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MODULI SPACE OF ISOMETRIC PLURITHARMONIC
IMMERSIONS OF KAHLER MANIFOLDS INTO
INDEFINITE EUCLIDEAN SPACES

HiTosHI FURUHATA

We classify isometric pluriharmonic imnmersions of a Kihler
manifold into an indefinite Euclidean space. The moduli space
of such immersions is explicitly constructed in terms of com-
plex matrices. Some examples of these immersions are also
given.

1. Introduction.

It has been a fundamental problem in the theory of minimal surfaces to
determine the moduli spaces of isometric minimal immersions. An answer
to this problem was given by Calabi [3], and recently it is generalized to
higher dimensional cases by the present author [8]. In fact, we prove that the
moduli space of isometric minimal immersions of a simply connected Kahler
manifold into a real Euclidean space can be constructed in an explicit way
as a set of certain complex matrices.

The purpose of this paper is to prove the counterpart of this construction
in the case that the ambient space is an indefinite Euclidean space. Namely,
we shall construct a parametrization of the moduli space of isometric pluri-
harmonic immersions of a simply connected Kéahler manifold into an indef-
inite real Euclidean space in terms of certain complex matrices, which are
in fact determined by a full isometric holomorphic immersion of the Kahler
manifold into an indefinite complex Euclidean space. The key ingredient of
our construction is the pluriharmonicity of these immersions, which eventu-
ally enables us to classify them in a similar fashion as in the case of minimal
surfaces. However, it should be remarked that isometric maximal immersions
of Kéahler manifolds into indefinite Euclidean spaces are not pluriharmonic
in general, which contrasts with the fact that isometric minimal immersions
of Kahler manifolds into Euclidean spaces are always pluriharmonic.

In their paper [1, 2], Abe-Magid proved a rigidity theorem of indefinite
complex submanifolds and a representation formula for maximal surfaces
in terms of holomorphic curves and complex matrices. Our result can be
regarded as a sequel to their work.
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This paper is organized as follows. After fixing our notation and termi-
nologies, we recall in Section 2 a rigidity theorem of isometric holomorphic
immersions of a Kahler manifold into indefinite complex Euclidean spaces.
The precise statement of our classification theorem and its proof are given
in Section 3. In Section 4 we illustrate some examples of isometric plurihar-
monic immersions of Kahler manifolds into indefinite Euclidean spaces.

The author wishes to express his gratitude to Professors K. Kenmotsu
and S. Nishikawa.

2. Preliminaries.

Let RN denote a real vector space of dimension N + P endowed with the
standard metric

—(d$1)2—'--—(dﬁN)2+(dl'N+l)2+~-'+(dzN+P)2

of signature (N, P), and CN ¥ a complex vector space of dimension N + P
endowed with the standard metric

—dz'dz" — - — d2NdzN 4+ dZV PN 4 dN P NP
of signature (N, P), respectively. Let [, t and s be integers such that
0<!<min(N,P), 0<t<N-] and 0<s<P-1I

For each (l,t,s) we denote by H(l,t,s) an (I + t + s)-dimensional subspace
of RN consisting of the elements

X =(X%,... X, X" X" 0,...,0;

7

N
1 1 I+t+1 l+t+s
XY, XL X X 0, 0),

~

~~

P
where X7 € Rand 1 < j <[l+t+s. Also, by HS(l,t,s) we denote an
(I + t + s)-dimensional subspace of CY¥*¥ consisting of the elements

Z=(Z},... 7 2" 20,0

N

1 1 I+t+1 l+t+s
ZV,..., Zh Zt gt g (),

~ v
~

P

where Z7 € Cand 1 < j <1+ t+s. For each element Z € HE(l,t,s), we
set

Zo = (Zl, e ,Zl),
Z_:=(2',...,Z'Y),
Z+ = (Zl+t+1’ L ,Zl+t+s),
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which are called the 0-component, the —-component and the +-component
of Z, respectively. We often write Z = (Z,, Z_, Z,) for convenience.

