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Abstract
In the first part, this paper studies the characteristic i@&rthe canonical oriented

k-plane bundle over the Grassmann manifégjk of orientedk-planes in Euclidean
n-space. It presents infinitely many new exact valuek # 3 or k = 4, as well as
new lower bounds for the number in questionkif> 5. In the second part, these
results enable us to improve on the general upper boundshéoZ-cup-length of

Gn. In particular, forGx 3 (t > 3) we prove that the cup-length is equal to-23,
which verifies the corresponding claim of Tomohiro Fukayasjecture from 2008.

1. Introduction and some preliminaries

Given a real vector bundle over a path-connecte@ W-complex X, the char-
acteristic rank of «, denoted charrank], is defined to be ([6]) the greatest integer
g, 0 < g < dim(X), such that every cohomology class ii(X), 0 < j <q, is a
polynomial in the Stiefel-Whitney classes («) € H' (X). Here and elsewhere in this
paper, we writeH'(X) instead ofH'(X; Z,).

In particular, if T M is the tangent bundle of a smooth closed connected mariiigld
then charrank{ M) is nothing but thecharacteristic rank of M denoted charrank({);
this homotopy invariant of smooth closed connected magéfalas introduced, and in
some cases also computed, in [3]. Results on the chardictegdak of vector bundles
over the Stiefel manifolds can be found in [4]. The charastier rank is useful, for
instance, in studying the cup-length of a given space (sg€4dB and also Section 3 of
the present paper).

It is readily seen that the characteristic rank of the casari-plane bundley, x
(briefly y) over the Grassmann manifol@, x (k < n — k) of all k-dimensional vector
subspaces iR" is equal to dimGn k) = k(n —K). Indeed, as is well known ([1]), for
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the Z,-cohomology algebrad *(Gn k) we can write
(1.2) H*(Gn’k) = Zolwa, . .., w]/Inks

where dimfv;) =i and the ideall, x is generated by th& homogeneous components
of 1+ wy+---+we)~t in dimensionsn—k+1,...,n; here the indeterminate; is a
representative of theth Stiefel-Whitney clasw;(y) in the quotient algebrdd * (G, x).
For the latter classvi(y), we shall also usev; as an abbreviation.

In contrast to the situation fo6,, the Z,-cohomology algebraH*(G,) (k <
n—k) of the “oriented” Grassmann manifol@, x of all oriented kdimensional vector
subspaces ifR" is in general unknown. Sinc€, ; can be identified with then(— 1)-
dimensional sphere, and the complex quad®§g are also well understood special
cases, we shall suppose that 3 throughout the paper.

In Section 2, we derive infinitely many new exact valuekiE 3 or k = 4, as
well as new lower bounds for the characteristic rank of theoo&al orienteck-plane
bundle 7, (briefly ) over G, if k > 5. As a consequence, for odd we also
obtain better bounds (as compared to those known from [33]p.ah the invariant
charrankén,k). Then, in Section 3, our results on the characteristic rahlg enable
us to improve on the general upper bounds for Zhecup-length ofG, . In particu-
lar, for Gx 3 (t > 3) we prove that the cup-length is equal to-23; this verifies the
corresponding claim of Fukaya’s conjecture [2, Conjectlid.

2. On the characteristic rank of the canonical vector bundleover G,

Using the notation introduced in Section 1, we now state oammesult.

Theorem 2.1. For the canonical k-plane bundig, x over the oriented Grassmann
manifold G (3 < k < n—k), with 21" < n < 2!, we have

=n-2 if n=2,
(1) charrankfh3)s=n—-5+i if n=2"—i,ie({1,2,3,
>n—-2 otherwise
—n-5+i if n=2—i,ie{0,1,2,3,
@ charrankan){z n—3 otherwise

(3) if k > 5, thencharrankfnk) > n—k + 1.
In addition, if n is odd then the replacement of the canonical bunglg by the cor-
responding manifoltfsn,,-, in (1)—(3), gives the corresponding result anfnarrankén,j).

