r-fold residue of φ at λ = ί — \[μ — 1). Here, by lim we mean
λ-^-i(μ-l)

the iterated limit as λj -> £j — | ( μ — 1) with j = 1, 2 , . . . , r.
Since ?/> and g are both invariant under the symmetric group, we may

assume that

(8) ίλ > £2 > '' > ίr > 0

and write the left side of (6) as

(9)

where ί ranges over all partitions. We turn to estimates for the right side of

(6).
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By (3.2.2) and (2.4.4),

(10)

From Lemma 3.6 with c < e~p, together with the fact that l/c(λ) is poly-
nomial, we obtain the estimate

(1!) |Ψ,(Λ)| < M ( , ^ , ( ^ ^ 1 )

which is an r-fold variation of the classical estimate (3.5.9). Consequently,
an iterated variant of the reasoning that led to (3.5.10) in the classical case
implies that

lim i •••/ ^(λ)dλr .dλi
<7'-K5O,t-K» JCi JCr

(12) =c'oί Γa(-\ +p)q(λ)φλ(x) ff
Jσ+iRr C\Λ)C\~Λ)

where λ = σ + it, and also that the integral converges uniformly in x on any
compact subset of Ω. From (6), (9), and (12),

(13)

where c0 is the constant that appears in the inversion formula (2.15.2) and
ί ranges over all partitions.

All that remains to prove (3.1.4) is to calculate the residues of φ on the
left of (13). First, we cast out those residues which are zero. To this end,
from (3.7.3) we see that (Res φ)(λ) = 0 whenever l/c(λ) = 0; that is, when
Xj - Xk = £j - 4 = 0, - 1 , - 2 , . . . , - I + 1. Thus, the summation on the left
of (13) takes place over all partitions I — (4, . ,4) such that

(14) 4 > 4 + \ > > ij + \{3 - 1) > > 4 + \{r - 1).

If we set
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then in light of the definition (2.4.2) of p, (14) can be rewritten as

mi > m2 > - - > mr > 0.

In terms of ra, rather than I, the left side of (13) is

(16) Σq(m- p){r\(Resψ)(m- p)}

where the summation is over all partitions ra. Finally, we evaluate the factor
r\{Re$φ)(m — p) by reference to the special case of (3.7.3) in which q{\) —
1 for all λ. (Note from paragraph 3.3 that q(X) Ξ 1 is in %(£)•) From
paragraph 3.3, we know that g(λ) = 1 corresponds to the spherical series for
e~tr *, and from (3.3.1) and (3.3.2) we see that

(17) r\(Resφ){m - p) = i-J—Zm{x).

Substituting (17) and (16) into (13) we arrive at the desired formula (3.7.1).
This completes the proof of part (b) of the theorem when v is even.

3.9. The proof for v odd. We describe the modifications of the preceding

argument that are required to prove (3.7.1) when v is odd.
By Theorem 2.14 the function l/c(λ) now has singularities when λj —

λk = — (f + £) for integers £ > 0 and for 1 < k < j < r. In contrast,
therefore, to the case of v even, we see that the function φ defined by (3.7.3)
has its singularities determined not by ΓΩ( — λ + p) itself, but rather by
ΓΏ( — λ + p)/c(λ)c(-λ). In this setting, the singularities of Γ Ω (-λ + p) are
cancelled by the zeros of l/c(λ)c(—λ) (see Theorem 2.14 (ii)). In short, the
values λ = £ — | (μ — 1) are no longer singularities of φ. Thus, we must look
to l/c(λ)c(—λ) for the singularities of φ.

As in the case when v is even, we may assume by symmetry under the
symmetric group that σλ > > σr where σj = Keλj. For that reason
we need only consider the singularities of l/c(λ) and can ignore those of
l/c( —λ). The singularities of l/c(λ) occur when

(1) λ, - Xj+1 = rnf

j + ^

with m' a non-negative integer. By recursion

(2) K-j
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for j = 1,... , r - 1 . The singularities for the variable λΓ arise from the factor

Γ(—λr — ίLγL) in the numerator of the expression (3.7.3) for φ, i.e., for

(3) λ r = m'r - ~(μ - 1) = mr - ρr

where mr = m'r > 0 is an integer. If we insert (3) into (2), make the
substitution i ^ = | ( r - 1), and let I — r - j , we obtain

(4) Xί = mί- pi

for I = 1,2,... , r, where

Γ

(5) mί = J2mk'
k=έ

Thus, the singularities of φ are given by

(6) λ = m — p

where m runs through all partitions. The rest of the proof is identical to the
proof for v even, with the understanding that the integration must avoid the
singular hyperplanes described in Theorem 2.14, (ii).

