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Abstract
We consider the space [0, rr 0, vr , %] of all vector-valued holomorphic modular

forms f W Hn ! Z of transformation type

f (M Z) D v

r (M) det(C ZC D)r0r
%(C ZC D) f (Z).

% W GL(n, C) ! GL(Z) is a rational representation on a finite dimensional complex
vector spaceZ. These spaces can be collected in a gradedA(0)-module

M DM
0

(r0, v, %) WD
M

r2Z

[0, rr 0, vr , %].

We treat in this paper some special cases in genus 2. The first one is essentially
due to Wieber. Here the starting weight is 1=2, the starting multiplier system is the
multiplier systemv

2

and for% we take the second symmetric power of standard rep-
resentation. Thus we consider a variant of this case and a newexample. In this final
case the starting weight is 1=2, the starting multiplier system is the theta multiplier
systemv

#

and for % we take the standard representation. In all these cases we will
determine the structure ofM.

Introduction

For a congruence subgroup0 � Sp(n,Z) of the Siegel modular group of genusn,
a starting weightr0 > 0, 2r0 2 Z, and a starting multiplier systemv of weight r0 one
can consider the ring of modular forms (for definitions we refer to Section 1)

A(0) D A(0, r0, r ) D
M

r2Z

[0, rr 0, vr ].

This is a finitely generated algebra. In addition, let%W GL(n,C)! GL(Z) be a rational
representation on a finite dimensional complex vector spaceZ. We always will assume
that % is irreducible and polynomial and does not vanish on the determinant surface
detAD 0. Then we consider the space [0, rr 0, vr , %] of all vector-valued holomorphic
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modular forms f W Hn ! Z of transformation type

f (M Z) D vr (M) det(C ZC D)r0r
%(C ZC D) f (Z).

We collect these spaces to the gradedA(0)-module

M DM
0

(r0, v, %) WD
M

r2Z

[0, rr 0, vr , %].

There are twisted variants of these modules [16]. For a character � on 0 one can
consider

M�

D

M

r2Z

[0, rr 0, �vr , %].

These modules are finitely generated. It is a natural task to look for examples where
the structure of this module can be determined.

Meanwhile there appeared several papers getting results into this direction using
different methods, [1, 2, 3, 9, 14, 15, 16]. Our method is a further development of
Wieber’s geometric method [16] which he used to solve certain 02[2, 4]-cases.

The geometric method of Wieber rests on the fact that vector valued modular forms
sometimes can be interpreted as0-invariant tensors and hence as (usually rational) tensors
on the Siegel modular varietyHn=0. In some cases the structure of this variety is known
which enables to study tensors on it in detail. A vector valued modular form can define
a tensor only if the representation% up to a power of the determinant occurs in some
tensor power of the representation Sym2. This is not always the case. For example the
standard representation of GL(2,C) does not have this property. In this paper we describe
a modification of Wieber’s method which allows to recover hismain results in [16] in a
quick way and which applies to more cases as for example the standard representation.

Recall that the principal congruence subgroup is defined as

0n[q] D kernel(Sp(n, Z)! Sp(n, Z=qZ))

and Igusa’s subgroup as

0n[q, 2q] WD {M 2 0n[q], (C t D)0 � (A t B)0 � 0 mod 2q}.

Here S0 denotes the column built of the diagonal of a square matrixS.
Besides Wieber’s known results we treat in this paper a new example that belongs

to the group02[4, 8]. The starting weight is 1=2, the starting multiplier system is the
theta multiplier systemv

#

and for % we take the standard representation. In this case
we will determine the structure ofM completely (Theorem 7.1). It will turn out that
M can be generated by the02 orbits of two specific modular forms. We will describe
the relations and—as a consequence—we will obtain the Hilbert function of this mod-
ule (Theorem 7.2).
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1. Vector valued modular forms

We consider the Siegel modular group0n D Sp(n,Z) of genusn. It consists of all

integral 2n � 2n-matricesM such thatt M I M D I , where I D
�

0 �E
E 0

�

(E denotes

the unit matrix) is the standard alternating matrix. Let0 � Sp(n, Z) be a congruence
subgroup,r be an integer,v a multiplier system of weightr =2 on0 and%W GL(n,C)!
GL(n,Z) a rational representation on a finite dimensional complex vector spaceZ. We
assume that% is reduced which means that it is polynomial and does not vanish along
the determinant surface det(A) D 0. Then we can consider the space [0, r =2, v, %]. It
consists of holomorphic functionsf W Hn ! Z on the Siegel upper half-plane

Hn D {Z 2 Cn�n
I Im Z > 0 (positive definite)}

with the transformation property

f (M Z) D v(M)
p

det(C ZC D)
r
%(C ZC D) f (Z) (M 2 0).

