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FOURIER MULTIPLIERS FOR Lp(Rn) VIA q-VARIATION

QUANHUA XU

We give a new sufficient condition for a function to be
a Fourier multiplier of Lp(Rn) via its q-variation on dyadic
rectangles. This solves a problem posed by Coifman, Rubio de
Francia and Semmes, who had considered the one-dimensional
case.

1. Introduction.

Let / be an interval of R For 1 < q < oo we denote by Vq(I) the space of
all the complex-valued functions of bounded q-variation on /, that is, Vq(I)
consists of the functions m on I such that

1/QI \
\\m\\Vq{I) = sup \m(xo)\q + Σ \m(xk+1) - m(xk)\q < oo,

V *>o /
where the supremum is taken over all increasing sequences {xk}k>o i n I-

In [2], Coifman, Rubio de Francia and Semmes proved the following con-
siderable improvement of the classical Marcinkiewicz multiplier theorem for
LP(R).

Theorem A. Let Ik = [2k,2*+1] and Jk = [~2k+\-2k] for every k e Z.
Let m e -Loo(K). //supkeZ(\\m\\Vq{Ih) + \\m\\Vq{Jk)) < oo for some 1 < q < oo,
then m is a Fourier multiplier for LP(R) for every 1 < p < oo satisfying

The ingredient of the proof of Theorem A in [2] is Rubio de Francia's
generalized Littlewood-Paley inequality for arbitrary families of disjoint in-
tervals (cf. [7]). Let us emphasize that the above theorem is one-dimensional,
while the classical Marcinkiewicz theorem holds as well in the multiple di-
mensional case. The problem of extending Theorem A to E n was left open
in [2]. The purpose of this note is to solve it.

Let us define the space of functions of bounded q-variation on a rectangle

of Rn. We consider only rectangles with sides parallel to the axes, and also

we restrict ourself to finite rectangles. Now let R be such a rectangle. Write

R — Π/b=i[αfc5 bk\. Let m be a function defined on R. Define Δ # by

Δ Λ (m) = Δ£> Δg> • • Δ£> m(aua2, , a n ) ,

287



288 QUANHUA XU

where hk = bk — ak and where Δ ^ is the usual difference operator in the
A -th variable (with all the others fixed), i.e., for any function / on W1 and
any positive real number h

Now for 1 < q < oo we define Vq(R) inductively in n. We already have the
definition for the case n = 1. Thus suppose n > 2. Let m b e a function on
R. We say that m is of bounded q-variation on R if the following properties
are satisfied:

(i) for each 1 < A; < n — 1 the function m(xu , #*, α*+i, , αn), con-
sidered as a function of the first k variables, is of bounded g-variation
on the fc-dimensional rectangle ΠjLi[αj?δj]»

(ii) the condition analogous to (i) is valid for each permutation of the
variables #i, X2, , xn\

(iii) for the full n variables we have

where the supremum runs over all decompositions Q of R into sub-
rectangles of disjoint interior.

We define ||m||vq(Λ) as the sum of all the quantities appearing in (i) - (iii)
and denote by Vq(R) the space of all functions of bounded q-variation on R.
This is a Banach space equipped with the norm || ||V,(Λ)

Remark. Vλ (R) is the usual space of functions of bounded variation on
R; moreover, m G Vλ (R) if m is n times continuously differentiate in the
interior of R and satisfies the following

(i) for each 1 < k < n — 1

pb\ rb _dkm

/α, " l ^
dx\ dxk < oo,

(ii) the condition analogous to (i) is valid for each permutation of the

variables #1, £2, *' ? χn\

(iii) and

rb\ pb

Ja\ Ja*

dnm

dxi dxn

i - - dxn < oo.
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Also observe that we can slightly weaken the above condition (iii) by requir-
ing only that m be n — 1 times continuously differentiable on R and that
dx^ ™x"(Xl> " ' ' X n ) e χ i s t 0 n a reasonable sense) and be absolutely Riemann
integrable on R.

