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A UNIQUENESS THEOREM FOR THE MINIMAL SURFACE
EQUATION

JENN-FANG HWANG

In 1991, Collin and Krust proved that if u satisfies the
minimal surface equation in a strip with linear Dirichlet data
on two sides, then v must be a helicoid. In this paper, we give
a simpler proof of this result and generalize it.

1. Introduction.

Let Q, C R? be a sector domain with angle 0 < o < 7. Consider the minimal
surface equation

(1) divTu =0

where Tu = % and Vu is the gradient of u. In 1965, Nitsche [7]

announced the following results:

(1) Given a continuous function f on 92,, there always exists a solution u
which satisfies the minimal surface equation in Q, with Dirichlet data

f on 0Q,;

(2) If u satisfies the minimal surface equation with vanishing boundary
value in ,, then u = 0.
Nitsche thus raised the following question: Let 2 C 2, and let f be an
arbitrary continuous function on 9. If the Dirichlet problem

divTiu=0 in Q,
u=f on 0N
has a solution, is it unique?
We notice that similar questions for higher dimensions are raised in [6].

Results in this direction were obtained by Miklyukov [5] and Hwang [4]
independently, in which the following result was established:

Theorem 1. Let Q C R? be an unbounded domain and let u,v € C*(2) N
C°(Q). For every R > 0, set Br = {z € R?| |z| < R} and Tr = (2N Bg)N
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OBg. Denote |T'g| as the length of I'p. And suppose that

(1) divTu=divTv in Q,
(i) u=v on 09,

(iii) s,lzxrl{'jléxlu—-'u|=O(,/ff;f) Tydr) as R — oo, for some
R r

positive constant Ry.
Then u = v in Q.

A stronger version of Theorem 1 was discovered by Collin and Krust [2]
independently, which is the following:

Theorem 1*. Let Q,u,v,Bg,I', and |I'.| as in Theorem 1. And suppose
that

(i) divTu=divTv in Q,
(i) u=w on 01,
(iii) %%ﬁIU—Ul =o(f1§’ ;r_l,ldr) as R — oo, for some

positive constant Ry.
Then u=v in Q.

In fact, for any unbounded domain 2, we have |I'g| = O(R), and condition
(iii) in Theorem 1* becomes

max |lu — v| = o(log R) as R — oo.

In the special case when Q is a strip, then |[I'g| < constant, and condition
(iii) becomes maxgng, |u — v| = o(R).

On the other hand, in a strip domain €2, Collin [1] showed that there exist
two different solutions for the minimal surface equation such that u = v on
00 and maxgng, |u — v| = O(R) as R — oo. So condition (iii) is necessary.

This counterexample also answers Nitsche’s question in the negative.

In contrast, the following result is also given in [2].

Theorem 2. Let Q = (0,1) x R be a strip. Suppose that

divIiu =20 in €,
u(0,y) = ay + b,
u(l,y) =cy +d

where a,b,c,d are constant. Then u must be a helicoid.

The following inequality was discovered by Miklyukov [5, p. 265], Hwang
[4, p. 342] and Collin and Krust [2, p. 452]:

V14 |Vul]2 + /1 + [Vof?
2

(Tu — Tv) - (Vu — Vu) > [Tu — Tol|?
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(2) > |Tu — T

Using this inequality, Miklyukov [5] and Hwang [4] proved Theorem 1
independently, and Collin and Krust [2] proved Theorem 1* also based on
this inequality.

It seems that the method of proof of Theorem 1* can not be used to prove
Theorem 2, and so Collin and Krust [2] resorted to the theory of Gauss maps
instead.

In this paper, we will point out that the method of proof of Theorem 1 and
Theorem 1* could be use to give a simpler proof of Theorem 2. Moreover, we
shall generalize Theorem 1* and Theorem 2 to get the more general results
as stated in Theorem 3 and Theorem 4. And we will make a remark after
Theorem 3 to point out why Collin and Krust [2] could get a better result
then Miklyukov [5] and Hwang [4].