(In the casenD 1 a condition at the cusps has to be added.) We can also consider mero-
morphic solutionsf and call them meromorphic modular forms if they satisfy a mero-
morphicity condition at the cusps (which in most cases will be automatically true). What
we demand is that there exists a non-vanishing holomorphic scalar valued formg that f g
is holomorphic. We denote the space of meromorphic modular forms by{0, r =2, v, %}.
It is a vector space of dimension� Rank(%) over the field of modular functions

K (0) D {0, 0, triv, triv},

in fact the wedge product ofk D Rank(%) meromorphic vector valued modular forms
is a, possibly zero, scalar modular form. When% is the one-dimensional trivial repre-
sentation, we simply write{0, r =2,v} instead of{0, r =2,v, %} and similarly we skipv
if r is even andv trivial. The same convention is used for the spaces of holomorphic
modular forms.

2. Thetanullwerte

An elementm 2 {0, 1}2n is called a theta characteristic of genusn. Usually it is
considered as column and divided into two columnsa, b of length n. It is called even
if tab is even and odd else. We use the classical theta series

# [m](Z, z) D
X

g2Zn

exp� i(Z[gC a=2]C 2 t (gC a=2)(zC b=2).
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We are interested in the nullwerte

# [m](Z) D # [m](Z, 0)

and in the nullwerte of the derivatives

�

�zi
# [m](Z, z)

�

�

�

�

zD0

.

We collect them in a column which we denote by grad# [m](Z). We recall that the
theta nullwerte are non-zero only for even and the gradientsfor odd characteristics.

Besides the nullwerte of first kind# [m] the nullwerte of second kind

fa(Z) WD #

�

a
0

�

(2Z), a 2 (Z=2Z)n,

will play a role.
We recall that# [0](Z) is a modular form of weight 1=2 for the theta group

0n,# WD 0n[1, 2]

with respect to a certain multiplier systemv
#

on this group. Since0n,# � 0n[2] we
have in particular

# [0] 2 [0n[2], 1=2, v
#

].

For each characteristic there exists a character�m on 0n[2] which is trivial on 0n[4, 8]
and quadratic on the group0n[2, 4] such that

# [m] 2 [0n[2], 1=2, v
#

�m] and grad# [m] 2 [0n[2], 1=2, v
#

�m, St].

In particular, all thetanullwerte# [m] are contained in [0n[4, 8], 1=2, v
#

]. For details
we refer to [13].

Similar results hold for the thetas of second kindfa. They are modular forms for
0n[2, 4] with respect to a certain multiplier systemv

2

on this group,

fa 2 [0n[2, 4], 1=2, v
2

].

We consider the rings

A(0n[4, 8]) D
M

r2Z

[0n[4, 8], r =2, vr
#

], A(0n[2, 4]) D
M

r2Z

[0n[2, 4], r =2, vr
2

].

So the starting weights are 1=2 in both cases and the starting multiplier system isv

#

for 0n[4, 8] but v
2

for 0n[2, 4]. We mention that the two multiplier systems are dif-
ferent on0n[4, 8]. The following results are basic. The first one has proved by Igusa
1964 [10] the second by Runge 1994 [11, 12].
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Theorem 2.1 (Igusa, Runge).

A(0n[4, 8])D C[: : : , # [m], : : : ] for n � 2,

A(0n[2, 4])D C[: : : , fa, : : : ] for n � 3.

In the casenD 2 Runge obtained an even better result. It is known that the square
of v

2

is a non-trivial quadratic character on02[2, 4]. The kernel ofv2
2

is a subgroup
of index two of02[2, 4]. We use Runge’s notation0�2 [2, 4] for it.