For stating the analogue of Theorem A for Rn we need recall the notion
of dyadic rectangles, used in the classical Littlewood-Paley theory (cf. [8]).
First for n = 1 a dyadic interval is an interval of R from one of the sequences
{Ik} and {Jfc} introduced in Theorem A. Then by a dyadic rectangle of Rn

we mean a rectangle R which is a product of n dyadic intervals. Let V
denote the family of the dyadic rectangles. Let us also recall that ^4*(Mn) =
ip(Mx xR) denotes the class of the Muckenhoupt Av- weights on IRn in
the product sense (cf. [4]).

For a function m G Loo(Rn)^ the corresponding multiplier operator is

denoted by Tm, i.e., Tm(f) = m/, where / is the Fourier transform of /.

The result of this note is the following theorem, which solves the problem in

[2] for Rn.

Theorem.
(i) Let 1 < q < oo and m G L^W1). If supReV ||m||v9(β) < oo, then

m is a Fourier multiplier for Lp(Wn) for any p G (l,oo) satisfying

Ip 2l ^ q'

(ii) If m satisfies the above condition with q = 2, then for any w G A^(Mn)

we have

ί \Tm(f)(x)\2w(x)dx

< C sup | |m| | 2

V 2 ( Λ ) / \f(x)\2w(x) dx, V / G L2(w),
Rev JR"

where C is a constant depending on w.

Remark. In particular, if q = 2, then m is a Fourier multiplier for Lp(Wι)

for all p G (1, oo). Recall that the classical Marcinkiewicz multiplier theorem

corresponds to the case q — 1.

2. Proof.

Now we proceed to prove the theorem. As in [2], the ingredient of our proof
is again the generalized Littlewood-Paley inequality of Rubio de Francia [7].
The new point is a simple observation: a function of bounded g-variation
on a rectangle can be regarded as a vector-valued function of bounded q-
variation on an interval (see Lemma 1 below). This observation allows us to
iterate one-dimensional results.
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Let us first extend the definition of q-variation to functions with values in
a Banach space B. This is done just by replacing the absolute value by the
norm of J5. Thus if / is an interval (say, I = [α, b] a finite interval), Vq(B, I)
is the space of all functions m from I to B such that

/ y/
IMk(B,i)= S U P \\\m(a)\\<> + Σ\\m(xk+1)-m(xk)\\'>) < oo.

a=xo<xi< "<b \ I

Note that the above V^-norm is not equal but equivalent to that introduced
at the beginning.

Now let R be a rectangle in Rn. Write R = Π L i h with Ik = [ak,bk].
Then we can introduce the space Vq(Vq( (Vq(In) ), / 2 ), h) of functions
on R. This space is denoted by Vq(R). For example, if n = 2, a function
m on R = Iι x I2 belongs to Vq(R) iff for all xλ G h the function m{xu •)
belongs to Vq(I2) uniformly in xx G lχ and the vector-valued function xx H>
m(xu ) G Vq(I2) belongs to V^V^h^h).

The following lemma is elementary and almost obvious.

Lemma 1. For any 1 < q < oo and any rectangle R in W1 we have
Vq(R) C Vq(R) of inclusion norm < 1.

By Lemma 1 it suffices to prove the theorem for Vq in place of Vq.
To continue the proof of the theorem we need introduce another space Uq

related to Vq. Let 5 b e a Banach space and / an interval of K. Denote by
ε the family of all step functions m from I to B which can be written as

K

where {ak} C B and {Ik} is a finite sequence of disjoint intervals with
I = \JkIk (χe standing for the indicator function of a subset e). For m G 8
as above set

[m]=

and

( j

\\™\\uq(Bj) = inf < 5Z I m i l : ιrn = Y^mj, rrij eS, 1 < j < J, J > 1
[j=ι i=i

Then || \\uq(B,i) is a norm on ε. The completion of £ with respect to this
norm is denoted by Uq{B,I). If B = C, [/g(C, /) is simply denoted by Uq(I).
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It is trivial that Uq(B,I) C Vq(B,I). Clearly, the inverse inclusion is not
true. However, we have the following

Lemma 2. Let B be a Banach space and I an interval. Let 1 < p < q < oo.
Then VP(B, I) C Uq(B, I) of inclusion norm bounded by a constant depending
only on p and q.

