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A UNIQUENESS THEOREM FOR THE MINIMAL SURFACE
EQUATION

JENN-FANG HWANG

In 1991, Collin and Krust proved that if u satisfies the
minimal surface equation in a strip with linear Dirichlet data
on two sides, then u must be a helicoid. In this paper, we give
a simpler proof of this result and generalize it.

1. Introduction.

Let Ωα C 1R2 be a sector domain with angle 0 < a < π. Consider the minimal
surface equation

(1) divTu = 0

where Tu = ===== and Vu is the gradient of u. In 1965, Nitsche [7]

announced the following results:
(1) Given a continuous function / on 9Ωα, there always exists a solution u

which satisfies the minimal surface equation in Ωa with Dirichlet data
/ on <9Ωα;

(2) If u satisfies the minimal surface equation with vanishing boundary
value in Ωα, then u = 0.

Nitsche thus raised the following question: Let Ω C Ωα and let / be an
arbitrary continuous function on 9Ω. If the Dirichlet problem

J 0 in Ω,
\u = f on 9Ω

has a solution, is it unique?
We notice that similar questions for higher dimensions are raised in [6].

Results in this direction were obtained by Miklyukov [5] and Hwang [4]
independently, in which the following result was established:

Theorem 1. Let ί l c R 2 be an unbounded domain and let u,v G C2(Ω) Π
C°(Ω). For every R>0, set BR = {x G M2| \x\ < R} and ΓR = d(ΩΠBR) Π
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R. Denote \ΓR\ as the length ofΓR. And suppose that

(i) divTu = d\vTv in Ω,

(ii) u = v on c?Ω,

(iii) max\u — v\ = O (\/fp TΓΓ-, dr) as R -> oo, for some
ΌΠBJ VV^oir.i positive constant R*.

Then u = v in Ω.

A stronger version of Theorem 1 was discovered by Collin and Krust [2]

independently, which is the following:

Theorem 1*. Let Ω,u,v,BR,Γr and | Γ r | as in Theorem 1. And suppose

that

(i) divTu^divT?; in Ω,

(ii) u — v on <9Ω,

(iii) max |n — v\ — o (f^ ψ~, dr) as R —>- oo, for some
ΩΠBR V J positive constant RO.

Then u = v in Ω.

In fact, for any unbounded domain Ω, we have \TR\ = O(R), and condition
(iii) in Theorem 1* becomes

max \u — υ\ — o(\ogR) as R ->• oo.

In the special case when Ω is a strip, then | Γ β | < constant, and condition
(iii) becomes max^n^H \u — v\ = o(R).

On the other hand, in a strip domain Ω, Collin [1] showed that there exist
two different solutions for the minimal surface equation such that u — v on
5Ω and maxQn#R \u — v\ = O(R) as R —> oo. So condition (iii) is necessary.

This counterexample also answers Nitsche's question in the negative.
In contrast, the following result is also given in [2].

Theorem 2. Let Ω — (0,1) x IK be a strip. Suppose that

0 in Ω,

where α, 6, c, d are constant. Then u must be a helicoid.

The following inequality was discovered by Miklyukov [5, p. 265], HwaT ĝ
[4, p. 342] and Collin and Krust [2, p. 452]:

(Tu - Tv) (Vu -
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(2) > \Tu-Tv\2.

Using this inequality, Miklyukov [5] and Hwang [4] proved Theorem 1
independently, and Collin and Krust [2] proved Theorem 1* also based on
this inequality.

It seems that the method of proof of Theorem 1* can not be used to prove
Theorem 2, and so Collin and Krust [2] resorted to the theory of Gauss maps
instead.

In this paper, we will point out that the method of proof of Theorem 1 and
Theorem 1* could be use to give a simpler proof of Theorem 2. Moreover, we
shall generalize Theorem 1* and Theorem 2 to get the more general results
as stated in Theorem 3 and Theorem 4. And we will make a remark after
Theorem 3 to point out why Collin and Krust [2] could get a better result
then Miklyukov [5] and Hwang [4].

2. A new proof for Theorem 2 and its generalization.

Without loss of generality, we may rephrase Theorem 2 in the following form:

Theorem 2*. Let Ω = (6,α)xR fte α strip domain in R2 where α, b are two
constants with - § < 6 < α < § , and let u G C°(Ω) Π C2(Ω). Suppose that

fdivTu = 0 in Ω,

on 5Ω.

Then u = y tanα; in Ω; in other words, u must be a helicoid.

Proof. For any y > 0, let

ίly = (6,α) x (-y,y),

Γy = {(6,α)x{y}}U{(&,α)x{-y}}

and, set

g(y) = / ( u - v)(Tu -Tv) U ds

Jr

= Φ (u - v)(Tu - Tv) - vds
JdΩy

=11,{Vu - Vυ) {Tu - Tv)

where v = y tan# and v is the unit outward normal of Γy and dΩy. Since
(Vtfc — Vt>) (Tu — Tv) > 0, Fubini's Theorem yields that the derivative g'(y)
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exists for almost all y > 0 and

g'(y) = / (Vu - Vυ) (Tu - Tv)
Jτy

whenever g'(y) exists. Thus, in view of (2), for these y,

in which, as vx = y sec2 #, we have

y/1 + \Vv\2 y sec2 x y

2 ~ 2 - 2"

Furthermore, by means of Schwarz's inequality,

(
jΓ | Γ u -

and \Ty\ = 2(a — b) (in virtue of the special geometry of Ω), thus

Hence, for any y where ^;(y) exists,

~ 4(α-6) ^Wr,

Now, for all y > 0, set

/ι(y) = / tan~ 1(u-i;)(Tu-Tτ;) fc'
./rv

_ f r (VIA - Vv) (Tu - Tv)