Recall that Igusa’s modular form�5 is the unique cusp form of weight 5 for the
full Siegel modular form. It can be defined as the product of the ten theta constants
of first kind. Its character is trivial on02[2].

We denote the 4 functionsfa in the ordering (0,0), (0,1), (1,0), (1,1) byf0,: : : , f3.

Theorem 2.2 (Runge).

A(0�2 [2, 4]) D
M

r2Z

[0�2 [2, 4], r =2, vr
2

] D C[ f0, : : : , f3] � �5C[ f0, : : : , f3].

3. A first example due to Wieber

From now on we shall assumen D 2. We consider the moduleM introduced
in the introduction, for the group02[2, 4], starting weight 1=2 and starting multiplier
systemv

2

and for the representation Sym2. We will write MC instead ofM since,
in the next section, we shall treat a twisted variantM�.

The representation Sym2 of GL(2,C) can be realized on the space of symmetric
2� 2-matrices and the action of GL(2,C) is given by AW tA.

This means that we have to consider symmetric 2� 2-matrices f of holomorphic
functions with the transformation property

f (M Z) D v
2

(M)r
p

C ZC D)
r
(C ZC D) f (Z) t (C ZC D).

They define a vector space

MC(r ) D [02[2, 4], r =2, vr
2

, Sym2].

We consider the direct sum

MC

D

M

r2Z

MC(r ).

This is a graded module over the ring

A(02[2, 4]) WD
M

[02[2, 4], r =2, vr
2

] D C[ f0, : : : , f3].
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Elements ofMC can be constructed as follows. Letf, g 2 [0, r =2, vr
2

], g ¤ 0. Then
f =g is a modular function andd( f =g) is a meromorphic differential. It can be con-
sidered as element of{02[2, 4], 0, Sym2}. If we multiply it by g2 we get a holo-
morphic form

{ f, g} D g2 d( f =g) 2MC(2r ).

Theorem 3.1 (Wieber). We have

MC

D

X

0�i< j�3

C[ f0, : : : , f3]{ fi , f j }.

Defining relations of this module are

fk[ fi , f j ] D f j [ fi , fk] C fi [ fk, f j ], [ fi , f j ] C [ f j , fi ] D 0.

Proof. We give a new simple proof for this result. We consider{0[2, 4], 1, Sym2}

as vector space over the field of modular functions. The threeforms { f0, fi }, 1� i � 3,
give a basis of this vector space.

Lemma 3.2. With some non-zero constant C we have

f 4
0 d( f1= f0) ^ d( f2= f0) ^ d( f3= f0) D C�5 dz0 ^ dz1 ^ dz2, Z D

�

z0 z1

z1 z2

�

.

Corollary. If we consider the three elements

{ f0, f1}, { f0, f2}, { f0, f3}

as a 3� 3-matrix, its determinant is up to a constant factor f2
0 �5.

This lemma is well-known. For sake of completeness we give the argument. The left
hand side is holomorphic and it defines a modular form of weight 5 with respect to
the full Siegel modular form. So it must be a constant multiple of �5.

We mentioned already in the introduction that{0, r =2, v, %} is a vector space of
dimension� Rank(%) on the field of modular functions relative to0. We can get a
basis of {02[2, 4], r =2, vr

2

, %} if we multiply the three{ f0, fi } by f r�2
0 . Hence an

arbitrary T 2 {0, r =2, v, %} can be written in the form

T D g1{ f0, f1} C g2{ f0, f2} C g3{ f0, f3}

wheregi are meromorphic modular forms in{02[2,4],(r �2)=2,vr�2
2

}. They are rational
functions in the fi . If T is holomorphic thenf 2

0 �5gi must be holomorphic. The form
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f 2
0 �5gi is contained inA(0�2 [2, 4]) and f 2

0 gi are also rational in thefi . From Runge’s
result (Theorem 2.1) follows thatf 2

0 gi is holomorphic. In other words

MC

�

1

f 2
0

3
X

iD1

C[ f0, : : : , f3]{ f0, fi }.

The rest is just Wieber’s argument that we can permute the variables and obtain that
M is contained in the intersection of 4 modules,

MC

�

3
\

iD0

1

f 2
i

3
X

jD1

C[ f0, : : : , f3]{ fi , f j }.

