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DIVERGENCE OF THE NORMALIZATION FOR REAL
LAGRANGIAN SURFACES NEAR COMPLEX TANGENTS

XlANGHONG GONG

We study real Lagrangian analytic surfaces in C2 with a
non-degenerate complex tangent. Webster proved that all
such surfaces can be transformed into a quadratic surface by
formal symplectic transformations of C2. We show that there
is a certain dense set of real Lagrangian surfaces which cannot
be transformed into the quadratic surface by any holomorphic
(convergent) transformation of C2. The divergence is con-
tributed by the parabolic character of a pair of involutions
generated by the real Lagrangian surfaces.

1. Introduction.

We consider a real analytic surface M in C2. Let ω = dz Λ dp be the
holomorphic symplectic 2-form on C2. M is a real Lagrangian surface if

(1.1) R e ω | M - 0 .

The real Lagrangian surfaces were initially studied by S.M. Webster [10]. It
was known that all totally real and real Lagrangian analytic submanifolds
are equivalent under holomorphic symplectic transformations. When M
has a non-degenerate complex tangent, Webster proved that under formal
symplectic transformations, M can be transformed into the quadratic surface

(1.2) Q:p = 2zz + z2.

Furthermore, M can be transformed into Q by holomorphic transformations
of C2 if and only if they are equivalent through holomorphic symplectic
transformations [10]. The purpose of this paper is to show that there exist
real Lagrangian surfaces such that the above normal form cannot be realized
by any holomorphic (convergent) transformation.

In [7], J.K. Moser and S.M. Webster systematically investigated the holo-
morphic invariant theory of real surfaces in C2, where a pair of involutions
intrinsically attached to the complex tangents plays an important role. We
shall see that the divergence for the normalization of the real Lagrangian
surfaces is contributed by the parabolic character of the pair of involutions.
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In [5], a parabolic pair of involutions was also used to show the divergence
for the normalization of real analytic glancing hypersurfaces. The main idea
of the divergence proof is inspired by a remark of Moser that divergence of
solutions to linearized equations should indicate the same behavior of solu-
tions to the original non-linear equations. In Section 3, we shall derive a
relation between the linearized equations and the original non-linear ones,
which says that for a certain type of non-linear equations, the existence of
the convergent solutions to the linearized equations is indeed a necessary
condition for the existence of convergent solutions to the non-linear equa-
tions. Our approach comes directly from the method used for the small
divisors (see [2], [6] for the references). In particular, we follows the ideas of
H. Dulac [3] and C.L. Siegel [8] closely.

To state our result, we let X be the set of convergent power series

(1.3) r(z,~z) — y^ TijZx^z\ rji—^ij

with

(1.4) rzJ(z,-z)=0.

Let us introduce a metric d on X by

d(r,s) = supjlr^ - Syl'+M + j > 3J , r,s E X.

To each r E I , we associate a real Lagrangian surface

(1.5) Mr : p = 2zz + z2 + rz(z, z).

Denote by S the set of r E X such that the corresponding surface Mr cannot
be transformed into (1.2) through any holomorphic transformation. We have

Theorem 1.1. S is dense in the metric space {X, d}.

In Section 4, we shall prove Theorem 1.1. Using the relation between the
non-linear equations and the linearized equations established in Section 3,
we shall prove that the parabolic pair of involutions generated by a real
Lagrangian surface is generally not linearizable by any convergent transfor-
mation.
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guidance and encouragement. The author acknowledge the support by the
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2. Formal theory and linearized equations.

In this section, we shall recall from [7] a pair of involutions which are intrin-
sically attached to surfaces with a complex tangent. We also need a result
in [10] on the formal normalization of a parabolic pair of involutions.

Given a real analytic function R(z^) with R(0) = dR(0) = 0, we consider
the real Lagrangian surface

We have

U\M — —Rzzdz Λ dz.

M is totally real if and only if the Levi-form Rzj ^ 0. It is known that
all totally real and real Lagrangian analytic surfaces are equivalent under
holomorphic symplectic transformations [10]. We now assume that M has
a non-degenerate complex tangent at 0, i. e.

