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Abstract
This work characterizes global quotient stacks—smooth stacks associated to a

finite group acting on a manifold—among smooth quotient stacks [M=G], where
M is a smooth manifold equipped with a smooth proper action by aLie group G.
The characterization is described in terms of the action of the connected component
G0 on M and is related to (stacky) fundamental group and covering theory. This
characterization is then applied to smooth toric Deligne–Mumford stacks, and global
quotients among toric DM stacks are then characterized in terms of their associated
combinatorial data of stacky fans.

1. Introduction

This note has two parts: first, we consider topological properties of smooth orbifolds
that describe obstructions to being aglobal (resp. discrete) quotient1—i.e. equivalent (in
a sense made more precise below) to an orbifold associated toa finite (resp. discrete)
group action on a smooth manifold, and second, we apply our general results on global
quotients to toric Deligne–Mumford stacks. Recall that an orbifold structure, considered
from the classical viewpoint (originating in the work of Satake [25]), can be described
via local charts, each of which are quotientsU=0 of a linear action of a finite group
0 on an open subsetU of Euclidean space. The point is that for a general orbifold,
these local charts do not necessarily ‘patch together’ intoa global finite group action on
a smooth manifold, but for a global quotient, they do.

It is worth emphasizing the following few points at the outset. Firstly, in this
paper, by a ‘smooth (resp. topological) orbifold’ we mean asmooth(resp. topological)
stack, or more precisely, astack in the categoryDiff (resp. Top). (In our exposition
we have attempted to make the language of stacks accessible to a non-expert audi-
ence (more on this below), although in no way do we aim to be a textbook. We
suggest [4, 17, 19] for more about stacks from a topologist’spoint of view; a com-
plete beginner may wish to start with [6] or [7].) In particular, the notion of ‘equiva-
lence’ in the previous paragraph is a (weak) equivalence of the underlying categories
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of the stacks. It is important to note that such an equivalence is more restrictive than
a homeomorphism of underlying topological spaces; this is because such a homeo-
morphism does not retain any ‘stacky’ information relatingto the orbifold singularities.
A basic class of examples illustrating this distinction arethe so-calledweighted pro-
jective stacks, i.e. P (a0, : : : , an) D [(CnC1

n {0})=C�], where C� acts diagonally on
C

nC1
n {0} with weightsa0, : : : , an 2 ZC. (Here we follow the convention in the liter-

ature and denote by [X=G] the stackassociated to aG-action on a spaceX; the topo-
logical quotient (orbit)space is denotedX=G.) Although the underlying orbit space
(CnC1

n{0})=C� is homeomorphic to the orbit space of a finite group action on complex
projective spaceCPn (see [15] for details), the stackP (a0, : : : , an) is not equivalentas
a stackto a global quotient (except in the trivial case when all of the weights are equal
to 1 andP (1, : : : , 1)D CPn is a smooth manifold). This follows from Theorem 4.10
below, but is also well-known—see e.g. [1].

Secondly, we emphasize that we restrict ourselves throughout this paper to orbifolds
arising as quotient stacks [X=G], whereG is a Lie group acting smoothly and properly
on a smooth manifoldX. It is worth noting that allreduced, or effectiveorbifolds—
orbifolds whose local isotropy groups act effectively—areknown to be of this type by
a frame-bundle construction (see, for example, [1]), so this is not a very restrictive con-
dition in practice. Moreover, as we already mentioned, the main application we have
in mind of our Theorem 4.10 is to the beautiful class of quotient stacks known as toric
Deligne–Mumford stacks, which are stack analogues of smoothtoric varieties.

Thirdly, we recall that in his foundational work [21], Noohideals with topological
stacks and the theory of (stacky) fundamental groups and coverings in a very general
framework. We owe much to [21] for both the mathematical content and the exposition
in Sections 2, 3, and 4. Indeed, our Theorem 4.10, quoted below, can be viewed as an
extension of [21, Theorem 18.24] in the special case of quotient stacks. By restricting
to quotient stacks, we are able to connect aspects of stacky algebraic topology with
a distinctly geometric (and classical) condition on a Lie group acting on a manifold;
in particular, our proofs are our own. In our exposition we have attempted to explic-
itly preserve the classical perspective and language as much as possible; we hope this
serves to illustrate to a broad audience the appeal of the stack perspective, and to fur-
ther elucidate the insights of [21] in a setting that is common in differential geometry,
namely Lie groups acting on manifolds.