Using the fact thatMC is contained in the free module generated byd fi (as symbols),
it is easy to show (compare [16]) that this intersection equals

X

0�i< j�3

C[ f0, : : : , f3]{ fi , f j }.

which is Wieber’s result.

4. A second example of Wieber

Always with respect to the group02[2, 4], Wieber also considers the twist ofMC

with the quadratic characterv�2
2

. To be precise, he introduces the spacesM�(r ) con-
sisting of holomorphic forms of the type

f (M Z) D v
2

(M)r�2
p

C ZC D)
r
(C ZC D) f (Z) t (C ZC D).

They can be collected to

M�

D

M

M�(r )

which is also a graded module overC[ f0, : : : , f4]. There are obvious inclusions

�5M
C

�M�, �5M
�

�MC.

Following more general constructions of Ibukiyama [9], Wieber defined elements ofM�

in a different way. He considers three homogeneous elementsf , g, h of C[ f0, : : : , f3]
of degreer and considers then the differential form

d(g= f ) ^ d(h= f ) D h0 dz1 ^ dz2C h1 dz0 ^ dz2C h2 dz0 ^ dz1.

Then
�

h2 �h1

�h1 h0

�

2 {02[2, 4], 1, Sym2}.
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(The multiplier system is trivial.) We set

{ f, g, h} D f 3

�

h2 �h1

�h1 h0

�

.

It is easy to see that this is holomorphic. It is contained in

[02[2, 4], (3r C 2)=2, v3r
2

, Sym2] DM�(3r C 2).

If f , g, h have weight 1=2, then this form is contained inM�(5). An arbitrary T 2
[0, (r C 5)=2, v, %] can be written in the form

T D g1{ f0, f1, f2} C g2{ f0, f1, f3} C g3{ f0, f2, f3}

where gi are meromorphic modular forms in{02[2, 4], r =2, vr
2

}. They are expressible
as quotients of homogeneous polynomials in the variablesfi . We have to work out
that this form, or equivalently

f 3
0 (g1 d( f1= f0) ^ d( f2= f0)C g2d( f1= f0) ^ d( f3= f0)C g3d( f2= f0) ^ d( f3= f0)),

is holomorphic. We take the wedge product withf 2
0 d f ( fi = f0) and obtain from

Lemma 3.2 thatf0�5gi are holomorphic. Hence the argument of the previous section
shows that f0gi is a polynomial in the fi . Similar to the previous section we obtain

M�

�

3
\

iD0

1

fi

X

i< j<k

C[ f0, : : : , f3]{ fi , f j , fk}.

A simple argument now gives the following result.

Theorem 4.1 (Wieber). We have

M�

D

X

0�i< j<k�3

C[ f0, : : : , f3]{ fi , f j , fk}.

Defining relation of this module is

f3{ f0, f1, f2} D f0{ f1, f2, f3} � f1{ f0, f2, f3} C f2{ f0, f1, f3}.

We observe that the relation is an immediate consequence of the fact that we have four
generators and it is induced by the standard properties of the differentiation.



VECTOR VALUED MODULAR FORMS 887

5. The standard representation

In this section we study the moduleM for the group02[4, 8], starting weight 1=2,
starting multiplier systemv

#

and the standard representation StD id,

M D

M

r2Z

[02[4, 8], r =2, vr
#

, St].

This is a module over the ringA(02[4, 8]) which, by Igusa’s result, is generated by the
ten even theta nullwerte. We will order them as follows:

(m(1), : : : , m(10)) D

0

B

B

�

0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 1 0 0 0 1
0 1 0 1 0 0 0 1 0 1

1

C

C

A

.