3.10. The proof of parts (c) and (d). To conclude the proof of Ra-
manujan's Master Theorem, we show that (3.1.3) follows from (3.1.4). Let
—δ < σ0 < \(μ - 1) and set gσo(t) = Γ Ω ( - σ 0 - i ί + p)ςf(σ0 + iί). Note from
(3.2.2) and (2.4.4) that

(1) e- w

for all ί G R r , where M depends only on δ and Q = π - A. Thus, by (iv) of
Theorem 2.14

and the Plancherel theorem (paragraph 2.18) applies. Thus, (3.4.1) is valid,
F exists in the L2 sense, and (3.1.3) follows from (3.1.4). The remainder of
part (c) follows by analytic continuation.

As for part (d), we let g(X) = Γ Ω (-λ + p)q(X) for λ = σ + it and -δ <
σ3 < §(μ - 1) τ h e n > a S a i n f r o m (3.2.2) and (2.4.4), the estimate (2.20.1)
is valid with Q = π - A, and part (d) is a consequence of the Paley-Wiener
Theorem in paragraph 2.20. This completes the proof of Theorem 3.4.
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The following corollary generalizes the classical uniqueness theorem of M.
Carlson [3, 11] to the setting of symmetric cones. The proof is immediate
from the Master Theorem.

3.11. Corollary. Suppose that q £ Ή{δ) and q(m — p) = 0 for all partitions
m. Then q(λ) vanishes identically.

3.12. Two remarks. (1) In the next section (cf., Theorem 4.5) we will
apply Ramanujan's Master Theorem when q is an invariant polynomial. As
the following argument shows, in that context (3.1.3) holds for all λ £ C r

such that Re λj < — | ( μ — 1).
Let q be an invariant polynomial and Dq the corresponding invariant

differential operator on Ω. Let E(x) — e~trx and set F — DqE. From
(3.3.1) and (2.11.4)

(1) F{x) = £ i ^ J p - q(m - p)Zm(x)

for all x G Ω; and by (2.12.3) we have

(2) F(λ) - (DqE)~(\) = q(X)E(λ) = ?(λ)ΓΩ(-λ + p)

for all X e Cr such that Re λ̂  < -\{μ - 1).

(2) Ramanujan's Master Theorem can be generalized slightly, as follows.
Suppose that q £ Ή(δ) and

is the corresponding spherical series. Let P denote the quadratic representa-
tion of the Jordan algebra J (see paragraph 1.11). Then for y £ Ω, formula
(3.1.3) can be rephrased as

(3) / F{P{yλl2)x)φλ{χ-ι)dtx = ΓΩ(-λ + p)q(λ)φλ(y).
Je

The proof is quite straightforward. Simply multiply both sides of (3.1.4) by
φ\(y), use the functional equation (2.11.6) to replace the product φλ(x)φλ(y)
by an integral over K, and (since the integrals in question converge abso-
lutely) interchange the order of integration.

4. Newton's interpolation formula for symmetric cones.

In this section we generalize the classical interpolation theorem of Newton to

the setting of symmetric cones, thereby providing an explicit reconstruction

of a holomorphic function q £ Ή(δ) from its values on the set of partitions.
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4.1. Newton's formula. The classical interpolation formula of Newton
(cf. [3, p. 171], [10, (11.6.1)]) states that for any entire function q : C -> C
satisfying the hypotheses of Carlson's theorem,

£ λ)(1) ϊ(λ) = £ (λ) Δ'g(O)
i=o

for λ e C, where

and

(3) Δ'Ϊ(O) = Σ (-1)

is the j-th difference of q at 0. Newton's formula permits the interpolation
of q from its values on the nonnegative integers.

In [10, §11.6], Hardy deduced Newton's formula by application of Ra-
manujan's Master Theorem. Here, we utilize Theorem 3.4 to obtain the
analogue of Newton's formula for a symmetric cone. As preparation for the
results to follow, we first study a generalization of the binomial coefficients
(λ) in the setting of symmetric cones.

4.2. The generalized binomial coefficients. For any two partitions
ra and ra7, define the generalized binomial coefficient (^) by the binomial
expansion [15, 16, 20]

ra'λ Zm(x)
U Zm.(e)

From [15, 20] we know that (^) = 0 unless m C ra'; that is, if m' =
(m^,... , m'r) and m = (mi,... , rar), then πij < m'- for j = 1,... , r. There-
fore, the sum in (1) takes place over all m C m1. It is also known [15,16, 20]
that the generalized binomial coefficients satisfy the identity

Moreover, we deduce from the estimates (2.9.2) for Zm(x) that the series (2)
converges absolutely for all x G Ω.