Let M(n1pyx(n+p)(F) denote the set of (N + P) x (N + P)-matrices with
entries in F(= R or C). Let O(N, P) and U(N, P) be the groups of isome-
tries of RY ™ and CN™F| respectively, that is,

O(N,P) = {O € M(N+p)><(N+p)(R) : tOleO = le},
U(N,P):={U € Mni+pyx(n+P)(C) : "UlypU = 1np},

where

-1 N
Iyp = [ N 1le € M(N+P)><(N+P)(R) and U=".

Note that each linear subspace of RY*F can be written as O(H(l,t,s))

for some (l,t,s) and some O € O(N,P). As a result, when we discuss
O(N, P)-congruence classes of maps into RN ¥, we only have to consider
H(l,t,s) as subspaces of RNTP. We remark that the induced metric on
H(0,t,5)(= RI™*) ¢ RNTY is nondegenerate, while for I > 0 the induced
metric on H(l,t,s) C RNTY is degenerate.

Throughout this paper, we always denote by M a connected and simply
connected Kahler manifold of complex dimension m. An isometric immersion
f: M — RY*P of M into the real indefinite Euclidean space RN is said
to be full in H(l,t,s) if the image f(M) of f is contained in H(l,t,s) and
if the coordinate functions f!,..., f!, fi, ..., fift, firtrl 0 fiFtds of f
are linearly independent over R.

Definition 2.1. We say that an isometric immersion f : M — RYF

is pluriharmonic if the (1,1)-component of™!) of the complexified second
fundamental form « of f vanishes identically :

oY = 0.

Note that f is pluriharmonic if and only if the CN*F-valued function
df /92> is holomorphic, where (2%) := (2!,... ,2™) is a local complex coor-
dinate system on M. An isometric holomorphic immersion f : M — CY*F
is pluriharmonic when regarded as a map f : M — RINT?P (= CNTF). It
is also easy to see that the mean curvature of a pluriharmonic immersion

vanishes identically. Conversely, we have the following

Proposition 2.2. Let f be an isometric immersion of M into RN™F,
and P = 2m, the real dimension of the Kahler manifold M. If the mean
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curvature H of f vanishes identically, then f is pluriharmonic.

Proof. We choose local orthonormal frames e,,... ,e,,Je;,... ,Je, on M
and define V2E; := e; ++/—1Je; € T*'M, where J is the complex structure
of M. From the Gauss equation of f and the Kahler condition of M, it follows
that

0= g (R(E, B,)E;, Ex)

= (@ (BB) (B F)) ~ (@ (B Br) o (8. ),

where g is the Kahler metric on M, R denotes its curvature tensor and
k,r=1,... ,m. Taking sum with respect to k and r then yields

0 =m?*(H, H) - (), a0},

which implies that H = 0 if and only if o/t?) = 0, since H and o)) are
both timelike vectors. O

Dajczer - Rodriguez [6] and Ferreira- Tribuzy [7] proved that for an iso-
metric immersion f : M — RFP(= R}) the same result is true with no
restriction on the dimension P of the ambient Euclidean space.

The following proposition is the indefinite version of a result due to Da-
jczer - Gromoll [4], which can be proved in the same way as in the positive
definite case.

Proposition 2.3. For an isometric pluriharmonic immersion f : M —
RN'P, there exists an isometric holomorphic immersion & : M — CN'F
such that f = v/2Re ®.

It is well-known by Calabi’s rigidity theorem that an isometric holomor-
phic immersion of a Kdhler manifold into a complex Euclidean space is rigid.
The counterpart of this result in the indefinte case is given by the following.

Proposition 2.4. Let H®(l,t,s) and HE(l',t',s') be linear subspaces
of CNYY as above. Let ® = (®,®_,®,) : M — HCS(l,t,s) and ¥ =
(Uo,¥_, T, ): M — HE(I',t',s") be isometric holomorphic immersions, re-
spectively. If ® is full in HS(l,t,s), then

1) s<s andt<t, and

2)  there exists a unitary transformation U € U(t',s') such that

d_
v _ |00
vl )%

Os'—-s
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To prove this proposition, we only have to apply Calabi’s rigidity theorem
to the new isometric holomorphic immersions (V_;®,,0,_,) and
(®_,0p_4;0,) : M — C!** constructed from ® and ¥. We refer the
reader to Abe-Magid [1] for details. It should be remarked that we have no
relation between ®, and ¥, in this case.