2. A new proof for Theorem 2 and its generalization.

Without loss of generality, we may rephrase Theorem 2 in the following form:

Theorem 2*. Let Q = (b,a) X R be a strip domain in R*> where a,b are two

constants with =% <b<a < %, and let u € C°(Q) N C*(Q). Suppose that

divIu =0 in Q,
u=ytanz on OS).

Then u = ytanz in Q; in other words, u must be a helicoid.

Proof. For any y > 0, let

Qy = (b) a) X (_yay)v
Iy = {(b,a) x {y}} U{(b;a) x {-u}}

and, set

9(y) = /F(u —v)(Tu —Tv) -vds

= (u—=v)(Tu —Tv) -vds
0,

=//Qy(Vu—Vv)-(Tu—-Tv)

where v = ytanz and v is the unit outward normal of 'y and 9,. Since
(Vu—Vv) - (Tu—Tv) > 0, Fubini’s Theorem yields that the derivative ¢'(y)
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exists for almost all y > 0 and
:/ (Vu — Vv) - (Tu — Tv)
Ty

whenever ¢'(y) exists. Thus, in view of (2), for these y,

2 2
Vv1+|Vul —;— V1+ |V T — T

=
/1 3
> <min—1—ﬂ)/ [Tu — Twl|?,

vy
in which, as v, = ysec? z, we have

2 2
V14 |V S ysec’z >

2 - 2

y
5

Furthermore, by means of Schwarz’s inequality,

Il"y]/ry Tu — Tof? > </F |Tu—Tv|)2

and |I'y| = 2(a — b) (in virtue of the special geometry of §2), thus

/ [Tu—Tof* 2 5 (/ |Tu—Tvl>

Hence, for any y where ¢'(y) exists,

(/ |Tu—Tv|)
= 4(ay— b) (%/r

Now, for all y > 0, set

(3) g'(y) >

tan™!(u — v)(Tu — Tw) - 1/) .

vy

h(y) = / tan"(u — v)(Tu — Tv) - v

[l

We note that h > 0 and h(y) increases as y increases. Thus, if h = 0, it is
easy to see that Theorem 2* holds. Hence we may assume that h # 0 and
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that there exist two positive constants y; and c¢; such that h(y) > ¢; for all
Y2y ,

Substituting this into (3), we obtain ¢'(y) > Z(—;E’b)—";y for almost all y > vy,
which yields g(y) — 9(t1) > 72552 (y — 1)?. Since |u| = O(Jy|) on 99 as
ly| = oo, by [7, p. 256], we have |u| = O(|y|) in Q as |y| — oo. Since for all
y>0,9(y) = fry (u=v)(Tu—Tv) v and |Tu—Tv| < 2, we have g(y) = O(y)
as y — oo, which gives a contradiction and completes our proof. O

By modifying the proof of Theorem 2*, we can derive the following

Theorem 3. Let Q C R? be an unbounded domain and let u,v € C?*(Q) N
C°(Q). Let Bp,T'g and |T'g| be as in Theorem 1. Suppose that

(i) divTu=divTv in Q,

(i) v=wv on 0%,

R .

(iii) S%%}:W —-v|=o0 (fRo Il“l_nlnplin‘/l + [Vo[? dR) as R — oo,
where Ry is a positive constant. Then we have u = v in Q.

Remark.
(a) Notice that condition (iii) depends on |Vv| only, without assuming any
condition on |Vu].

(b) In Theorem 2* since divTu = 0 in @ and u = ytanz on 00, by
[7, p. 256], we have u = O(|y|) in © as |y| = oo. And so, condition
(iii) of Theorem 3 holds.