The associated theta series are denote by#1, : : : , #10 (in this ordering). They satisfy
the quartic Riemann relations which are defining relations:

#

2
6#

2
8 � #

2
4#

2
9 C #

2
1#

2
10D 0,

#

2
5#

2
8 � #

2
2#

2
9 C #

2
3#

2
10D 0,

#

4
7 � #

4
8 � #

4
9 C #

4
10D 0,

#

2
6#

2
7 � #

2
3#

2
9 C #

2
2#

2
10D 0,

#

2
5#

2
7 � #

2
1#

2
9 C #

2
4#

2
10D 0,

#

2
4#

2
7 � #

2
3#

2
8 � #

2
5#

2
10D 0,

#

2
3#

2
7 � #

2
4#

2
8 � #

2
6#

2
9 D 0,

#

2
2#

2
7 � #

2
1#

2
8 � #

2
6#

2
10D 0,

#

2
1#

2
7 � #

2
2#

2
8 � #

2
5#

2
9 D 0,

#

4
5 � #

4
6 � #

4
9 C #

4
10D 0,

#

2
4#

2
5 � #

2
2#

2
6 � #

2
7#

2
10D 0,

#

2
3#

2
5 � #

2
1#

2
6 � #

2
8#

2
10D 0,

#

2
2#

2
5 � #

2
4#

2
6 � #

2
8#

2
9 D 0,

#

2
1#

2
5 � #

2
3#

2
6 � #

2
7#

2
9 D 0,

#

4
3 � #

4
4 � #

4
6 C #

4
10D 0,

#

2
2#

2
3 � #

2
1#

2
4 C #

2
9#

2
10D 0,

#

2
1#

2
3 � #

2
2#

2
4 � #

2
5#

2
6 D 0,

#

4
2 � #

4
4 � #

4
8 C #

4
10D 0,

#

2
1#

2
2 � #

2
3#

2
4 � #

2
7#

2
8 D 0,

#

4
1 � #

4
2 � #

4
6 � #

4
9 D 0.

We order the 6 odd characteristics as follows:

(n(1), : : : , n(6)) D

0

B

B

�

0 0 1 1 1 1
1 1 0 0 1 1
0 1 1 1 0 1
1 1 0 1 1 0

1

C

C

A

.

We use the notation

e(m) D (�1)
t ab (mD

�a
b

�

).
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Recall that a tripletm1, m2, m3 of characteristics is calledazygeticif they are pairwise
different and if

e(m1)e(m2)e(m3)e(m1Cm2Cm3) D �1.

The following result has been stated without proof by Rosenhain and proved by Thomae
and Weber. A proof can be found in [4].

Lemma 5.1. For two different odd characteristics m, n there exist4 even char-
acteristics n1, : : : , n4 such that m, n, ni is azygetic. If we consider the pair
(grad# [m], grad# [n]) as a 2� 2 matrix then

det(grad# [m], grad# [n]) D ��2
# [n1] � � � # [n4].

Since the signs are essential for us, we collect them in a table. This table can be found
in [4]. (One sign in [4] had to be corrected.) We use the abbreviation

D(i , j ) D ��2 det(grad# [n(i )], grad# [n( j )]), 1 � i < j � 6,

D(1, 2)D #7#8#9#10,

D(1, 5)D �#3#4#6#10,

D(2, 4)D #2#3#6#8,

D(3, 4)D �#5#6#9#10,

D(4, 5)D �#2#4#7#9,

D(1, 3)D #2#3#5#7,

D(1, 6)D #1#2#6#9,

D(2, 5)D �#1#2#5#10,

D(3, 5)D �#1#3#8#9,

D(4, 6)D #1#3#7#10,

D(1, 4)D #1#4#5#8,

D(2, 3)D #1#4#6#7,

D(2, 6)D #3#4#5#9,

D(3, 6)D #2#4#8#10,

D(5, 6)D #5#6#7#8.

We describe 20 relations between the 6 generators gradi of the moduleM. We use
the notation

gradi D grad# [n(i )], 1 � i � 6.

Lemma 5.2. For 1� i < j < k � 6 the relation

D(i , j ) gradk D D(i , k) gradj �D( j , k) gradi

holds. Each of them is divisible by one of the#i . Hence we obtain20 relations where
a typical one is

#1#4#6 grad1 �#2#3#5 grad2 �#8#9#10 grad3 D 0.

Proof. The proof is trivial. Just notice that the occurringD-s are just the 2� 2
sub-determinants of the 2� 3-matrix (gradi , gradj , gradk). Now Lemma 5.2 is just a

consequence of the known fact that the cross producta � b of two vectors inC3 is
orthogonal to botha, b.
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We fix two odd characteristicsm, n. Every homogeneous element ofMC can be
written in the form

T D gm grad# [m] C gn grad# [n]

with two meromorphic modular forms fromA(0[4, 8]). From Lemma 5.1 we can de-
duce thatgi# [n1] � � � # [n4] are holomorphic. HenceM is contained in

M(m, n) WD
1

# [n1] � � � # [n4]
(A(0[4, 8]) grad# [m] C A(0[4, 8]) grad# [n]).

We can varym, n and obtain

M �

\

m,n

M(m, n).