We shall pass to a proof of this theorem after some prepasatio

For the universal 2-fold covering: én,k — Gnk (k = 3), the pullbackp*(y) is
y, and for the induced homomorphism in cohomology we have fiéiv;) = w; for
all i, wherew; is an abbreviated notation, used throughout the paperhirStiefel—
Whitney classw;(m«). Of course, now charranf(y) is, in other words, the greatest
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integerq, 0 < g < k(n — k), such thatp*: HI(G,x) — HI(Gx) is surjective for all
j,0=<j=q.

To the coveringp there is associated a uniquely determined non-trivial boadle
& such thatwi(§) = wi(ynk). This yields ([5, Corollary 12.3]) an exact sequence of
Gysin type,

(2.2) — HIYGn) 5 HI(Gry) = HI(Grg) — HI(Gry) 2 .

As is certainly clear from the context, we write here and wetsare HI=1(G, ) BN
HI(Gnk) for the homomorphism given by the cup-product with the f8tieWVhitney
classwj.

Thus p*: HI(Gnx) — HI(Gy) is surjective if and only if the subgroup

(2.2) KerH!(Gnx) — HI*}(Gni))

vanishes.
By (1.1), aZ,-polynomial

(23) p] (wl’ ey u)k) = Z ail,iz _____ ikwillwizz . wli(k'
i1+2i2+-+Kik=]j

with at least one coefficiers;, i, i € Z, nonzero, represents zero I-HJ'(Gn,k) pre-
cisely when there exist some polynomiajlgws, . . ., wk) (briefly gi) such that

p; = qj—n+k—1wn—k+1 +--+ qj—nu_)n,

wherew; (wy, ..., wg) (briefly w;) is the homogeneous component of{w; + - -+ +
w )t =14+wi+--+wg+ (w4 -+ w)?+--- in dimensioni. Of course, we have

(2.4) Wi = wiWi—1 + WaWi—p + - - - + WkWj_k.

We note thatw; represents the-th dual Stiefel-Whitney class of, that is, the Stiefel—
Whitney clasaw; (ynJ,_k) € H'(Gpx) of the complementaryn—k)-plane bundl%%k (briefly
y1); we shall also usey; as an abbreviation fow; (y+).

By what we have said, no nonzero homogeneous polynomialsijn. ., wyg in
dimensions< n — k represent 0 in cohomology; therefore the kernel (2.2) iszib®-
subgroup for allj <n—k—1, and we always have

(2.5) charrank, k) > n—k — 1.

For the Grassmann manifold@,k (3 < k < n—K), let gi(w,...,wk) (briefly justg)
denote the reduction ob;(ws, ..., wx) modulo w;.
The following fact is obvious.
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Fact 2.2. Letr < k. If wj(wy, ..., wx) =0, then alsow;(ws, ..., w;) =0 and
similarly, if gj(wy, ..., wx) =0, then also g(wy, ..., w;) =0.

For Gk, the formula (2.4) implies thalf = w20i_2 + wagi—3+ - - - + wkGi_k, and
an obvious induction proves that

(2.6) g = wgsgi—z-zs + wésgi 32+ -+ wﬁsgi—k-zs

for all s such thati > 1+ k- 25,
In our proof of Theorem 2.1, we shall use the following.

Lemma 2.3. For the Grassmann manifold &z (3 <k < n—k),
() gi(wa, w3) =0 if and only if i = 2' — 3 for some t> 2;
(i) gi(w2, w3, wa) = 0 if and only if i = 2 — 3 for some t> 2;
(ii) if k > 5 then for i > 2, we never have§w,, ..., wy) = 0.