Proof of Theorem 3. The proof is similar to that of Theorem 2*. For every
R >0, let

M(R) = max |u — v| = max |u — v,
QNBg 'r

Q(R) = min V1i+[Vo

Tr 2 ’

9(R) =/F (u—)(Tu—Tv) v = //Q (Vu — Vo) - (Tu — Tv)
and
h(R) = / tan™!(u — v)(Tu — T) - v.
Tr

As in the proof of Theorem 2*, we may assume that A # 0 and that there
exist two positive constants R; and C; such that R; > R, and

(4) h(R) > C, for all R > R;.
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For almost all R > 0, we have
(5) J(R) = / (V= Vo) - (Tu — Tv)
Tr

> [ Q(R)|Tu—Tof
Tr

> QUIrAl ™ ([ (7 —Tv|)2-

Thus ¢'(R) > (%)*C}|Tr|"'Q(R), for almost all R > R,. Hence, for every R
and R, such that R > R, > R,, we have

2 /R
(6) 9(R) - g(R2) > (2%) [ ?P(TI) dr.

By (4), we have M(R) > 0 for all R > R;, hence (5) yields, for almost all
R Z Rla

g'(B) > QRITal™ [ ITu—Top

P (R)Q(R) .
~ M*(R)|Tg|’
and so, for every R and R, such that R > R, > R,
1 R R 1 R R
R L N O NS Sy 1 P
9lr,  JR: g R, M2(r)|T,| M2*(R) Jr, IT';]

1 1 RQW)
7 > dr.
™ o) = () Jo, I
Now, since M(R) > 0 for all R > R;, M(R) is an increasing function of R
and, in view of condition (iii),

(M(R))™" RQ—(—er——)oo as R — o0,

R, !FT‘
and also

fQ(r)
Ry ,FTI

hence we can choose a constant Rz > R; such that

dr — o0 as R — oo;

o [FQ(r) VorC!
(M(R)) T > V2nC, for every R > R,
R1 T
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and a constant R4, Ry > R3, which depends on R3, such that

Ra Q(r) s Q(r)
dr =2 dr.
Ry IFr| " R IFrI "

With this choice of R; and Ry, we have
1> 9(R3) — g(Ry)

B 9(Rs)
201>2 e Q(r) 2 _1 (R Q(r)
> _ M*(R by (6 ’ 7
_[(7r S| e [ TR v @), )
2 Rq 2
= (§1-> (M?*(Ry))™! L Qi) (by the choice of R3, Ry)
m 4 Ry lrf’l

Ct o 2y -2 : :
> F(27r )C; (again by the choice of R3 and Ry)
> 2,

which is desired contradiction. (]

Remark. The above proof is to show (6), which is the lower bound of
g(R), and (7), which is the upper bound of g(R). And from (6) and (7), we
get contradiction and so prove the theorem. Miklyukov [5] and Hwang [4]
only observed the upper bound of g(R), and so could not derive the better
result as in Collin and Krust [2].

Let Q be a domain in R?. Consider the following equation in divergence

form
div A(z, u, Vu) = f(z,u, Vu),

where
A=(A,A4), A;: QOxRxR R =12
f:OxRXxR 3R,
and
A €C”(AxRXR)NCQXRXR), i=12 feC(QxRxR).

We rewrite A(z,u, Vu) briefly as Au.
Suppose that Au satisfies the following structural condition:

(Au — Av) - (Vu — Vo) > |Au — Av|*Q(R),

(8) where R = /2% + y? and Q(R) is a positive function,
(Vu ~ Vv) - (Au — Av) =0, iff Vu = Vu.
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Now we have the following result:

Theorem 4. Let 00 = L*+X7 be a decomposition of OQ such that 8 € C.
Let u,v € C*(Q)NC* (QUTP)NC°(Q) and let M(R) = maxgnp, (v — v, 0).
Suppose that

(i) A satisfies the structural condition (8)
(i1) div Au > div Av in Q
) (iii) u<w on X%
(iv) Au-v<Av-v on YA
(v) —o(fR J&ldr) as R — oo, where Ry is
a positive constant.

Then, if 00 = %P, we have either u(z) = v(z)+ a positive constant or else
u(z) < v(z). Otherwise, u(z) = v(z).

The proof of Theorem 4 is exactly the same as that of Theorem 3. The
interested readers may consult [4].

Acknoledgements. The author would like to thank the referee for many
helpful comments and suggestions.
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