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Abstract
We consider the spacd™[rrg, v", o] of all vector-valued holomorphic modular
forms f: H, — Z of transformation type

f(MZ) = v' (M) detC Z + D) o(C Z + D) f(2).

o: GL(n, C) — GL(Z) is a rational representation on a finite dimensional comple
vector spaceZ. These spaces can be collected in a gradéd)-module

M = Mr(ro, v, 0) := EPIT, rro, ", .

rez

We treat in this paper some special cases in genus 2. The fiestisoessentially
due to Wieber. Here the starting weight ig2] the starting multiplier system is the
multiplier systemvg and forpo we take the second symmetric power of standard rep-
resentation. Thus we consider a variant of this case and aerample. In this final
case the starting weight is/2, the starting multiplier system is the theta multiplier
systemuv,y and foro we take the standard representation. In all these cases We wi
determine the structure of1.

Introduction

For a congruence subgrodpC Sp, Z) of the Siegel modular group of genuas
a starting weighty > 0, 2o € Z, and a starting multiplier system of weightry one
can consider the ring of modular forms (for definitions weereto Section 1)

A(T) = AT, 1o, 1) = @BIT, rro, v'].

rez

This is a finitely generated algebra. In addition, ¢etGL(n,C) — GL(Z) be a rational
representation on a finite dimensional complex vector sgacg/e always will assume
that ¢ is irreducible and polynomial and does not vanish on therdetant surface
detA = 0. Then we consider the spack, fro, v', o] of all vector-valued holomorphic
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880 E. FRREITAG AND R. SALVATI MANNI
modular formsf : H, — Z of transformation type
f(MZ) = v (M)detCZ + D) o(CZ + D)f(2).

We collect these spaces to the grad&d')-module

M = Mr(ro, v, 0) := @[F rro, v', o]

rez

There are twisted variants of these modules [16]. For a cterg on I' one can
consider
MX = @[F, rrog, xv', ol.

rez

These modules are finitely generated. It is a natural taslod& for examples where
the structure of this module can be determined.

Meanwhile there appeared several papers getting resutistliig direction using
different methods, [1, 2, 3, 9, 14, 15, 16]. Our method is ahier development of
Wieber’s geometric method [16] which he used to solve cerfgi2, 4]-cases.

The geometric method of Wieber rests on the fact that vecthred modular forms
sometimes can be interpretediasnvariant tensors and hence as (usually rational) tensors
on the Siegel modular varieff,,/I". In some cases the structure of this variety is known
which enables to study tensors on it in detail. A vector vdloedular form can define
a tensor only if the representatignup to a power of the determinant occurs in some
tensor power of the representation SynThis is not always the case. For example the
standard representation of GL(2) does not have this property. In this paper we describe
a modification of Wieber's method which allows to recover imain results in [16] in a
quick way and which applies to more cases as for example #melatd representation.

Recall that the principal congruence subgroup is defined as

I'n[q] = kernel(Sph, Z) — Sph, Z/qZ))
and Igusa’s subgroup as
Tnlg, 2] := {M € T'x[q], (C'D)o = (A'B)o = 0 mod 2j}.

Here & denotes the column built of the diagonal of a square méerix

Besides Wieber's known results we treat in this paper a neamele that belongs
to the groupI';[4, 8]. The starting weight is /2, the starting multiplier system is the
theta multiplier systenvy and for o we take the standard representation. In this case
we will determine the structure o completely (Theorem 7.1). It will turn out that
M can be generated by tH& orbits of two specific modular forms. We will describe
the relations and—as a consequence—we will obtain the Hifbaction of this mod-
ule (Theorem 7.2).
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We want to thank Wieber for fruitful discussion and for hisiphevith quite in-
volved computer calculations.

1. Vector valued modular forms

We consider the Siegel modular grolip = Sp, Z) of genusn. It consists of all

0 —-E
E 0 ) (E denotes

the unit matrix) is the standard alternating matrix. Iletc Sp(, Z) be a congruence
subgroupy be an integerp a multiplier system of weight/2 onT" and: GL(n,C) —
GL(n, Z) a rational representation on a finite dimensional compkxtar spaceZ. We
assume thap is reduced which means that it is polynomial and does notstaalong
the determinant surface déi{ = 0. Then we can consider the spadg /2, v, o]. It
consists of holomorphic function$: H, — Z on the Siegel upper half-plane

integral 21 x 2n-matricesM such thattMIM = |, where| = (

H, ={Z € C™"; Im Z > 0 (positive definite)

with the transformation property

f(MZ) = v(M)y/detCZ + D) o(CZ + D)f(Z) (M € I).