(2.1) Λ*«(0)=0, dRz-MΦQ-

Then with a suitable change of symplectic coordinates, we may assume that
M is given by (1.5) for some real function (1.3). Prom (2.1), we see that
M has complex tangents along the smooth curve C C M: RzJ = 0. In fact,
(1.4) implies that

C: z + z = 0.

Here the complex tangents are parabolic according to E. Bishop [1].
Following [7], we consider the complexiίication of M defined by

q = 2zw + z2 + rj(w, z).

We shall use (z, w) as the coordinates to identify Mc with C2. Consider
the projection TΓI: (z,p, w,q) —> (w,q). The restriction of TΓI to Mc is a
double-sheeted branched covering, and it induces a covering transforma-
tion 7i: Mc -» Mc. Notice that w and g are invariant under τ\. Then
T\: (^,tt;) -> (̂ ^Ti;7) is implicitly defined by

• 2 2 x J Z ~ ^ Z ^ 2'-2V
Z^ lU7/ fz\ZlW)h
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We also have the projection π 2 : (z,p,w, q) —> {z,p) inducing another involu-
tion τ2 of Mc. We notice that Mc is invariant under the complex conjugation

Hence, its restriction to Mc is an anti-holomophic involution p: (z,w) ->
(w, ~z). From the relation π2 = cκxp for c(z^p) = Cz,p), it follows that τx and
τ2 satisfy the reality condition

(2.3) τ2—poτιop.

Introduce the following coordinates for Mc

(2.4) x = z + w, y = z — w.

Then p takes the form

(2.5) p(x,y) = (x,-y).

Now the pair of involutions τi, τ2 can be written as

(2.6) rj(a:,y) = r;( a ; , ί /)+fr i ( a ;,y), ^ ( x , y ) = O(2)

with

(2.7) ^(^,7/) = (-x,-2a; + y), τ2*(x,y) - (-x,2a; + y).

Since r̂ 2 = id, then

(2.8) r; o Hά + H3o Tj = 0.

We also notice that the branch points of π̂  , i. e. the fixed points of r̂ , are
given by

2z + 2w + HzΊ(z,w) - 0 ,

i. e, x = 0. Hence, we have

(2.9) £Γi(O,y)=O.

The reality condition on {rur2} is still given by (2.3).
From [7], we now recall an intrinsic property of the pair of involutions

generated by a surface with a non-degenerate complex tangent as follows.
Let {ϊj,p} and {TJ, p] be two pairs of involutions corresponding to two real
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(Lagrangian) analytic surfaces M and M in the form (1.5). Then M and M
are equivalent through holomorphic transformations if and only if there is a
biholomorphic mapping Φ: Mc —¥ Mc such that

Φ~λfjΦ = Tj, pΦ = Φp.

Notice that involutions generated by the quadratic surface (1.2) are the linear
involutions (2.7). We shall prove that there is a dense subset S in X of which
the involutions generated by the corresponding surfaces are not linearizable
by any convergent transformations of M c , from which Theorem 1.1 follows
immediately.

A convergent or formal transformation

(2.10) Φ: x*->x + u(x,y), y*-ϊy + v(x,y)

is said to be normalized if

(2.11) u(0, y) = 0, u(x, 0) = u(-x, 0), v(x, 0) = -v{-x, 0).

L e m m a 2.1. ([10]). Let rx and r2 be a pair of involutions defined by
(2.6), (2.7) and (2.8). Then there exists a unique normalized formal trans-
formation Φ such that ΦT-J Φ " 1 = τ? for j = 1,2.

We also need the following.

L e m m a 2.2. ([5]). Let Tj (j = 1,2) be as in Lemma 2.1. Then Tj are
linearizable by convergent transformations if and only if the above unique
normalized transformation is convergent.

We now want to discuss the linearized equations for the pair of involutions.
Put

Consider the composition

(2.12) σ = TiT2 :

where

(2.13) GΊ = - / 2 + Λ o r2, G2 = - 2 / 2 + g2 + 5 l o r2.
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From ΦTJ — τ*Φ (j — 1, 2), we get

(2.14) uoσ-u = - G Ί ,

v o σ — v = —G2 + 4u.