With these points in mind we now state our main general resulton stacks arising
as global quotients (Theorem 4.10 in Section 4). We refer to Section 2.2 for the def-
inition of the inertia homomorphism in (3), and Section 4 fora discussion of (stacky)
covering projections appearing in (4). For now, the reader may keep in mind that the
inertia groups Ix mentioned below can be identified with isotropy groups Stab(p) � G
of certain pointsp 2 X.

Theorem 4.10. Let X be a simply connected manifold, equipped with a smooth
proper action of a Lie group G. Let G0 � G denote the connected component of the
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identity element of G, and Ix the inertia group of x2 [X=G]. The following statements
are equivalent.
(1) [X=G] is equivalent to a discrete quotient.
(2) G0 acts freely on X.
(3) For all x in X, the inertia homomorphism!x W Ix ! �1([X=G], x) is injective.
(4) The (stacky) universal cover of[X=G] is equivalent to a smooth manifold.

Though conditions (1), (3), and (4) are known to be equivalent by [21, The-
orem 18.24], we provide a different proof of these equivalencies for the case of quo-
tient stacks by showing each of these conditions is in turn equivalent to (2). The
distinctly geometric appeal of condition (2), in comparison to the topological nature
of conditions (3) and (4), also carries over in our interpretation of this result in the
setting of smooth toric DM stacks.

We now take a moment to briefly recall the context of our discussion of toric
Deligne–Mumford(DM) stacksin Section 5. In their foundational paper [5], Borisov,
Chen, and Smith introduce the notion of astacky fan, the combinatorial data from
which one constructs a toric Deligne–Mumford (DM) stack usingan analogue of the
Cox quotient construction in algebraic geometry. In [9], anabstract definition of a
smooth toric DM stack was given, which was shown to be compatible with the con-
struction of Borisov, Chen, and Smith [5] (see also [14], [22], [10, 11] for related ap-
proaches). From the symplectic geometry perspective, Lerman and Malkin [18] gave a
definition of symplectic toric DM stacks (in the smooth category Diff), offering a mod-
ern perspective on symplectic toric orbifolds. In fact, parallel to the classical theory
of toric varieties, there is a subfamily of toric DM stacks—namely those toric DM
stacks whose underlying fan is polytopal—that admit a construction from symplec-
tic geometry viastacky polytopes, using an adaptation of the construction of Borisov,
Chen, and Smith (see [24]). In particular, from this construction, this subfamily can
be seen to give examples of symplectic toric DM stacks. (In earlier work, Lerman
and Tolman extended the Delzant classification of (compact)symplectic toric mani-
folds to symplectic toric orbifolds; in the orbifold case, the classification is by ‘la-
belled polytopes’—i.e. polytopes with positive integer labels attached to each facet
[16].) In this manuscript, we interpret our analysis of orbifolds as global quotients
in this class of examples; our results are explicit and combinatorial, stated in terms of
the stacky fan/polytope.

In order to state our main results for smooth toric DM stacks,recall that a stacky
fan is a triple (N, 6, �) consisting of a finitely generatedZ-module N, a simplicial
fan 6 in N 
R with n rays �1, : : : , �n, and a homomorphism� W Zn

! N satisfying
certain conditions (see Definition 5.1). By interpreting Theorem 4.10 in this case, we
can characterize global quotients among toric DM stacks in terms of their underlying
stacky fans. LetN 0 denote the image of�, and for a cone� in 6, let N

�

denote
span{�(ei ) j �i is a ray in� }, where ei denotes thei -th standard basis vector inZn.
In this context, condition (2) of Theorem 4.10 results in thefollowing corollary, which
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characterizes the stacky fans yielding global quotients. We note that the equivalence of
condition (2) of Theorem 4.10 and the combinatorial condition stated in Corollary 5.7,
in the context of toric DM stacks, was first proved via a different method—a combina-
torial analysis of the local isotropy groups—in joint work of the authors with Goldin
and Johanssen; this approach is described in [12]. We also note that in [23], the authors
study quasi-toric orbifolds using techniques from toric topology, and obtain similar re-
sults describing universal covers of quasi-toric orbifolds in that framework.