(In the casen = 1 a condition at the cusps has to be added.) We can also consédte-
morphic solutionsf and call them meromorphic modular forms if they satisfy aaner
morphicity condition at the cusps (which in most cases wéllautomatically true). What
we demand is that there exists a non-vanishing holomormaiasvalued forng that fg

is holomorphic. We denote the space of meromorphic modelang by{T", r /2, v, o}.

It is a vector space of dimension Rankp) over the field of modular functions

K(T) = {T, 0, triv, triv},

in fact the wedge product df = Rank@) meromorphic vector valued modular forms
is a, possibly zero, scalar modular form. Wherns the one-dimensional trivial repre-
sentation, we simply writ¢",r /2, v} instead of{I",r /2,v, ¢} and similarly we skipv

if r is even andv trivial. The same convention is used for the spaces of hoiphio
modular forms.

2. Thetanullwerte

An elementm € {0, 1}?" is called a theta characteristic of genus Usually it is
considered as column and divided into two colunand of lengthn. It is called even
if tab is even and odd else. We use the classical theta series

9[ml(Z,2) = ) expri(Z[g + a/2] + 2'(g + a/2)(z + b/2).

gezn
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We are interested in the nullwerte
?[m](Z) = #[m](Z, 0)

and in the nullwerte of the derivatives

%mww

z=0

We collect them in a column which we denote by gedch](Z). We recall that the
theta nullwerte are non-zero only for even and the gradifart®dd characteristics.
Besides the nullwerte of first kind[m] the nullwerte of second kind

fa(2) := ﬂ[g}(ZZ), ae(z/2z)",

will play a role.
We recall that[0](Z) is a modular form of weight &2 for the theta group

Fn,z? = Iﬂn[l! 2]

with respect to a certain multiplier systemy on this group. Sincd'ns D I'n[2] we
have in particular

?[0] € [T'n[2], 1/2, vy].

For each characteristic there exists a charagteon I'y[2] which is trivial on ['[4, 8]
and quadratic on the groupn[2, 4] such that

?[m] € [Th[2], 1/2, vy xm] and gradd[m] € [Tn[2], 1/2, vy xm, Stl.

In particular, all thetanullwerté¥[m] are contained inI,[4, 8], 1/2, vy]. For details
we refer to [13].

Similar results hold for the thetas of second kifid They are modular forms for
I'n[2, 4] with respect to a certain multiplier systerg on this group,

fa € [Fn[zv 4]! 1/21 U@)]-
We consider the rings

ATn[4, 8]) = EDITn[4, 8,r/2,v5],  ATn[2, 4]) = EDITnl2, 41,1 /2, v ).

rez rez

So the starting weights are/24 in both cases and the starting multiplier systenv4ds
for T'h[4, 8] but ve for T'h[2, 4]. We mention that the two multiplier systems are dif-
ferent onT',[4, 8]. The following results are basic. The first one has pdoby Igusa
1964 [10] the second by Runge 1994 [11, 12].
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Theorem 2.1 (lgusa, Runge)

A(Tn[4,8)=C[...,¢%[m],...] for n<2,
ATh[2,4)=CJ[..., fq,...] for n<3.

In the casen = 2 Runge obtained an even better result. It is known that tharsq
of ve is a non-trivial quadratic character dfp[2, 4]. The kernel ofv2 is a subgroup
of index two of I';[2, 4]. We use Runge’s notatioR;[2, 4] for it.

Recall that Igusa’s modular forms is the unique cusp form of weight 5 for the
full Siegel modular form. It can be defined as the product & tén theta constants
of first kind. Its character is trivial oi';[2].

We denote the 4 function$, in the ordering (0,0), (0,1), (1,0), (1,1) bfg,..., fs.

Theorem 2.2 (Runge)

AT3[2, 4) = PIT312, 41,1/2,v5] = Clfo, ..., fa] ® xsCl fo, .- ., fal.

rez

3. A first example due to Wieber

From now on we shall assume = 2. We consider the modul@1 introduced
in the introduction, for the group',[2, 4], starting weight 12 and starting multiplier
systemvg and for the representation SymWe will write M™* instead of M since,
in the next section, we shall treat a twisted varigwt .