Proof of Lemma 2.3. ART (i). In view of Fact 2.2, the equality
g2t 3(w2, w3) = 0

for t > 2 (already proved, in a different way, in [3]) is a direct ceqsence of the
equality got_3(w2, ws, ws) = 0; the latter will be verified in the proof of Part (ii).
Now we prove thatg (w,, w3) # 0 for i # 2t — 3. Fori < 14, this is readily
verified by a direct calculation. Let us suppose that 14. Then, for each, there
exists a uniquely determined integer( > 2) such that 2 < i/3 < 2**1. For proving
the claim, it suffices to verify it in each of the following #e situations:
(@ 3-22+1<i<5-24
(b) i =5-24
() 5-2*+1<i<6-2"
CAsE (a). By (2.6), we have

2 . 2 )
0 = w; gi—220 + w3 Gi—32.

By our assumptionj is not of the form 2 —3, and one sees that-2-2* ori —3-2*
is not of the form 2 — 3. If just one of the numbers— 2-2*, i —3-2* is not of the
form 21 —3, then it suffices to apply the inductive hypothesis (andgteved fact that
gx_3 = 0 for t > 2). If none of the numbers — 2-2* andi — 3-2* have the form
2l — 3 then, by the inductive hypothesis, bajh,»» andgi_s» are nonzero and, as a
consequence, alsg # 0. Indeed, now a necessary condition fpr= 0 is thatg,_,.»
should contain the termv?’; but the latter implies thait—2-2* > 3.2*, thusi > 5.2*,
which is not fulfilled.

Cask (b). One directly sees, from (& wy + w3)™t = 1+ wy + w3 + (w2 +
w3)? + - - -, that

U2 = w3? 4+ different terms# 0.
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CAask (c). By a repeated use of (2.6), we now have that

2 2 2
g = w; (W g 42 + w3 G 52)

+w? W giaz + wl Goz)
2.7) sz S

2k+1 2&71

=(w; +wj w§k)gi74.zx

2;“ 2/1 3.2/1—1
+ w; w3 Qi_s2 + wW3"  Gi_g.-1.

If i —4-.2"is of the form 2 — 3, then one verifies that—5-2* ori —9.2*1
is not of the form 2 — 3. If just one of the numbers —5-2* i —9-2*1 is not
of the form 2 — 3, then it suffices to apply the inductive hypothesis (and gheved
fact thatgy_3 = 0 for t > 2). If none of the numbers —5-2* andi —9- 21 have
the form 2 — 3 then, by the inductive hypothesis, baths» andg_g» 1 are nonzero
and, as a consequence, algo# 0. Indeed, now a necessary condition fpr= 0 is
that g;_s.» should contain the term);fl; but the latter implies thait—5-2* > 3.2"1,
thusi > 6-2*, which is not fulfilled.

Finally, let us suppose that— 4-2* is not of the form 2 — 3 (thus, by the in-
ductive hypothesisg; 42 # 0). Then, in order to haveg; = 0, it would be necessary
to “eliminate” w3 "' gi_42. This would only be possible ifj_s»: containsw3 , thus if
i —5.2*>2.2" hencei > 7-2*, which is not fulfilled, or ifgj_g» 1 containSwg”l,
thus ifi —9.2*"1 > 2.2**1 hencei > 17-2*~1 > 8. 2%, which is not fulfilled.

PART (ii). We first prove thatgx s(w;, ws, ws) = 0 fort > 2. We directly see
thatg; = 0 andgs = 0. Fort > 3 we have, by (2.6) and the inductive hypothesis, that

(2.8) O3 = w%’% Ozot-2-3 + w§[7395.2173,3.