It will be useful to have a second interpretation for the generalized bi-
nomial coefficients ( m ) . Thus, recall from (1.10.2) that each x £ Ω is of
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the form x = k - (ξiβi + ' + ξrer) where {e 1 ? . . . , eΓ} is a Jordan frame and
ίii ,ζr G R. Then, by [15, 20], for each partition m, there exists a unique
polynomial Pm £ V(Cr)w such that Pm is homogeneous of degree |m|; and
for any partition m',

(3) D / " d \ Z™'(x)
Zm,(e) 0, m φ m'.

Then the coefficients (m ) are also given by the formula

Applying the differential operator Pm(d/dξι,... , d/dξr) to the integral for-
mula (2.7.5), we deduce that (4) also implies (^) = 0 if m % ml'.

In preparation for the statement and proof of Newton's formula for Ω, we
need three preliminary results on the generalized binomial coefficients.

4.3. Lemma. Let {q(m — p)} be a sequence of coefficients indexed by the

set of partitions. Then

where

(2)

as long as both series in (1) are absolutely convergent.

Proof. By (4.2.2),

= Σ

which is the desired result.

4.4. Lemma. Let m! be a fixed partition. Then the function m ι->- (^ ;), m a
partition, is the restriction (to the space of partitions) of an entire function
on C . Indeed, this function is a polynomial on Cr.
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Proof. We claim that the function

(1) λ ̂  Pm, ( A . * W (

is the required polynomial. Indeed, applying the operator

pm (d/dξu...,d/dξr)

to (2.11.1) we see that (1) is a polynomial function. Moreover, from (2.7.5),
(2.7.8), and (4.2.4) we deduce that when λ is a partition m, then (1) is the
binomial coefficient (™,).

In the sequel, we denote the polynomial identified in Lemma 4.4 by (Λ,),
λ G C r . This polynomial is the required generalization of the binomial
coefficients (4.1.2).

We next use the spherical transform to obtain another interpretation for
the polynomial (^,).

4.5. Proposition. Let m! be a partition and λ £ C r such that Re(λj) <
| ( / / - l ) ; j = l ,2, . . . , r . Then

(e-«*Zm,(x))~ (λ) = |m'|! (-1)^ ^ + / > ) r Ω ( - λ + p).

Proof. On replacing x by -x in (4.2.2), we obtain

where

Applying the Master Theorem for polynomials (see Remark 3.12), we obtain

(e-tr*Zm,(x))~ (λ) = ΓΩ(-λ + p)q(X)

m'

and the transform exists for all λ in the stated range.

The following result generalizes the classical interpolation formula of New-
ton to symmetric cones.
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4.6. Theorem. Suppose that q G Ή(δ) is entire. Then

for λ ξ C , where

(2) Amq(

Proof. For i £ Ω , let

be the spherical series corresponding to q. Applying the Master Theorem
to F, we obtain F(λ) = ΓΩ(-λ + p)g(λ) for all λ G CΓ such that -5 <
Re Xj < - | ( μ - 1) for all j = 1,... , r. On the other hand, by Lemma 4.3,

F(λ)= ί e~trxφx(χ-1)etrxF(x)dtx

Γ X 7 ( T^

Since this last series is absolutely convergent, we may integrate term-by-
term. Applying Proposition 4.5, we obtain

m \ )

Comparing the two expressions for F(λ) and writing Amq(—p) for
(-l) | m |p(m) we obtain (1) and (2).

5. Mellin-Barnes integrals.

Classical formulas for the Mellin transform of hypergeometric functions,
known as Mellin-Barnes integrals, are integral representations that relate
to many areas of applications. For the binomial theorem and both the con-
fluent and Gaussian hypergeometric functions, and more generally for PFP

and p + 1 Fp for any p, these results carry over to symmetric cones as immediate
applications of the Master Theorem.
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5.1. Hypergeometric series. Let α 1 ? . . . , ap and 6χ,... , bq be complex
parameters and define [6, 8, 9] the hypergeometric function pFq on J , or via
analytic continuation on the complexification of J , by the spherical series

(3) PFq(au . . . , ap; bu . . . , bq; x) = Y

The denominator coefficients bj are restricted by the condition that —δ, +
(j — 1)^/2 is not a non-negative integer (for 1 < i < q and 1 < j < r) .
The convergence properties are as follows: (i) If — α, + (j — 1)^/2 is a non-
negative integer for some i and j , then the series terminates and pFq is a
polynomial; (ii) If p < g, then the series defines an entire function pFq on
J; (iii) If p = q + 1 the series has "radius of convergence" 1; i.e., the series
converges for all x £ J with polar decomposition (1.10.2) such that \ζj\ < 1
for all j — 1, . . . , r. (iv) If p > q + 1 the series diverges unless it terminates.