This lemma is proved in [2] for B — C The same proof works for any B.
Note that Lemma 2 was already known to the authors of [6]. It follows from
more general results on the real interpolation spaces between the V -̂spaces
(see [6] and [9]).

If i2 = Π/fc=i h is a rectangle in Rn, as for Vq above, let

This is a space of functions on R. We have the obvious inclusion Uq(R) C
Vq(R)\ also Lemma 2 implies that VP(R) C Uq(R) for 1 < p < q < oo. The
following lemma is the n-dimensional analogue of a lemma in [2].

Lemma 3. For any m e U2(Mn) and w G A*(Rn) we have

α v 1/2 f f v 1/2

n \Tmf(x)\2w(x)dxj <C\\m\\U2{Rn) (jf^ \f(x)\*w(x)dx) ,

where C is a constant depending on w.

Proof. It is based on Rubio de Francia's inequality. Let us recall this in-
equality (in its weighted form; see [7] and [2]). Let {Ik} be an arbitrary
sequence of disjoint intervals in R. Let Sjk denote the partial sum operator
associated to Ik (i.e., Sik is the multiplier operator with symbol χik). Then
for any w G J4I(M)(= Al(R))

\
V / 6 L 2 H ,

where C is a constant depending on w only.
Now we show Lemma 3 by induction on n. The case n = 1 is just (*).

Then suppose the lemma is true for n — 1 (n > 2). Let w G Ai(]Rn) and
m G U2(Rn) of norm 1. By convexity, we may suppose m is a step function
as in the definition of U2(B,R), where B = [^(HΓ"1) (in the last n - 1
variables). Thus m is a finite sum
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where ak G U2(Rn~~1) of norm 1, {Ik} are disjoint intervals and A* > 0 are

such that Σ Xl < 1. Let Tk and Sk be the multiplier operators with symbols

^-1 respectively. Then

Recall tha t if w G A\(Rn), then w(xu ) G ̂ ( R 7 1 " 1 ) uniformly for all ^ G M

and also w(-,x2,--- ,χn) € -Ai(R) uniformly for all (#2Γ * ,χn) G M7 1"1.

Therefore, by the Fubini theorem, the induction assumption o n n - 1 and

(*) we obtain

/ \Tmf\2w<Σ[ \Tk(Skf)\2w

= Σ / dχi I \Tk(Skf)\2wdx2 •••dxn
I JR JR—-I

^CTίdx.ί \Skf\
2wdx2---dxn

^ΓJR yR»-i

= C ί dx2 dxn fy \Skf\
2wdxx

<CC I dx2---dxn ί \f\2wdx!
7R"-I JR

= cσ ί \f\2w.

Thus the lemma is proved. D

Now we can deduce the theorem from Lemmas 2 and 3. Recall that if R

is a rectangle, SR denotes the associated partial sum operator.

Proof of the Theorem. Let us first prove (ii). Fix w G A*(Rn). Then by the

reverse Holder inequality wa G A*(Rn) for some a > 1. Let 1/0 = a and

q = 2a. Then 0 < θ < 1 and q > 2. We claim that for any m G Uq(Rn), Tm is

bounded on L2(w). This follows from Lemma 3 by interpolation. Indeed, let

us consider the bilinear operator B defined by B(m,f) = Tmf. By Lemma

3, B is bounded from f72(Mn) x L2(wa) to L2(wa)\ on the other hand, B

is obviously bounded from Loo(IRn) x L2 to L2. Therefore, by the complex

interpolation (see [1]), B is bounded from (L00(Rn),U2(Rn))θ x L2(w) to

L2(w). Thus if m G (z^OEΓ), C/2(Mn)) , then T m is bounded on L2(w)\ it
^ / Θ

is however clear that Uq(Rn) C ( l ^ R 7 1 ) , U2(Rn)) , from which follows our
v / Θ

Θ

claim.
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Now with the claim and Lemma 2, the proof of (ii) can be finished by a
standard argument. Let m G Loo(I&

n) be such that supR€X> | |^ | |V2(R) < l
Set mR = mχR. For / G L2(w) choose g G L2(w) of unit norm such that

= / Tm(f)gw.