Thus, again by (2.6) and the inductive hypothesis, we obtain

-3 -3 -3 -3
Oz =w3 (w5 Gpaz+wl Gaps_g+w) Gpzs)
(2.9) + wg%(wgisga.zt%fs + w§7392t7273 + w¢211739217373)
=0.
PART (iii). First, one readily calculates thags(w», ws, ws, ws) = ws # 0. Then
for completing the proof of Part (iii), in view of what we haygoved up to now and
Fact 2.2, it suffices to verify thaix_z(wo, w3, ws, ws) # 0 for t > 4. For this, we show

that hai_3(w4, ws) is nonzero fort > 4, whereha_3(w4, ws) (briefly ha_3) is obtained
by reducinggx_sz(w2, ws, ws, ws) Modulo w, and ws. Indeed, by (2.6), we see that

(210) hot_3 = w§t73h2t71_3 + w§173h3_2t—3_3.

By the inductive hypothesidhx-1_3 # 0; thus a necessary condition fbg 3 = 0 is
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that the termwZ * should be contained ihx1_s. But this would require that'2!—3 >
5. 23 which is not fulfilled. This finishes the proof of Lemma 2.3. ]

The announced preparations are finished, and we can prowvaerhe2.1.

Proof of Theorem 2.1. Recall that, f@,x (k < n—Kk) there are no polynomial
relations amongw;, wo, ..., wk iN dimensions< n — k, and a nonzero polynomial
Pn ki1 € Zo[wy, wy, ..., wi] represents G H"*1(G, ) if and only if py .1 =
Wn_k+1. From the Gysin sequence (2.1) we see that

p*: H™ (G ) = H" % (G, k) is surjective
(2.11) and, equivalently, charrank(y) > n —k,

precisely whengn_k;1(wo, . . ., wg) # 0.
We still observe that, for 3 k < n —Kk,
(2.12) if Onkt1 #0 and gnki2 #0, then charrankgy) >n—k+ 1.

Indeed, by the criterion (2.11), we have charrgqk) > n — k. To show that
this inequality can be improved as claimed in (2.12), let uppsse that a nonzero

polynomial p, k41 € Zo[ws, ..., wi] represents an element in Ket{—<+(G, ) =
H"**2(Gpk)). Thus wipn_k+1 represents G H"**2(G\). This means that, in
Zo[wa, - .., wk], wW1Pnk+1 = AW1Wn_k+1 + bWn_ky2, Wherea =1 or b = 1. Of course,

since gnh_x+2 # 0, necessarilyp = 0, a = 1. But the polynomial equalityv; pn_k+1 =
w1Wn_k+1 implies that pn_x+1 = Wn_k+1, thus pr_ks+1 represents @ H“*k“(Gn,k). So

we see that KeH"**+1(G, ) — H"*+2(G,,)) = 0 and charrankf,x) > n —k + 1.

Proof of Parts (1) and (2). By Lemma 2.3(i), (i _«+1(wo, ..., wy) vanishes
if (n, k) € {(2* —1,3), (2, 4)}. By the criterion (2.11), for these pairs,(K), the
homomorphismp*: H"X(G, k) — H”*k(én,k) is not surjective; thus, there is a non-
Stiefel-Whitney generator iti" (G, ) if (n,k) € {(2'—1,3),(2,4)}, and we conclude
that charrankiz 1 3) = 2' — 5 = charrankfz 4).

Of course, again by Lemma 2.3 (i), (ii), we hagg ki1(wz,...,wk) # 0 if (n,k) ¢
{((2 — 1, 3), (2, 4)} andk € {3, 4. By the criterion (2.11), for these pairs, k), the
homomorphism p*: H"¥(G,x) — H"X(G,x) is surjective; so we have that
charrankf, 3) > n—3 if n # 28 — 1 and charrankk, 4) > n—4 if n # 2t