Corollary 5.7. Let (N,6, �) be a stacky fan, and letX denote the correspond-
ing toric DM stack. ThenX is equivalent to a( finite) global quotient if and only if
N 0

D N
�

for all maximal cones� in 6.

In addition to Corollary 5.7, we interpret the other obstructions appearing in con-
ditions (3) and (4) of Theorem 4.10 for toric DM stacks in terms of stacky fans. Spe-
cifically, using results in [12], we see that the inertia homomorphisms of condition (3)
can be identified with very natural homomorphisms defined in terms of the stacky fan
(Proposition 5.3). Additionally, we describe the universal cover of a toric DM stack in
terms of its stacky fan in Proposition 5.5. It is interestingto note that the universal
cover of a toric DM stack is given in terms of its stacky fan data, and is hence also
a toric DM stack arising from a stacky fan. In particular, global quotients among toric
DM stacks are quotients of toricmanifoldsby finite group actions. We expect such a
nice description to be useful in computations of orbifold/stacky invariants, particularly
for global quotients (cf. [2], [8], for example).

The contents of this paper are as follows. After a brief discussion of stacks and
fundamental groups of stacks in Section 2, we specialize to quotient stacks in Sec-
tion 3, where we describe in detail the fundamental group, and inertia homomorphism
of quotient stacks. In Section 4, we describe the universal cover of a quotient stack and
prove Theorem 4.10 stated above; analogous results for connected but non-simply con-
nectedX are also explored in this section. In Section 5, we turn our attention to toric
DM stacks, where we describe the inertia homomorphism (Section 5.3) and universal
cover (Section 5.4) of toric DM stacks. We also verify an expected relation between
the symplectic volumes (in the stacky polytope case) of a symplectic toric DM stack
and its universal cover, and the corresponding volumes of the underlying polytopes. We
conclude with some examples in Section 5.5.

2. Preliminaries

This section establishes notation and collects some facts about stacks. We mainly
follow the notation of [21] and [4].

2.1. Stacks. We will mainly work over the base categoryDiff (smooth manifolds
and smooth maps), although occasionally we shall work overTop (topological spaces
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and continuous maps). To streamline some of the discussion below, we useSp to de-
note eitherDiff or Top, and we refer to the corresponding objects simply as spaces and
the morphisms as maps.

For a spaceM, let M denote its associated stack, with objects{ f W E ! M},
i.e. the collection of maps inSp with target M, and with morphisms{g W E ! E0

j

f 0 Æ g D f }. Given a mapF W M ! M 0, we write F W M ! M 0 for the induced mor-
phism of stacks. Fix a terminal object? in Sp. For a choice of pointp in a spaceM,
let p be the corresponding point inM (i.e. by abuse of notation,p also denotes the
map ? 7! p 2 M and p the induced morphism of stacks). More generally, recall that
a point x in a stackX is a morphismx W ?! X .

A morphism F W Y ! X of stacks isrepresentableif for every morphismW! X

whose source is (the stack associated to) a space, the fiber productY �X W is equiva-
lent to (the stack associated to) a space. In this case, we shall call the induced map
Y �X W! W a representative ofF . Notice that the representative of a representable
map is (induced by) a map of spaces.

DEFINITION 2.1 ([19, Definition 66]). A stackX overSp is locally representable
if there exists a representable epimorphism of stackspW X! X . In this case,p is called
a presentationof X .

REMARK 2.2. WhenSp D Top, a locally representable stack overTop is called
a pretopological stack[21].

Many properties of representable morphisms of stacks are defined by the corres-
ponding properties of their representatives, which are maps of spaces. For example we
have the following (cf. [21]).