Definition 2.5. A full isometric holomorphic immersion of M into
HEC(l,t,5) € CN*P is called the shape of M if [ = 0.

Note that by Proposition 2.4, the shape of M is unique up to unitary
transformations.

3. A parametrization of the moduli space.

We denote by M7? (M;RN*F) the moduli space of full isometric plurihar-
monic immersions, that is, the set of O(N, P)-congruence classes of full iso-
metric pluriharmonic immersions of a Kihler manifold M into Ry 7.

Our aim of this section is to parametrize M’ (M;RNF) by the set
P(®; N, P) defined in the following manner.

We assume, throughout this section, that M’ (M;RN*F) is not empty.
Then it follows from Propositions 2.3 and 2.4 that there exists the shape
®: M — C? of M. For ® and integers N and P, we define P(®; N, P)
to be the set of (n + p) X (n + p)-complex matrices satisfying the following
conditions (P1) — (P4):

(P1) ;87? gzi;=0 (a,8=1,...,m),

(P2) tp = P,

(P3a) ‘o (1n,, - tplnpﬁ) z_ <0 for z_ € H(0,n,0),
(P3b) T, (1,,,, - tP1,,,,‘P) z, >0 for z, € HS(0,0,p),
(P4) sign (1,,p - tP1n,,?) =(N—-n,P—p),

where (P4) means that the Hermitian matrix 1,, —*P1,,P has (N — n)
negative eigenvalues and (P — p) positive eigenvalues.
First, we give another description of P(®; N, P) for later use.

Lemma 3.1. An (n+p) X (n+p)-complex matriz P belongs to P(®; N, P)
if and only if P satisfies (P1) and there ezxist a complex matriz

UeUmn) x Ulp) = {[g g} €U(n,p): A€ U(n), Be U(p)} ,
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and real numbers Ay, ... , An, th1,. .. , iy Satisfying

(P2 P ='Udiag(—A1,.-. , ~An;lh1y-- , kp)U,

(P3') 1SS S-S0y, < Sy L1,
(P4'a) —1==-X = ==X ~N < —Azn_n~N+1,

(P4'b) Hop-pPi1 < Pop—p = = =1

Proof. In order to see that P € P(®; N, P) is diagonalized as in (P2'), we
inductively define subsets $?"~(-1) (j = 1,... ,n) of H€(0,n,0) and vectors
z; € §2=(@-1 a5 follows.

Step 1. We set

S 1= {g = (z_;0) € C"*? . *z1,,z = —1},
n P
—~X; = inf Re(‘zPz).
z€S2m-1

Then there exists z; € S** ! such that —\; = ‘z;Pz; < 0. In fact,
since S?"~! is compact, we have a vector z; € S§**! such that —\, =
Re (*z, Pz;) < 0. Note that if z € $*"! and 6 := 1/2(n — arg’zPxz), then
the vector eV~1z belongs to $?*! and e>V~1(*zPz) < Re (*zPz). Hence,
Re (*z,Pz,) = ‘'z, Px;.

Step j. We set

S .= {x = (z_;0) € =3 . *g1,x;, = *zPx;_ | = 0} ,

—Aj = inf )Re (*zPx).

ze82n—(25-1

Then the same argument as in Step 1 assures that there exists z; € §2n~(2i-1)
such that —\; = tz;Pz; <0.