To prove the result fOf(‘_;jzt,zyg, we first recall (Lemma 2.3 (i)) thagx 4 # O,
g2 3 =0, andgx_» # 0. Thuswz_3 = wypx_4 for some polynomialpx_4. The latter
cannot represent 0 in the cohomology gradf —4(Gz_» 3); indeed, if px_4 represents
zero, then necessarilgx_4 = wx_4 (as polynomials), thus we have a relation_3 =
wiwz_4, Which is impossible. This implies (see (2.1)) thpt: HZ~4(Ga_p3) —
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HZ-4(Gy_,.3) is not an epimorphism, thus charrafik(, 3) < 2' —5. By (2.11), since
g»_4 # 0, we have charrankf_, 3) > 2' — 5, which proves the claim fOézl_z’g. The
result forézt,u can be derived in an analogous way.
Now we prove the claim fOGztfgvg. We havegx 5 # 0, gx 4 # 0, andgx 3 =
0. Thuswa_3 = wipx_4 for some polynomialpx_4. The latter cannot represent 0
in HZ4(Gx_34). Indeed, if px_4 represents zero, thepy_, = aw1z_s + bix_4
in Zy[wy, wy, w3], with a =1 orb = 1; as a consequence, we would have 3 =
awfu‘)zt,s + bwiwa_4, Which is impossible. From the Gysin sequence (2.1), we Is&te t
p*: HZ=4(Gu_33) — HZ 4(Gx_33) is not an epimorphism. Thus charrafik(ss) <
2! — 5. At the same time, by the observation (2.12), we have chiafFa 3 3) > 2' —5.
This proves the claim foézt_g,g; again, the result foézt_2,4 can be proved analogously.
We pass to proving the result f(ﬁzt,g. We know that none ofjx_», gx_1, gx
vanishes. By (2.12), we see that charrgakf) > 2 — 2. At the same time, since
w02 _2+0x = w3gx_3 = 0, we have (as foZ,-polynomials)wowa 2+ wa = wy Par_1,
for some polynomialpx_;. The latter cannot representc0OH? (G 3). Indeed, px_;
representing 0 would mean thab_; = awiwa_» + bwa_y (Wherea =1 or b = 1),
which implies an impossible relatioiy = (aw? + wp)wz_p + bwiwy_1. Thus pa_g
represents a nonzero element in

Ker(H2 4Gz 3) = HZ (G 3)),

and we have that charrank(s) < 2' — 2, which proves the claim fOézt'3.

Now we shall pass t&Gx 34. Then we havegx ¢ # 0, gz 5 # 0, gz 4 # O,
gz 3 = 0. By (2.12), we know that charrank{ 34) > 2' — 6. To improve this in-
equality, we now show that

wy

(2.13) KerH?~5(Gz_3.4) — HZ4(Gz_34)) = 0.

Let a nonzero polynomialp,_s represent an element in the kernel under question.
This means that the polynomiab, px_5 represents @& H2t_4(Gztfgy4). Consequently,
w1Pr_s5 = aw%u_)zt_e + bwowa_g + Cwiwa_s + dwa_gq iN Zy[wy, wa, ws, wa], Where
at least one of the coefficients b, ¢, d is equal to 1. We cannot hade=d = 1,
becausav,wa g+ wa_4 reduced modwy is wogx g+ g4 and, as we shall see in the
next step, the latter is not zero. Indeed, tetdenote the reduction afi modulo w,
and ws. Thenw,gx g + g4 reduced modulav, and ws is equal tozx 4. A direct
calculation gives that;, = wi and, by induction, we obtain thap 4 = wﬁ"3zzt71,4 =
w? w21 = w271 #£ 0. So we have shown thab,gx ¢ 4+ gz 4 # 0. One also
readily sees that it is impossible to hadg ) = (1, 0) as well ask{,d) = (0, 1). Thus
the only remaining possibility isb(d) = (0,0). So we obtainv; pa_5 = wi(awiwa_g+
Cwy_s), thus pyx_ 5 = awiwa_g + Cwa_s. This means thatpx_s represents Ce
H2-5(Gx_34), and we have proved the equality (2.13).
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As a consequence, we have charragkg s) > 2 — 5. Sincegx_3 = 0, we have
that wy_3 = wy pa—g for some polynomialpx_4, about which one can show (similarly
to situations of this type dealt with above) that it canngiresent zero in cohomology.
Thus we also have charrafk{_s 4) < 2' —5, and finally charrankf:_3z 4) = 2! — 5.