The elements in the right hand side have no poles outside the zeros of the forms
# [n1] � � � # [n4]. These 15 forms have no joint zero inH2, in fact they are, relatively
to the genus 2 case, the Plucker’s coordinates of the map studied in [8], cf. [4] also.
Hence the elements of the intersection are holomorphic. So we obtain the follow-
ing proposition.

Proposition 5.3. We have

M D

\

m,n

M(m, n).

We consider the submoduleN of M that is generated by all gradi over A(0[4, 8]).
Proposition 5.3 shows thatM is a submodule of (1=�5)N . It is described as finite
intersection of certain submodules which are defined by means of finitely many gener-
ators. As soon as we understand the structure of (1=�5)N , or equivalently, ofN , we
have a chance to determine this intersection. In the next section we shall describe all
relations between the six gradi .

6. Relations

In Lemma 5.2 we described some of the relations between the gradi . It will turn
out they do not generate all relations. To describe all relations we introduce the free
module of rank 6 overA(0[4, 8]). We denote the generators byT1, : : : , T6. We have
to describe the kernel of the natural homomorphism

F ! N , Ti 7! gradi .
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We denote byK the submodule ofF that is generated by the 20 elements which arise
in Lemma 5.2. A typical example is

#1#4#6T1 � #2#3#5T2 � #8#9#10T3.

Lemma 6.1. Let T be an element of the kernel ofF ! N . Then�5T is con-
tained inK, and the kernel ofF ! N equals the kernel of

F
��5
�! F ! F=K.

Proof. Let P1grad1C� � �CP6grad6D 0 be a (homogeneous) relation. After multi-
plication by�5 we can use the relations in Lemma 5.2 to eliminate in this relation all
gradi , i > 2. Then we obtain a relation between grad1, grad2. But these two forms are
independent due to Lemma 5.1. Hence the above relation, after multiplication by �5,
is a consequence of the relations in Lemma 5.2.

In principle, Lemma 6.1 is a complete description of the module N . We can use
it to work out a finite generating system of relations. For this, we describe some extra
relations between the gradi .

Lemma 6.2. For each ordered pair of two different odd characteristics there is
a relation which is determined by this pair up to the sign. Therelation that belongs
to pair (5, 6) in our numbering is

#

2
6 D(1, 5) grad1 �#

2
5 D(2, 5) grad2 �#

2
8 D(3, 5) grad3C#

2
7 D(4, 5) grad4 D 0.

The full modular group acts transitively on these30 relations (counted up to the sign).
In general the relation for a pair(�, �) is the sum of four�#2

k D(i , �) gradi , i ¤ �,
�, where#k is the only theta that divides D(i , �) and D(�, �).

Proof. Along the lines of the proof of Lemma 6.1, one multiplies the claimed
relation by�5 and eliminates gradi , i > 2. Then one obtains an expressionP1 grad1C

P2 grad2 with explicitly given polynomials in the#i . One has to showP1 D P2 D 0.
We omit the straightforward calculation and mention only that for this one has to use
the Riemann relations.

There is a second kind of extra relations between the gradi . To explain them, we
need some facts about theta characteristics. In [7] it has been proved that each odd
characteristicn can written in 12 different ways (up to ordering) as a sum of five pair-
wise different even characteristics

n D m1C � � � Cm5.
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The full modular group acts transitively on the set of all{n, m1, : : : , m5}. For each of
them we define the modular form

S WD S(n, m1, : : : , m5) D # [m1] � � � # [m5] grad# [n].

Hence we obtain 72 modular forms.
As we mentioned, the forms# [m] and grad# [n] are modular forms with respect

to the group02[2, 4]. As a consequence, we get

S2 [02[2, 4], 3,�S, St]

with a certain quadratic character�S on 02[2, 4]. The information about these charac-
ters which we need can be taken from the paper [13].