This leads us to the following linearized equation

(2.15) u(x,Ax + y) -u(x,y) = -Gλ(x,y).

From (2.9), it follows that x\Gι(x,y). Set

(2.16) K = f]4kβkx
kDk, D = ^-,

to dV
Z v—\

e ι k=o

Rewrite (2.14) as

Clearly, K(e4xD — 1) = 4xD. By applying K to the above, we finally reduce

(2.15) to

(2.17) dyiι(x,y) = -Ka(x,y), Gλ(x,y) = -xa{x,y).

From (2.16), it follows that the linearized equation (2.15) has only divergent
solutions. This can be seen easily if G\ can be arbitrarily chosen. However,
as Gι comes from real Lagrangian surfaces, we need to study the linearized
equations more closely. The solution (2.17) was suggested by Moser and
then used in [5].

3. Linearizations.

In this section, we shall investigate the relation between non-linear equations
and their first order approximate equations, i. e. the linearized equations. We
shall consider non-linear equations which are formally solvable. Then under
suitable conditions, we shall formally solve the linearized equations, and
show that the existence of a divergent solution to linearized equations implies
that the original non-linear equations have neither convergent solutions.

Consider a system of equations

(3.1) F(x,y) = 0, (x,y)eXxY,
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where X = ®f=1Xk, Y = ®T=iγk, and

F:X XY-+Z, F(0,0) =0

with Z = ®^=ιZk. We shall denote by πk the projection X -+ Xk, as well
as the projections Y —> Yk and Z —>• Zk. For each x £ X, there is a formal
decomposition x = xx + x2 + ... with xk £ Xk. We put

[a;]̂  = Xχ + x2 + ... + xk

with [#]o = 0. Assume that Xk,Yk,Zk are finitely dimensional real vector
spaces identified with Euclidean spaces. We then introduce the product
topology on X, Y, Z. Thus, a sequence {x^} C X is convergent if and only

xϊ } \ converges in Xk for all k.
J n = l

The Prechet derivative of F at (0,0) is defined by

DF(X,V) =

We assume that DF: X x Y —> Z is a well-defined linear mapping. We
further assume that DF is homogeneous, i. e.

(3.2) iλP:X f c x

Decompose

with DλF(x) = DF(x,0) and D2F(y) = DF(0,y). Put

QF = F- DF.

We assume that for fc > 1

(3.3) ττkQF(x,y) = τrkQ([x]k-u[v]k-i).

With the above notations and assumptions, we have

Lemma 3.1. Let F be as above. Assume that F satisfies the following
conditions:
(i) There is a solution operator P: X -> Y with F(x,P(x)) = 0 and

P(0) = 0.

(ii) D2F: Y —>• Z is injectiυe.
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Then DF(x,y) = 0 is solvable by L: X -> Y with

(3.4) L(x) = jΓfπkP{xk), x G X.
k=l

Moreover, P = P — L satisfies that

(3.5)

Proof. Fix a; £ X. Notice that L is homogeneous. Hence, it suffices to show
that (3.5) holds and

(3.6) DF{xk,L{xk))=0.

From (3.3), we see immediately that (3.6) holds for k = 1. We also have

Since Z ^ F is injective, then we get πιP(x) = 0. We now assume that (3.5)
and (3.6) hold for k < n. From (3.5), we get [P(ar)]n_i = [P([x]n-ι)]n-ι- In
particular, [P(xn)]n_i = 0. Now (3.3) gives

DF(xn,πnP{xn)) = 0.

We also have

DF(xn,πnP(x)) = -πnQF{x,P(x)).

Since [P(rr)]n_1 depends only on [x]n_i, we obtain from the last two identities
that

DF (θ,πnP(x)) = -πnQF ([x]n_u

Since D2F is injective, we can find a left inverse K: Z -> Yo of -D2F such
that if: Zfc -> yΛ. Thus, we get

πnP(x) = -KπnQF ([x]n_u[P([x]n^)}n^).