The representation Synof GL(2, C) can be realized on the space of symmetric
2 x 2-matrices and the action of GL(€) is given by AW A,

This means that we have to consider symmetric Zmatricesf of holomorphic
functions with the transformation property

f(MZ) = vo(M) /CZ + D) (CZ + D)f(Z)'(CZ + D).
They define a vector space
MF(r) = [T2[2, 4], 1 /2, vly, Synt].
We consider the direct sum

M =P M*H().

rez

This is a graded module over the ring

A(T2[2, 4]) := @DIT2[2, 4], 1 /2, vp] = C[fo, . . ., fa].
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Elements of M* can be constructed as follows. Léfg € [, r/2,vg], g # 0. Then
f/g is a modular function and(f/g) is a meromorphic differential. It can be con-
sidered as element off,[2, 4], 0, Synf}. If we multiply it by g2 we get a holo-
morphic form

{f, g = g*d(f/g) e M*(2).
Theorem 3.1 (Wieber) We have

MP= 3" Clf, ..., fa(fi, ;).

0<i<j<3
Defining relations of this module are
fil fi, f51 = [ 6, ] + filfe, §51, [fi, §;]+[f;, fi] =0.

Proof. We give a new simple proof for this result. We consitief2, 4], 1, Synt}
as vector space over the field of modular functions. The tfomas { fo, fi}, 1 <i <3,
give a basis of this vector space.

Lemma 3.2. With some non-zero constant C we have

8 d(f1/ fo) A d(T/ To) A d(Fs/ fo) = Crs Az A dzs A d 2o, Z = (f’ j).
1 2

Corollary. If we consider the three elements

{fo, fu}, {fo, T2}, {fo, fa}

as a3 x 3-matrix, its determinant is up to a constant factobzxfs.

This lemma is well-known. For sake of completeness we gieedigument. The left
hand side is holomorphic and it defines a modular form of wekylwith respect to
the full Siegel modular form. So it must be a constant mudtipf xs. ]

We mentioned already in the introduction tHat, r /2, v, o} is a vector space of
dimension < Rankf) on the field of modular functions relative . We can get a
basis of {I'5[2, 4], r/2, v§, o} if we multiply the three{fo, fi} by fj~2. Hence an
arbitrary T € {T", r /2, v, ¢} can be written in the form

T = ga1{ fo, f1} + 92f fo, f2} + ga{ fo, f3}

whereg; are meromorphic modular forms {12[2,4], (r —2)/2,v5;2}. They are rational
functions in thef;. If T is holomorphic thenfozx5gi must be holomorphic. The form
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foz)(5gi is contained inA(I"5[2, 4]) and fozgi are also rational in thdj. From Runge’s
result (Theorem 2.1) follows that?g; is holomorphic. In other words

3
1
MT C ﬁZ(C[fo,..., f3]{f01 fl}
0 i=1

The rest is just Wieber's argument that we can permute thiahlas and obtain that
M is contained in the intersection of 4 modules,

3 3

1

Mt CﬂﬁE "C[fo, ..., fa){fi, fj}.
i=0 1 j=1

Using the fact thatM™ is contained in the free module generatedddy (as symbols),
it is easy to show (compare [16]) that this intersection éxjua

> Clfo, ..., fa){fi, fj).

0<i<j=3

which is Wieber’s result.

4. A second example of Wieber

Always with respect to the group,[2, 4], Wieber also considers the twist @f*
with the quadratic characterg2. To be precise, he introduces the spagds(r) con-
sisting of holomorphic forms of the type

f(MZ) = vo(M) 2y/CZ + D) (CZ + D)f(Z)'(CZ + D).
They can be collected to
M =P M)
which is also a graded module oveq fg, ..., f4]. There are obvious inclusions
xsMt Cc M~ xsM™ c M*.

Following more general constructions of lbukiyama [9], ¥ée defined elements o¥1~
in a different way. He considers three homogeneous elemiengs h of C[ fo, ..., f3]
of degreer and considers then the differential form

d(g/f)Aad(h/f)=hodzz Adz +h;dzyAdz + hy,dzg Adz.
Then

h, —h;
(—h1 o )e{rz[z, 4], 1, Synt}.
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(The multiplier system is trivial.) We set

h, —h

_ 3 N2 1

{f,g,h}—f(_h1 N )

It is easy to see that this is holomorphic. It is contained in
202, 4], (3 4+ 2)/2, v, Synf] = M~ (3r + 2).