Note that

Rev

Then using the self-adjointness of SR we get

Tm(x(f)gw = j ^

and so

Observe that gw G L2(w~1) and w~~ι G ̂ ( M 7 1 ) . By the weighted Littlewood-
Paley inequality (this can be obtained by the standard argument as in the
un-weighted case, see [4] or [8]),

Also, by the condition on m, mR G V2(R) and is of norm < 1; so by Lemma
2, mR G Uq(Rn) for the above q = 2a. Thus it follows from the previous
claim that

J\TmR(SRf)\2w<cJ\SRf\2w, V#G2λ

Putting together the preceding inequalities, we obtain the boundedness of
Tm on L2(w). This is (ii) of the theorem.

The proof of (i) is now easy. First we show (i) for q = 2. This is done
by (ii) and the elementary fact that for any g G Lr(Rn) (r > 1) there exists
w G Lr(Rn) such that w G Aί(Mn), \g\ < w and | |tu| | r < 2| |p| | r (see [4]).
In particular, if supH€X> ||m||va(H) < oo, m is a Fourier multiplier of Lp(R

n)
for all 1 < p < oo. Then interpolating this with the trivial case where
m G Loo(R

n) and by an argument similar to that at the beginning of the
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present proof, we deduce that (i) is true with Uq instead of Vq. Therefore,
by Lemma 2, we finally get (i) in its full generality. D

Remarks.
(i) The preceding proof also yields the following vector-valued version of

the theorem. Let 1 < q < oo and {mk} be a sequence of functions in
L^W1) such that M = sup*. supΛ e χ ) ||ra*||v,(Λ) < oo. If 1 < p < oo
and \l/p - 1/2| < 1/q, then

(ϋ)

(iii)

(iv)

<CM {fk}cLp(Rn),

where C is a consatnt depending on p and q.

As the reader may observe, the preceding proof is essentially the iter-
ation of a one-dimensional argument. Its pattern is the same as that
of [2]. This is not surprising if one remembers that the Marcinkiewicz
multiplier theorem in Rn is an iteration of one-dimensional results as
well.

Let us point out that the generalized Littlewood-Paley inequality of
Rubio de Prancia was extended to W1 by Journe [5]. At first glance,
one might think that Journe's extention should suit to the proof of our
theorem better than the preceding iteration argument. However, this
apparently cannot lead to our final goal (at least, the author has not
succeeded in proving the theorem by Journe's inequality).

The case q = 2 in our theorem is of special importance (the result
in the general case then follows by interpolation, as the above proof
shows). If we just interpolate the case q = 1, to which the classical
Marcinkiewicz theorem applies, with the trivial case q = oo as above,
we can only obtain the following weaker fact: under the condition of
the theorem (i), m is a Fourier multiplier of Lp(Rn) for 1 < p < oo
such that \l/p - 1/2| < l/{2q).

3. An example.

The following example is classical. Let

m(x) = (α>0,6>0).

Then m is a Fourier multiplier for Lp(Rn) whenever 1 < p < oo and \l/p —
1/21 < |^. We will obtain this by our theorem. To that end, it suffices
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to show that m belongs to Vq(R) uniformly in all dyadic rectangles R for
any q > nα/(2fe). For that let us allow 6 to take complex values. Thus let
6 be a complex number with Re(6) > nα/2. Then it is clear that for any
a = (αi, , an) with α& = 0 or 1

where J— = dx*ιd".dx<*n and xa = x"1 x"1. It follows that for any dyadic
rectangle ϋ , m belongs to Vi(jR) and is of norm bounded by C(l + |Im(6)|)n.
Multiplying m by a function like eb ~θ (for a suitable θ € (0,1)), one sees
that the new function is in Vι(R) uniformly in dyadic R for all complex
b with Re(6) > nα/2. Then interpolating this with the trivial case where
Re(6) = 0 (then m £ Loo), we obtain the desired result.

Remark. Recall that the above result is optimal, that is, if |l/p—1/2| > ^£,
then m is not a multiplier for Lp(Rn). This shows that our theorem is also
optimal. However, it does not cover the critical case where |l/p — 1/2| = |^.
In this case, m is still a Fourier multiplier for Lp(Kn) (cf. [3]).

Acknowledgement. We are grateful to the referee for some valuable sug-
gestions.
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