This proves that πnP(x) depends only on [x]n_i Therefore, (3.5) holds for

k — n. The proof of Lemma 3.1 is complete. Q

Assume that X is endowed with a metric d such that

d{x\ x") = s u p { d « , 4 ') ; k = 1, 2,. . . }.
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We also assume that each Yk is endowed with a metric dk which is invariant
under translations. Put

{ ( i £ , i £ ) ; * = 1,2,... } , y',y" G Y,

and Ϋ = {y G Y; τ(j/, 0) < oo}.
With the above notations and assumptions, we want to prove the follow-

ing.

Lemma 3.2. Suppose that there exits x* G X with LP(x*) $ Ϋ. Let
€0 = d(x*10). Then for any x € X, there is x1 € X with d(x,xf) < e0 such
that P(xf) (£ Ϋ.

For the application of Lemma 3.2 to real Lagrangian surfaces, Y will be
taken as a certain space of normalized formal solutions, and the metric on Y
will be so chosen that Y is precisely the set of convergent solutions among
all the normalized formal solutions. Thus, Lemma 3.2 says that the exis-
tence of convergent solutions to linearized equations is a necessary condition
for the existence of a convergent solution to the original functional equa-
tions. On the other hand, we notice that SiegeΓs theory on the Hamiltonian
systems [9] concluded that there are functional equations of which the con-
vergent solutions does exist for the linearized equations, but not for the
original functional equations. Finally, we mention that the metric which we
put on the space of convergent power series in Theorem 1.1 is weaker than
that used by Siegel in [8], where the small divisors are essential.

Proof of Lemma 3.2. Since LP(x*) £ Y, then we can choose a sequence of
positive integers nk such that

(3.7) dnk(LP(x*nk),0)>k

for all k. Fixing x G X, we put x'n = xn for all n φ nk. To determine {x'nk},
we assume that for m < nk, all xm have been so chosen that

(3.8) ^ , ( * , J

for all j < k. Let x = [x']nk-i + xnk> If

dnj(pnk(x),O)>j/2,

we put x'nk = xnk. Then (3.8) holds for j = k. Otherwise, we choose
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Then from Lemma 3.1, it follows that

*nkP([x']nk)=LP(x*nk)+πnkP(x).

Since all dn are invariant under translation, then

^ ] n f c , 0 ) U

Now (3.7) implies that (3.8) holds for j = k. Thus, we have chosen x1 such
that (3.8) holds for all j . Notice that [P(x)]k depends only on [x]k for all
k. Therefore, (3.8) implies that P(x') £ Ϋ. The proof of Lemma 3.2 is
complete. D

4. Proof of Theorem 1.1.

In this section, we shall give a proof of Theorem 1.1 by using Lemma 3.2.
Thus, we shall verify that for the problem of linearizing the pair of involu-
tions generated by a real Lagrangian surface, its linearized equations have
divergent solutions.

We first give some notations. Let (X, d) be as in Theorem 1.1. Denote
by Xk the set of homogeneous polynomials r G X with degree k + 2. Let
%k (k > 2) be the set of ordered power series (iϋi,u>2,u>3, w4) in £,y, where
each Wj is a homogeneous polynomial of degree k. Put Z to be the direct sum
of Zk (k > 2). Denote by Yk the set of ordered pairs {u,v) of homogeneous
polynomials of degree k in x, y which satisfy the normalizing condition (2.11).
Let Y be the direct sum of Yk (k > 2). The metric on Yk is defined by

= max {\u'iά -{ \ i ά ^ l , \v'ia -

We now put the system of equations Φr^Φ"1 = r* (j = 1,2) into the form
(3.1) with

F(r, u, v) — (Φ o n - τ{ o Φ, Φ o r2 — r2* o Φ).

Then we have

D2F(u, v) = (u o r-j* + u , u o τ 1 * - ί ; + 2w, u o τ 2 * | u , ί ) o r 2 * - i j - 2u).

In order to apply Lemma 3.2, we need to verify that D2F is injective. This iŝ
essentially contained in the argument in [10]. To give the details, we notice
that D2F(u,v) — 0 implies that u is invariant under both τ{ and τ2*. Then
u{x,y) depends only x, and it contains only power of x with odd order (see
Lemma 4.1 in [5]). Prom the normalizing condition (2.11), it follows that
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u = 0. We now know that v is skew-invariant under Tj (j = 1,2). Then
v(x,y) depends only x and contains only power of x of even order. Thus,
(2.11) implies that υ = 0. It is easy to verify that DF is homogeneous and
F satisfies (3.3).