If f, g, h have weight 12, then this form is contained i~ (5). An arbitraryT €
[T, (r +5)/2,v, o] can be written in the form

T = ga{ fo, f1, T2} + G2{ fo, 1, T3} + gs{ fo, T2, fa}

where g; are meromorphic modular forms §1°,[2, 4],r /2, vp}. They are expressible
as quotients of homogeneous polynomials in the varialfjesWe have to work out
that this form, or equivalently

fg(01 d(f1/ fo) A d(f2/ fo) + gad(f1/ fo) A d(f3/ fo) + gsd(f2/ fo) A d(f3/ fo)),

is holomorphic. We take the wedge product wittf df(fi/fo) and obtain from
Lemma 3.2 thatfoxsg are holomorphic. Hence the argument of the previous section
shows thatfog; is a polynomial in thef;. Similar to the previous section we obtain

3

_ 1

M cﬂ?z C[fo, ..., fal{fi, fj, fi}.
i=0 i<j<k

A simple argument now gives the following result.

Theorem 4.1 (Wieber) We have

M~ = > Clfo,..., fa]{fi, fj, fil.

0<i<j<k<3
Defining relation of this module is
fa{ fo, f1, f2} = fo{ f1, f2, fa} — fa{fo, f2, f3} + fof fo, f1, f3}.

We observe that the relation is an immediate consequendeedatt that we have four
generators and it is induced by the standard propertieseofiiffierentiation.
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5. The standard representation

In this section we study the modulet for the groupl's[4, 8], starting weight 12,
starting multiplier system, and the standard representation=Sid,

M = EPIr.[4, 8,1 /2, v, St].

rez

This is a module over the ring\(T";[4, 8]) which, by Igusa’s result, is generated by the
ten even theta nullwerte. We will order them as follows:

(m®, ..., mi) =

o O oo
= O OO

R R OO

or L O

oo or

R O o R

ocoR Rk
=

oOFr OO
o o o

The associated theta series are denotefy . ., 910 (in this ordering). They satisfy
the quartic Riemann relations which are defining relations:

D§V5 — V3G + 0idlo =0, V3V — V70§ — D705 =0,

D205 — 939E + 9207, = 0,
07 — Og — Vg + 91 = 0,
VE02 — 9208 + 9297 = 0,
D207 — 0208 + 9207, = 0,
D292 — 9298 — 9292, = 0,
0392 — 9292 — 9292 = 0,
0392 — 9208 — 93095 = 0,
0297 — 939E — 9295 = 0,
O8 — g — Vg + 91 = 0,

D392 — 0208 — 0595 = 0,
0392 — 929¢ — 9292 = 0,
0292 — 039¢ — 0292 = 0,
05 — 04 — O + 15 = 0,
0305 — 9292 + 9507, = 0,
0292 — 9397 — 9209¢ = 0,
03 — 94 — 0§ + 90, =0,
0295 — 0395 — 0298 = 0,
0} — 05 — 9g — 95 = 0.

We order the 6 odd characteristics as follows:

(n®, ..., n®) =

We use the notation

O O

e(m) = (-1)*

k=)
Or OoOr
P RO R
RO R R
ORr kLR
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Recall that a tripletm;, m,, ms of characteristics is calledzygeticif they are pairwise
different and if

e(my)e(mz)e(mg)e(my + My + mg) = —1.

The following result has been stated without proof by Roséanland proved by Thomae
and Weber. A proof can be found in [4].

Lemma 5.1. For two different odd characteristics ,m there exist4 even char-
acteristics n, ..., ng such that m n, n; is azygetic. If we consider the pair
(grad®[m], grad¥[n]) as a2 x 2 matrix then

det(grady?[m], grad9[n]) = £729[n4] - - - ¥[na).

Since the signs are essential for us, we collect them in &.taliis table can be found
in [4]. (One sign in [4] had to be corrected.) We use the akihti®n

D(i, j) = 72 det(grad?[n®], gradw[n]), 1<i < | <86,

D(1, 2) = 97009010,  D(1, 3) = Dp030507, D(1, 4) = 104050,

D(1, 5) = —930a0%010, D(1, 6) = 1020600, D(2, 3) = 1040607,

D(2, 4) = 920930603, D(2, 5) = —910205010, D(2, 6) = 93949509,

D(3, 4) = —9s960s10, D(3,5)= —0193950%, D(3, 6)= 0408010,

D(4, 5) = —9,04970%9, D(4, 6) = 010307010,  D(5, 6) = ¥506070s.
We describe 20 relations between the 6 generators; grhthe module M. We use
the notation

grad = grady[n®], 1<i <.
Lemma 5.2. For 1 <i < j < k <6 the relation
D(i, j) grad = D(i, k) grad —D(j, k) grad

holds. Each of them is divisible by one of the Hence we obtair20 relations where
a typical one is

"1 0406 gradl — 110305 gradz —Ug¥9¥10 grad\,, = 0.