Consequently, we obtain vectors z,,... ,z, € H®(0,n,0) such that
*a:jlnpxk = —'5jk7
tiL'jPCCk — ""A]'(Sjk, —Al S s S _)‘n S 0.
In a similar fashion we also obtain vectors z, .1, ... ,Zntp € HE(0,0,p) such
that

*xn—{-jlnpxn—{-k = Ojk,
"y i PTryk = 105k, M1 2= 2> pp >0
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It is immediate from these that P is diagonalized as in (P2’'):

U™ = (21, .. , 0} Tag1s -+ s Tngp) € U(n) x U(p),
FUTTPU =diag(—A1y - s = A1y -+ 5 Hp),
-\ S"'S—)\nSOSHpS"‘S,Ul-

Now we note that
Ly —'P1,,P = *Udiag(—(1 = A}),... ,—(1 = A2);1 —pi,... ,1 — p2)U.

Then (P3) means that —(1 — A3) < 0 and 1 — 47 > 0, which implies (P3').
(P4) means that sign (1,, — 'P1,,P) = (n— (2n— N),p — (2p — P)), which
is equivalent to (P4').

Conversely, it is easy to see that matrices satisfying (P1) and (P2') - (P4')
belong to P(®; N, P). O

In order to construct a bijection from M/ (M;RNTF) to P(®; N, P), we
prepare the following lemmas.

Lemma 3.2. For each full isometric pluriharmonic immersion f : M —
RNTE, there exists an (N + P) x (n + p)-complez matriz S such that

(S0) f=V2Re 50,
9®, od
(S].) 5;511\]1355;5—0 (Ol,lB——].,... ,m),
(S2) *S1npS = 1,
(S3) rank (s, 79‘) — N+ P,

where (S, §) denotes the (N 4+ P) x 2(n + p)-matriz consisting of S and its

complex conjugate S.

Proof. Recall that by Proposition 2.3, there exists an isometric holomorphic
immersion ¥ : M — CN*¥ such that f = v/2Re ¥. It also follows from
Proposition 2.4 that for ® and U there exists U = (u;y) € U(N,P) (I,J =
1,...,N + P) such that

d_
w_ _ ON—n

Op_p
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Let S be the (N + P) x (n + p)-matrix defined by

n p
NN

S = [ S S, ] }n+P,
where
S, = [u;,-] (7=1,...,n),
Sy = [uI(N+a)] (a =1,... 7p)

Then we have

1 (oo @
(3.1) f=\/§Re\IJ=\/§ReS(I>=—§(S,S) H,
1 1

Since f and ® are isometric,
tof of 2*3f1 af *0®. 09

0= 205 NP 2o NP8 T Bge ™8
which together with (3.2) implies (S1) and (S2). By (3.1), the fullness of f
in RN*F is equivalent to (S3). O

Conversely, by reversing the above process it is easy to see the following:

Lemma 3.3.

(1) Let S be an (N + P) x (n + p)-complez matriz satisfying (S1), (S2)
and (S3). If we define f as in (S0), then the congruence class [f] of f
belongs to M (M;RN*P).

(2) Let fi = V2Re S5;® and fo = V2Re S,® : M?" — RN be isometric
pluriharmonic immersions. Then [f1] = [f2] if and only if *S;1npS) =

We also have the following lemma.

Lemma 3.4. If an (N + P) X (n+p)-matriz S satisfies (S1),(S2) and (S3),
then tS1ypS belongs to P(®; N, P).

Proof. Step 1. By (S1), !S1ypS satisfies (P1).

Step 2. By the same argument as in the proof of Lemma 3.1, we obtain
U € U(n) x U(p) such that

tSleS=tUdiag(—)\1,... ,"'An;/ll,... ,[J,p)U,
M A SO0 pp S S
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It follows from (S2) that —1 < —A; <0 < p; < 1. In fact, let V € U(N, P)
be a matrix such that

VS(S*™ 1) c {y € HC(0,N,0) C CNF : *ylypy = —1}.
Then we have

-\ = inf Re(*z'SlypSz)= inf Re(‘ylnpy)

se§n-1 yes(s2n-1)
. t —1 -1
yevg{};ﬁn_l)RQ((V Yive(V7y))

> i (v “ly) = —1.
> cvdnf (VT (VTy) = —1

Also, a similar argument applied to p, implies u; < 1. Consequently, tS1ypS
satisfies (P2') and (P3').