Lemma 6.3. The72 forms S are modular forms with respect to the group02[2, 4]
and a certain quadratic character�S. In this way there arise12 different characters and
to the each associated space of modular forms belong six of the forms S. Each of the
72 forms S is uniquely determined by its odd characteristic n and the character�S.

We denote the formS which belongs ton and � by S(n, �).

Lemma 6.4. We fix one of the12 characters� . Let Si D S(i , �) for i D 1, : : : 6
be the six functions S(n, �). If one cancels one of the six, say S6, one gets a relation
between the other five of the following type.

5
X

iD1

�# [mi ]
2Si D 0.

Here mi are certain even characteristics which are uniquely determined and also the
signs (up to a common sign change) are uniquely determined.

The rule how themi can be found is a little complicated. We explain howm1 can
be found.
1) There are three even characteristicsq1, q2, q3 that occur inS1 but not in S6 (the
form which has been cancelled).
2) There is one pair in{q1, q2, q3}, say{q2, q3}, such that# [q2]# [q3] does not occur
in any of the fourS2, : : : , S5.
Then one has to usem1 WD q1 in Lemma 6.4.

We explain this in an example. The six forms

S1 D #3#5#6#8#9 grad1,

S4 D #4#6#7#9#10 grad6,

S2 D #1#2#4#8#9 grad2,

S5 D #1#3#4#5#10 grad3,

S3 D #2#5#7#8#10 grad4,

S6 D #1#2#3#6#7 grad5
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belong to the same character. The characteristic that occurin S1 but not in S6 are m5,
m8, m9. The pairm5, m9 does not occur inS2, : : : , S5. Hence the theta square which
has to be added is# [m8]2. The whole relation will be

# [m8]2S1 � # [m9]2S2C # [m5]2S3 � # [m4]2S4C # [m10]
2S5.

The determination of the signs needs some extra work.
We do not give details of the proof of Lemma 6.4. We only mention that it is

similar to the proof of Lemma 6.2.
The relations that we described so far are defining relations.

Proposition 6.5. The module of relations between the six formsgradi , i.e. the
kernel of the natural homomorphismF ! N , is generated by the20 relations de-
scribed in Lemma 5.2,the 30 relations described inLemma 6.2and the72 relations
described inLemma 6.4.

Proof. Using Lemma 6.1, the proof can be given with the help ofa computer.

7. A structure theorem

Now we have the possibility to determine the structure ofM. From Proposition 5.3
we get

�5M D

\

m,n

�5

# [n1] � � � # [n4]
(A(0[4, 8]) grad# [m] C A(0[4, 8]) grad# [n]).

The right-hand side is a submodule ofN which we understand completely (Propos-
ition 6.5). Hence it is possible to compute the intersectionwith the help of a computer.
We did this by means of the computer algebra systemSINGULAR. In this way we could
determine a finite system of generators ofM and we also could get the Hilbert function.
We mention thatM is bigger thanN . We have to describe now the extra generators.

Proposition 7.1. The modular form

(#4#
4
6#8C #4#8#

4
9 ) grad1 �#1#6#9#

3
10 grad3

#2#5

is holomorphic, hence contained in[0[4, 8], 5=2, St]. It is not contained in the sub-
moduleN . The orbit under the full modular form consists, up to constant factors, of
360 modular forms that span a space of dimension90.

We omit the relations among the above forms since they are long and do not seem to
have a nice combinatorial description.
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By means ofSINGULAR one can verify that theA(0[4, 8])-module generated by
the six gradi and the02-orbit of the form described in Proposition 7.1 equals the mod-
ule M. SINGULAR also gives the Hilbert function.

Theorem 7.2. The A(0[4, 8])-module

M D

M

[0[4, 8], r =2, vr
#

, St]

is generated by the sixgradi and the02-orbit of the form described inProposition 7.1.
The Hilbert function is

1

X

rD0

[0[4, 8], r =2, vr
#

, St]t r

D

60t9
� 60t8

� 318t7
C 252t6

C 606t5
C 316t4

C 126t3
C 36t2

C 6t

(1� t)4

D 6t C 60t2
C 330t3

C 1300t4
C 4060t5

C 9952t6
C 20000t7

C 35168t8
C � � � .
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