In view of Lemma 2.3 (i), (i), for all the manifoldsS, s and G, 4 that remain,
the observation (2.12) implies the lower bounds stated iaofém 2.1 (1), (2).

Proof of Part (3). Fok > 5, Lemma 2.3 (iii) says that, .1 # 0 andgn 2 #
0; thus the observation (2.12) applies, giving that ch&(@an) > n—k + 1 in all
these cases.

To prove the final statement of the theorem, it suffices tolkrdbat, if n is odd,
then (see [3, p.72]) we have;(G,k) = b + Qi(W2, ..., wi_1) (i <k), whereQ; is
a Zp-polynomial, andw; = w;{(Gnx) + P;(w2(Gnk), - - -, wj—1(Gnk)) (j = 2) for some
Zj-polynomial P;j.

The proof of Theorem 2.1 is finished. 0

3. On the cup-length of the Grassmann manifoldén,k

Recall that theZ,-cup-length, cupX), of a compact path connected topological
spaceX is defined to be the maximum of all numbersuch that there exist, in posi-
tive degrees, cohomology class®s...,a; € H*(X) such that their cup produet - - -ac
is nonzero. In [3] and, independently, in [2], it was provédttfort > 3 we have

cupGz_1,9) = 2' -3

in addition, [3, Theorem 1.3] gave certain upper bounds tql(én,k).

Now Theorem 2.1 implies the following exact result 165 3, confirming the cor-
responding claim in Fukaya’s conjecture [2, Conjecturd, 102 improvements on the
results of [3, Theorem 1.3] in the other cases.

Theorem 3.1. For the oriented Grassmann manifon,k (3 <k <n-—Kk), with
21 < n< 2, we have

=n-3 if n=2,

(1) cup@n,g){g(zn—s—i)/z if n=2—i,ie{23,
<n-3 otherwise for n # 2! —1;
<(Bn-10-i)/2 if n=2'—i,i€{0,1,2,3,

2) CUDG”’4){§ (3n —12)/2 otherwise
@3) if k > 5, then cupGny) < (k — 1)(n — K)/2.

Proof. For a connected finit€ W-complex X, let rx denote the smallest positive
integer such that™(X) # 0. In the case that such an integer does not exist, that
is, all the reduced cohomology groups (X) (1 <i < dim(X)) vanish, we sety =
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dim(X) + 1; thus alwaysx > 1. To obtain the upper bounds stated in the theorem, we
use the following generalization of [3, Theorem 1.1].

Theorem 3.2 (A. Naolekar—A. Thakur [6]) Let X be a connected closed smooth
d-dimensional manifold. Lef be a vector bundle over X satisfying the following
there exists | j < charranlk(¢), such that every monomiad;, (£)- - -w; (§), 0<i; < j,
in dimension d vanishes. Then

cup(X) =1+ d=j-1
Mx

For the manifoldén,k, every top-dimensional monomial in the Stiefel-Whitney
classes of the canonical bundjg vanishes (indeed, if a top-dimensional monomial
in the Stiefel-Whitney classes g% x does not vanish, then it is p*-image of the
corresponding non-vanishing top-dimensional monomiathi Stiefel-Whitney classes
of ynk; due to Poincaré duality, the latter monomial can be replagigh a monomial
divisible by w1i(ynk); but p* maps this monomial to zero). Now the upper bounds
stated in Theorem 3.1 are obtained by taki¥ig= G,k (3 <k <n—KkK), & = .« and
j equal to the right-hand side of the corresponding (in)étugiven in Theorem 2.1.

For (321,3, it was proved in [3, p.77] that,(7)? 4 does not vanish. This implies
that cupGz 3) > 2'—3; this lower bound coincides with the upper bound provedvabo
The proof is finished. ]
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