We proceed to prove that (S3) is equivalent to (P4’).
Step 3A. Since —1 < —)\; <0 < p; <1, we can choose complex numbers
a;, b;, c¢; and d; so that
(3.3) X = a} +b, 1= lag|® + [bif®

127 :C?"Fd?, 1= 'Cj|2+|dj|2.

In particular, if A\; = 1 (resp. p; = 1), we take a; = 1, b; = 0 (resp. ¢; = 1,

Note that a;, b; (resp. ¢;, d;) are linearly dependent over R if and only if
i =1 (resp. p; =1).
Step 3B. For these complex numbers a;, b;, ¢;, d; and the matrix

n+p
—~N

S| v
S = [S;] L’ € M(N+P)x(n+p)(C)a

we consider (2n + 2p) X (n + p)-matrices T and S defined by

ay
b
e . s
T T }2" b, o O2pn—n
T:= |~ = d §:=
[Tg] Yop c an S,
dl 02p—P
Cp
L dyp
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By definition, we have

t (T’U) 12n2p (TU) = t§12n2p§,

* (TU) lgngp (TU) = *glgngpg = ]-npa
which implies that there exists O € O(2n,2p) = U(2n,2p) N O(2n,2p; C)
such that OS =TU.
Step 3C. (S3) holds if and only if rank (ﬁ,’ﬁ) = N and rank (i’;,i) = P.

In fact, rank (S, :9'—) = N + P if and only if we can choose N timelike

vectors and P spacelike vectors from the image of (S, :5’“)_ By Step 3B, this
is equivalent to being able to choose these vectors from the image of (Cf, ’f) ,

which means that rank (’ﬁ ,f) = N and rank (i’; ,E) = P.

Step 3D. rank (T}Zﬁ) = Nifandonlyif 1 = A, = - = Agp_n > Aan_Ni1s
and rank (YA’;,E) =Pifandonlyifl =py = - = pop_p > pop-ps1-
In fact, by the definition of CZA"I, rank (ﬁ,]z’l) = N if and only if there

exist 2n — N pairs of R-linearly dependent vectors (a;, @;) and (bi, 7):) Step
3A then implies that this is equivalent to 1 = A\; = -+ = Agp_n > Aan-nNy1-
The proof for T; is similar.

Step 3C combined with Step 3D now implies that (S3) and (P4') are
equivalent, which completes the proof of the lemma. O

We are now in a position to define a natural map F from M/ (M;RNTF)
to P(®; N, P).

Let [f] be an element of M/ (M;RN"F). By Lemma 3.2, for each full
isometric pluriharmonic immersion f € [f], we can choose an (N + P) x
(n + p)-matrix S satisfying (S0) - (S3). By Lemma 3.4, *S1xpS belongs to
P(®; N, P). We then define the map F by

F([£]) :=*S1npS,

which is well-defined by Lemma 3.3 2).
With these preparations, we obtain a parametrization of the moduli space
of full isometric pluriharmonic immersions as follows.

Theorem 3.5. Let M be a connected and simply connected Kahler man-
ifold. Suppose M has the shape ® : M — CI*?. Then the map F :
M (M;RYTF) = P(®; N, P) is bijective.

Proof. It follows from Lemma 3.3 (2) that F is injective.
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To show that F is surjective, we claim that for each P € P(®; N, P) there
exists an (VN + P) x (n + p)-matrix S satisfying (S1), (S2) and (S3). First,
by Lemma 3.1, there exist U € U(n,p) and A;, u; € R such that

P = tUdiag(—l,... ,—1,_‘A2n_N+1,... ,"—)\n;l’ ,1,/1,2p_P+1,.,. ’MP)U'
2n—N 2p—P

Choose complex numbers a;, b;, ¢; and d; such that (3.3) holds for these A,
and p;. Then we define an (N + P) x (n + p)-matrix S by

-"12n—N
Qan—N+1
b2n—N+1
an
S = bn U.
]-2p—P
Cop—P+1
d2p—P+1
Cp
L dp ]
It can be verified without difficulty that S satisfies (S1), (S2) and (S3), which
together with Lemma 3.3 (1) implies that F is surjective. |