As special cases

(4) 0 F 0 (z) = e - t r *

is the exponential function]

(5) 1F0(a;x) = A{l-x)-a

is the (generalized) binomial theorem; Bessel functions are defined in terms
of o-fi? iF\ is the confluent hypergeometric function; and 2^1 is the Gaussian
hypergeometric function. For the fine structure of these special functions see
[5, 6, 8, 9].

We establish Mellin-Barnes integrals for PFP and p+iFp, p arbitrary, by
showing that the appropriate functions q(X) are in the Hardy class %{S).
Note in the case of p + i F p ( α 1 , . . . , α p + 1 ; 61, . . . , όp; — x) that the Mellin-Barnes
integral extends the domain of definition to all x 6 J.

5.2. L e m m a . Let au ... , αp, 6 1 ? . . . , bp G C ? and set

J/Reα, > £ for all i, then qeΉ.{δ).

Proof. By (2.1.3) and (2.4.3)
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from which we see that (i) and (ii) of the definition of 7ί(δ) in paragraph
3.2 are satisfied by q. It remains to prove that there exist constants M > 0,
P > 0, and 0 < A < π such that

(3)

By (2) and (2.4.3), (3) is equivalent to the estimates

where

(4)

From Stirling's formula, or the well-known classical estimate

hm
zaT(ά)

— 1

for I Arg2:| < TΓ, we see that

Γ (λ, + a, - «=!)
<

for any e > 0. Hence, from (3.3.5) with x + iy replaced by λj +

for any €χ > 0 and c2 > 0, and the proof is complete.

5.3. Corollary. Let p be arbitrary, let δ > | ( μ — 1), and assume that
Rectj > δ for i = 1,. . . , p. Then

dX

pFp(au... ,α p ; &!,... ,bf,-x) = c0 -

/i\ / n / \ . \ Γn(fli + λ)

Λ + Ϊ R ΓΩ(&i + λ) 'Taφp + A) c(λ)c(-λ)

/or all x € Ω and all σ such that δ < Gj < —\(μ — 1) for j = 1,. . . , r.

The corollary follows by applying the form (3.7.1) of the Master Theorem
to the function q given by (5.2.1). Indeed, from (5.2.1) and (2.2.5)

[dl]m ' ' [aP]m
(2) q(m - ρ) =

[h]m • • • [bq]m
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Hence, we obtain the Mellin-Barnes formula (1) by substituting (2) into
(3.7.1).

By entirely analogous arguments, one obtains the following Mellin-Barnes
integral for p+iFp.

5.4 Corollary* Let p be arbitrary, and assume that Reα, > δ, i =
1,. . . ,p + 1, and Re 6, > δ, i = 1, . . . ,p, where δ > | ( μ — 1). Then

Γ a ( Λ + / > ) p /. , Λ N p (h , XN 0λ(g) m , XX
σ+iΈLr 1 Ω(&1 + λ) 1 n(^p + λj C(λjC(-λ)

for all x £ Ω and σ swcft £Λa£ δ < σj < — | (μ — 1) /or j = 1,... , r.

5.5 Remarks. (1) In a suitable range of values of the variables and the
parameters, one can rewrite the Mellin-Barnes integrals (5.3.1) and (5.4.1)
directly as spherical transforms, rather than inverse transforms.

(2) When p < q, the estimate (3.2.2) generally fails for the pFq hypergeo-
metric functions as the constant A is outside the range (0, π). It should be
noted, however, that at the end point, A = TΓ, other Mellin-Barnes integrals
can still be proved but they require a refinement of the estimate (3.3.2). For
the 0Fχ hypergeometric function, for example,

(2) 0*1(6; -x) = c0 Γn(6)

for all x G Ω and all σ such that δ < σj < -f (μ - 1) for j = 1,... , r. The
corresponding formula

is proved in [5, XV.4.5] for Reft > δ and Reλj > 2μ - 1. The proof is based
upon the convolution property of the spherical transform.

(3) We will address the subject of Mellin-Barnes integrals more fully in a
later paper.
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