~ I Ly l + ( t χ - v ) 2 '

We note that Λ > 0 and h(y) increases as y increases. Thus, if h = 0, it is
easy to see that Theorem 2* holds. Hence we may assume that h ^ 0 and
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that there exist two positive constants yλ and cλ such that h(y) > cλ for all

v>Vi.
Substituting this into (3), we obtain g'(y) > jπz^y^V f° r almost all y > yu

which yields g(y) - g{y1) > 4{a

cjb)π2 (y - Vi)2- Since |u| = O(\y\) on dΩ as

\y\ -» oo, by [7, p. 256], we have \u\ = 0(\y\) in Ω as \y\ -» oo. Since for all

y > 0, g(y) = JΓy{u-v)(Tu-Tv)'U and \Tu-Tv\ < 2, we have g(y) = O(y)
as y —> oo, which gives a contradiction and completes our proof. D

By modifying the proof of Theorem 2*, we can derive the following

T h e o r e m 3. Let Ω C R 2 be an unbounded domain and let ?/, υ E C2(Ω) Π
C°(Ω). Let BR,YR and \TR\ be as in Theorem 1. Suppose that

in Ω,

(ii) u = v on $Ω,

(iii) max In — υ\ — o f fD r^-τmm\/l + \Vv\2 dR I as R —^ oo,
O o R V •'•to II JJI T"< v ' ' /

iϊo «5 a positive constant. Then we have u = v in Ω.

Remark.
(a) Notice that condition (iii) depends on |Vv\ only, without assuming any

condition on \Vu\.

(b) In Theorem 2*, since div Tu = 0 in Ω and u — ytana; on 9Ω, by
[7, p. 256], we have u = O(\y\) in Ω as \y\ —> oo. And so, condition
(iii) of Theorem 3 holds.

Proof o/ Theorem 3. The proof is similar to that of Theorem 2*. For every
R > 0, let

M(i?) = max |w — υl = max \u — v\,
v ; ΩΠBR

] ' r R ' "

r Λ 2

w - Vv) (Tu - Tv)= ί [

and

= / t a n " 1 ^ - v)(Tu - Tv) u.
JτR

As in the proof of Theorem 2*, we may assume that / ι ^ 0 and that there
exist two positive constants Rλ and CΊ such that Rλ > RQ and

(4) h(R) >CX for all R>Rλ.
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For almost all R > 0, we have

(5) g'(R) = ί (Vu - Vv) (ΓTX - Tυ)
JTR

> ί Q(R)\Tu-Tv\2

Thus g'(R) > (^yC^Tjil^QiR), for almost all R > Rx. Hence, for every R
and R2 such that R > R2 > i?i, we have

(6) g(R) - g(Ri) > — - ) / i±τ dr.
V 7Γ / JR2 \ir\

By (4), we have M(R) > 0 for all R> Ri, hence (5) yields, for almost all

R>Ri,

g'(R)>Q(R)\Tn\-1 j\Tu-Tυ\2

>9>(R)Q(R).

and so, for every R and R2 such that R > R2 > Ri,

— — > / — > / cίr >

and then

|Γ r | '

l > l Γ Q{r

ΊWi ~ MHR) !R2 |Γr|
drdr-

Now, since M(R) > 0 for all R > J?i, M(i2) is an increasing function of
and, in view of condition (iii),

-* oo as it —> oo,

and also

• dr -> oo as iϊ -> oo;
|Γ r |

hence we can choose a constant i?3 > i?i such that

rR

-i I ψr± > v^πCf1, for every R>R3,
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and a constant R±, R4 > R3, which depends on i?3, such that

' Q ( r )

With this choice of R3 and J£4, we have

(^i)2(M2(JR4))-1

| Γ r |

|Γ r

•dr.

(by (6), (7))

(by the choice of i?3, i?4)

> (again by the choice of R3 and i?4)

which is desired contradiction. D

Remark. The above proof is to show (6), which is the lower bound of
g{R), and (7), which is the upper bound of g(R). And from (6) and (7), we
get contradiction and so prove the theorem. Miklyukov [5] and Hwang [4]
only observed the upper bound of g(R), and so could not derive the better
result as in Collin and Krust [2].

Let Ω be a domain in R2. Consider the following equation in divergence
form

divA(x,u, Vu) = f(x,

where

= (AUA2), Aii Ω x Rx R2

f: Ω x R x R2 ->

and

Λ G C ° ( Ω X I X M2) Π C*(Ω x R x M2), i = 1,2, / G C°(Ω x R x

We rewrite A(x^u^Vu) briefly as Au.
Suppose that Au satisfies the following structural condition:

{ (Au - Av) (Vu - Vv) > \Au -

where J? = \/x2 + y2 and Q(i?) is a positive function,

(Viz - Vv) (Aw - Av) = 0, iff Vu = Vv.
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Now we have the following result:

Theorem 4. Let dΩ = Σa+Σβ bea decomposition ofdΩ such that Σβ eC1.
Letu,v GC/2(Ω)ΠC f l(ΩUΣ/3)nC°(Ω) and let M(R) - m a x Ω n β R ( u - ? ; , 0).
Suppose that

(i) A satisfies the structural condition (8)

(ii) div Au > div Av in Ω

(iii) u < v on Σa

(iv) Au - v < Av v on Σβ

(v) M{R) = o (/*o jSrl dr) as R-^oo, where Ro is
a positive constant.

Then, if <9Ω = Σβ, we have either u(x) = v(x)+ a positive constant or else
u(x) < v(x). Otherwise, u(x) = v(x).

The proof of Theorem 4 is exactly the same as that of Theorem 3. The
interested readers may consult [4].

Acknoledgements. The author would like to thank the referee for many
helpful comments and suggestions.
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