Proof. The proof is trivial. Just notice that the occurriBgs are just the X 2
sub-determinants of the ;2 3-matrix (grag, graq, gragq). Now Lemma 5.2 is just a
consequence of the known fact that the cross proauetb of two vectors inC? is
orthogonal to botha, b. ]
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We fix two odd characteristice), n. Every homogeneous element 8fi*t can be
written in the form

T = gm grad®[m] + g, grad?[n]

with two meromorphic modular forms frorA(T'[4, 8]). From Lemma 5.1 we can de-
duce thatgi®[n,] - - - ¥[n4] are holomorphic. Hencé\ is contained in

M(m, n) := m(A(FH, 8]) gradv[m] + A(T"[4, 8]) gradd[n]).

We can varym, n and obtain

M (Y M(m, ).

The elements in the right hand side have no poles outside ¢hes zof the forms
?[Nnq] - - - ©¥[ng]. These 15 forms have no joint zero 1y, in fact they are, relatively
to the genus 2 case, the Plucker’'s coordinates of the majedtin [8], cf. [4] also.
Hence the elements of the intersection are holomorphic. Booltain the follow-
ing proposition.

Proposition 5.3. We have

M =\ M(m,n).

We consider the submodul&” of M that is generated by all gradver A(T[4, 8]).
Proposition 5.3 shows that1 is a submodule of (Ixs)N. It is described as finite
intersection of certain submodules which are defined by si@rinitely many gener-
ators. As soon as we understand the structure pfs)1V, or equivalently, of\/, we
have a chance to determine this intersection. In the nexttosewe shall describe all
relations between the six grad

6. Relations

In Lemma 5.2 we described some of the relations between the. gt will turn
out they do not generate all relations. To describe all icriatwe introduce the free
module of rank 6 overA(I'[4, 8]). We denote the generators By, ..., Ts. We have
to describe the kernel of the natural homomorphism

F—>N, T —grad.
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We denote byKC the submodule ofF that is generated by the 20 elements which arise
in Lemma 5.2. A typical example is

V10406 Ty — 920305To — Pgideit1gTa.

Lemma 6.1. Let T be an element of the kernel 8f — N. Then xsT is con-
tained in KC, and the kernel ofF — N equals the kernel of

F5 F- FIK

Proof. LetPigrad +---+ Psgrad; = 0 be a (homogeneous) relation. After multi-
plication by x5 we can use the relations in Lemma 5.2 to eliminate in thisticziaall
grad, i > 2. Then we obtain a relation between gradrad,. But these two forms are
independent due to Lemma 5.1. Hence the above relatior, miétiplication by ys,
is a consequence of the relations in Lemma 5.2. ]

In principle, Lemma 6.1 is a complete description of the mled\W. We can use
it to work out a finite generating system of relations. Fosthie describe some extra
relations between the grad

Lemma 6.2. For each ordered pair of two different odd characteristitere is
a relation which is determined by this pair up to the sign. Taktion that belongs
to pair (5, 6) in our numbering is

9&D(1, 5) grad —92D(2, 5) grag —95D(3, 5) grag +v7D(4, 5) grag = 0.

The full modular group acts transitively on the3e relations (counted up to the sign
In general the relation for a pair«, 8) is the sum of fourt®2D(i, @) grad, i # «,
B, where ¥ is the only theta that divides @ «) and D(«, B).

Proof. Along the lines of the proof of Lemma 6.1, one mulgglithe claimed
relation by xs and eliminates gradi > 2. Then one obtains an expressiBpgrad +
P, grad, with explicitly given polynomials in they;. One has to showP; = P, = 0.
We omit the straightforward calculation and mention onlgttfor this one has to use
the Riemann relations. O

There is a second kind of extra relations between the; griml explain them, we
need some facts about theta characteristics. In [7] it hap lpgoved that each odd
characteristin can written in 12 different ways (up to ordering) as a sum of fdair-
wise different even characteristics

n=mg+---+ ms.
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The full modular group acts transitively on the set of @l my, ..., ms}. For each of
them we define the modular form

S:=9(n, my,...,ms) =my] ---¥[ms] gradd[n].