Before closing this section, we now consider the moduli space without
assuming the fullness of immersions. Let M (M;RNTF) denote the set
of O(N, P)-congruence classes of isometric pluriharmonic immersions of a
Kiéhler manifold M into RN 1. Then we have

M (M;RY*F) = 11 MI(M;H(,t,5)).
0<I<min(N,P),
0<t<N-—I,
0<s<P-I

In particular, we have

MMRYT) 2 [T M(MRY™).
0<t<N,
0<s<P
It should be remarked that M (M;RY'") is not finite-dimensional in gen-
eral, which contrasts with the fact that the moduli space is finite-dimensional
in the positive definite case. In fact, it is not true that M/ (M; H(l,t,s)) is
of finite dimension when { > 1.
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4. Examples.

In this section we illustrate some examples of pluriharmonic immersions.

Ezample 4.1. Holomorphic immersions. As mentioned above, all holomor-
phic immersions are pluriharmonic. For instance,

f(z) =" (Re z,Im z; Re (%f + Zz) ,Im (%zz + 2z)>

gives rise to a (pluri)harmonic immersion of a non simply connected and
non complete Kahler manifold defined by ({2 € C: |z +2| > 1},2(|]z +2|* —
1)|dz|?) into R3.

Ezample 4.2. Product immersions. Given two pluriharmonic immersions
fi: My — RN and f, : My, —» R2TP2, we can define product immersion

— P;
fl X f2 : M1 X M2 — RINV:+P1 X R%§+P2 = iniﬁ;+N2+ 2,

which is also pluriharmonic.

Now, let f = vV2Re® be an isometric pluriharmonic immersion of a
simply connected Kahler manifold M into RVN+P (= R)*F), where ® : M —
CN*P is an isometric holomorphic immersion such that

tod 0
41 9292 _
(41) 0z 02°
For & =t(®',...,®N &N+l ... ®N+P) we consider a new immersion

3=t (\/—1@1, URRVAST SIY LA ,<I>N+P) : M — CN*+P,
where M is a Kihler manifold defined by
({rem:@(apr(x) >0}, §:=3(,oyer).

Then the map f defined by f~ = V2Re ®: M — RNTF gives rise to a
pluriharmonic immersion, since

t9d . 9d

57a NPy =0

To sum up, in order to obtain (locally defined) pluriharmonic immersions
into RYF, we only have to construct holomorphic immersions into CN+P
satisfying the condition (4.1).
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Ezample 4.3. Cone immersions. As an example, we shall construct pluri-
harmonic immersions of subsets of C? into RS.

As remarked above, it suffices to define holomorphic immersions into C!**
satisfying the condition (4.1). Let C and D be simply connected domains of
C. Suppose that 1) : C — C is a holomorphic function and ¢ : D — C'** is
a holomorphic immersion such that

09 _ ‘0904 _

(42) t9p =gt = —LL =0,

where z is a coordinate of D. Then the holomorphic immersion ®(w, z) :=
(w)p(z) : C x D — C'** satisfies (4.1), from which we obtain a plurihar-
monic immersion of a subset of C' x D into R}.

We can construct ¢ as follows. For any holomorphic function h on D we
set

9(z) ="' (2),4°(2),4°(2))
= [ Y1 -h(()? V=11 + h(¢)?),2h(¢))dC.

Then

$(2) :="(1 = "9(2)g(2), V=1(1 + *g(2)g(2)), 29" (2), 29" (2), 29° ()

gives rise to a holomorphic immersion satisfying the condition (4.2).
If we choose ¢¥(w) := w and h(z) := z, the corresponding pluriharmonic
immersion is

f(w,z) = v2Re @(w,z)
V-1 (1+ 32%)

VAT - L __
=v2Re | w 2(z—32°)| | :C*>CxD—=RJ.
V=12(2 +2§z3)
2z

It should be pointed out that we may use a class of complex ruled immer-
sions obtained by Dajczer - Gromoll [5] as the above ®, which provides us
with a larger class containing cone immersions.
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