To compute DλF, we fix r G X and put

ίz' = -z - 2w + φ , w), q(z, w) = O(2),
(4.1) n : <

I tί; = w.

By the implicit formula (2.2), we obtain

q(z, w) = Lq(z, w) + Qq(z, w)

with

1
(4.2) Lq(z^w) = —- {r z(—z — 2w,w) — rj(z,w)} ,

where each coefficient (Qq)ij of Qq does not contain linear terms in r and
terms r^j with ϊ + jf > i + j + 2. Prom (2.4), (2.6) and (4.1), we get

(4.3) f1=g1=qoT,

'x + y x-y
2 ' 2

Since τ2 = pτip, we have

(4.4) To(x.y) = (—x + fΛ (x. —υ). 2x + υ —

It follows from (4.3) that

(4.5) Λfoy) = -92{%,y) = q°τ{χ,-y).

We now can obtain

ΰ i f ( r ) = Lg o Γ(x, y) (1,1,0,0) + T7q o Γ(x, -y) (0,0,1,-1).

The equation DF(r, u,v) = 0 implies that

uoτ^(x,y) +u(x,y) = -LqoT(x,y),

uor^x.y) +u(x,y) = -LqoT(x,-y).
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This leads to

(4.6) u(x, \x + y) - u(x, y) = A(x, y)

with
x-y

Then from (4.2), we get

(4.7)

2 ' 2 J z \ 2 ' 2

+ »v ( - - ^ X~TL) - ̂  ( V^ ' ^ )
Applying (2.17), we have

(4.8) xdyu(x,y) = -KA{x,y).

Let

^4t.yj βn_|_2 — 6 2̂ Z Z ~\~ \ 2J Z Z } = I in^r'2l\Z^ Z).

Then e n + 2 G X n and e n + 2(^,^) = — zn~1Pn+2(—2r, — z). Let ̂ 4n be given by
(4.7) in which r is replaced by e n + 2 . Then

(4.10)
c\rt-\-λ'\ n A I \ — T) —ίKf _|_ /j# Q<τ* i/^

We now put

' \z-> z) ~ 2-j nV ' / ' Γ \ z i z ) — / j Γ n \ z >z)-

n=4 n=4

Then we have
oo

A(x,y) = 5^i4n(a;,y).
n=2

Lemma 4.1. KA(x,y) diverges.

Proof. We need to compute

K |v=o
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We have

This gives

1

,z) = en+2

n + 1

n+l

+ (-ir

Using Cauchy product, one can obtain

2nr.2 T7l/m\^-bX

n=2 n * e

a2x2E{x)e

;/(a:)e-6aj +xE"(x)e'bx

= 2ax2E'(x)e~bx + Sa,b(x) = Sa,h(x).

Thus from (4.10), we obtain

n = 2

with

For a non-zero integer &,

S(X) = 55,_3(X) - SX,-3(X) + 53,_l(^) - £_!,_!(*)

has no pole of order 2 at x = kπi/2. Hence S(x) has a pole of order 2 at
x = kπi/2 if e3x + ex φ 0, i. e. if jfc is even. Now let S(x) = Σ™=2 SnXn-
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Then we have limsupn_>oo \/\Sn\ > 0. Therefore, one can see that (KA)(x, 0)
diverges. The proof of Lemma 4.1 is complete. •

We have proved that (4.6) has a divergent solution. Hence, the equation

DF{r\u,v) = 0

has a divergent solution for (w, v). Since d(r*, 0) = e, then Lemma 3.2 implies
that for any r e X, there is r' G X with d(rf,0) < e such that the equation
F(r\u,v) has no convergent solution in Y. Prom Lemma 3.1, it follows
that the corresponding pair of involutions {7Ί,τ2} is not linearizable by any
convergent transformation. This proves Theorem 1.1. D
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