Hence we obtain 72 modular forms.
As we mentioned, the form&[m] and grad?[n] are modular forms with respect
to the groupl';[2, 4]. As a consequence, we get

Se [FZ[Z; 4]1 31XS! St]

with a certain quadratic charactgg on I';[2, 4]. The information about these charac-
ters which we need can be taken from the paper [13].

Lemma 6.3. The72forms S are modular forms with respect to the grawy2, 4]
and a certain quadratic characters. In this way there arisd 2 different characters and
to the each associated space of modular forms belong sixeofatms S. Each of the
72 forms S is uniquely determined by its odd characteristic d tire characterys.

We denote the forns which belongs ton and x by S(n, x).

Lemma 6.4. We fix one of the2 charactersy. Let $ = S(i, x) fori =1,...6
be the six functions (8, x). If one cancels one of the sigay 3, one gets a relation
between the other five of the following type.

5
> +9[m]’S =0.
i=1

Here m are certain even characteristics which are uniquely deteed and also the
signs (up to a common sign changare uniquely determined.

The rule how them; can be found is a little complicated. We explain howy can
be found.
1) There are three even characteristigsqp, gs that occur inS, but not in & (the
form which has been cancelled).
2) There is one pair ifqy, Oz, O3}, say {0, s}, such that¥[g,]?[qs] does not occur
in any of the fours, ..., S.
Then one has to use; := q; in Lemma 6.4.

We explain this in an example. The six forms

S = 9a¥sP6sve grad, S = vi1thtadedggrac, S = P2s5070s0100rad,
S = Wavelr0oV0grad, S = P10s0a0s0100rad, S5 = D102030607 grad,
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belong to the same character. The characteristic that anc8r but not in & are ms,
mg, Mg. The pairms, mg does not occur irs, ..., S. Hence the theta square which
has to be added i8[mg]°>. The whole relation will be

I [Mg]*Sy — 9[M]*S, + 9 [Ms]* S — 0 [Ma]*Ss + 9 [Muo]*Ss.

The determination of the signs needs some extra work.

We do not give details of the proof of Lemma 6.4. We only mentibat it is
similar to the proof of Lemma 6.2.

The relations that we described so far are defining relations

Proposition 6.5. The module of relations between the six forgrad, i.e. the
kernel of the natural homomorphistA — A/, is generated by the0 relations de-
scribed inLemma 5.2,the 30 relations described inr.emma 6.2and the 72 relations
described inLemma 6.4

Proof. Using Lemma 6.1, the proof can be given with the help abmputer. []

7. A structure theorem

Now we have the possibility to determine the structureVéf From Proposition 5.3
we get

YsM = Q ST X5 ST (A(T[4, 8]) grad®[m] + A(T'[4, 8]) grad9[n]).

The right-hand side is a submodule &f which we understand completely (Propos-
ition 6.5). Hence it is possible to compute the intersectidth the help of a computer.
We did this by means of the computer algebra sys&#RGULAR. In this way we could
determine a finite system of generatorsidf and we also could get the Hilbert function.
We mention thatM is bigger than\. We have to describe now the extra generators.

Proposition 7.1. The modular form

(949808 + Daslg) grad, —19ee03, grad;
$205

is holomorphi¢ hence contained ifI"[4, 8], 5/2, St]. It is not contained in the sub-
module /. The orbit under the full modular form consistgp to constant factorsof
360 modular forms that span a space of dimens@h

We omit the relations among the above forms since they arg éomd do not seem to
have a nice combinatorial description.
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By means ofSINGULAR one can verify that theA(I'[4, 8])-module generated by

the six gragd and thel',-orbit of the form described in Proposition 7.1 equals thedmo
ule M. SINGULAR also gives the Hilbert function.

Theorem 7.2. The AT'[4, 8])-module

M = PIr[a, 8],r/2, v}, St]

is generated by the sigrad and theI',-orbit of the form described ifProposition 7.1
The Hilbert function is

(1]
(2]
(31
(4]
(5]
(6]
(7]
(8]
9]
[10]
[11]
[12]
[13]
[14]

(18]

> T[4, 8],r/2, v, Stit'
r=0

60t° — 60t8 — 3187 + 2526 + 606&° + 3168% + 1263 + 36t2 + 6t
(1-1)
= 6t + 60t + 330t° + 130a* + 406a° + 9952° + 2000a7 + 351688 + - - - .
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