DEFINITION 2.3. A morphismY! X of pretopological stacks inTop is a cover-
ing projection if it is representable and if every representative is a covering projection.

Several other properties of maps inSp can be defined similarly as properties of rep-
resentable maps of stacks (e.g. proper, closed, submersion, etc. see [19, Section 3.3]).
For now, we simply recall that an important necessary condition for a property of maps
to be defined in this manner (i.e. analogous to Definition 2.3)is that this property be
stable under taking pullbacks. (IfSp D Diff, it is additionally required that the property
be stable under pullbacks via submersions.) We record the following definition from
[19], which connects our point of view with that of orbifoldsand orbifold charts.

DEFINITION 2.4. A locally representable stackX over Diff is called anorbifold
or a Deligne–Mumford stackif it admits a presentationpW X ! X that is étale and if
the diagonal map1 W X ! X � X is proper.
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In the literature, the term orbifold is at times reserved forsmooth Deligne–Mumford
stacks with trivial global (generic) stabilizer (inertia group), what is elsewhere called an
effectiveor reducedorbifold. The above definition allows for non-trivial global stabilizer.

An important instance of the above definition is the following. Let X be a mani-
fold equipped with a smooth action by a compact Lie groupG. If the action is locally
free (i.e. with finite isotropy groups), then the associatedquotient stack [X=G] (see
Section 3) is an orbifold. This will be our main source of examples.

We shall at times wish to view ageometricstack overDiff—a locally representable
stack whose presentation is a surjective submersion—as a stack overTop. To say this
more precisely, recall that given a geometric stack with presentationX0 ! X , there
is a Lie groupoidG D (X1 � X0) whose associated stackBG (see [17, Section 4])
is equivalent toX . (In this case, we say thatG is a groupoid presentationfor X .)
Considering the Lie groupoidG as a groupoid object inTop, we view BG, and hence
X , as a stack overTop.

2.2. Fundamental group of topological stacks. Following the work of Noohi
[21], we now recall some of the main definitions surrounding the fundamental group
of a topological stack that we later interpret more explicitly for quotient stacksX D
[X=G] as above.

In this subsection, we work overTop. Let X andY be stacks andx, y points in
X ,Y respectively. Recall that a pointed map (f, �)W (Y, y)! (X , x) of stacks consists
of a morphism f W Y ! X and a 2-isomorphism� W x Ý f (y) D f Æ y, where as in
[21] we sometimes use the symbolÝ for a 2-isomorphism of points. (When we do
not wish to emphasize that a 2-isomorphism is between two points, we shall instead
use the symbol).)

More generally, one may consider the more general situation of a pair of stacks
(X , A), consisting of stacksX andA together with a given morphismi W A! X . A
morphism (Y,B)! (X ,A) between such pairs consists of a pair of morphismsf W Y !
X , f 0 W B ! A together with a 2-isomorphism� W i Æ f 0 ) f Æ j . Such a morphism
( f, f 0) is often represented by a 2-cell,

B A

Y X

 

!

f 0

 

!j  

! i
(

)

�

 

!

f

In this paper, we shall work only with pairs (X , A) where the second factorA is a
topological space (often simply a point). In this case, the notion of 2-isomorphism
simplifies, as we recall next.

For maps (f, f 0), (g, g0) W (Y, B) ! (X , A) of pairs, a 2-isomorphism consists of
a pair of 2-isomorphisms� W f ) g and �0 W f 0 ) g0, such that the following 2-cell
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(with 2-isomorphisms� W i Æ f 0) f Æ j and � W i Æ g0) g Æ j suppressed) commutes.

B A

Y X

 

!

j

 

!

f 0

 

!

g0

(

)

�

0

 

!

i

 

!

f

 

!

g

(

)

�

If both B andA are topological spaces, this forcesf 0 D g0 and �0 D id. Moreover, if
B D A D ?, then f 0 D g0 D id; therefore, for pointed maps, (f, �), (g, �) W (Y, y) !
(X , x), a (pointed) 2-isomorphism� W ( f, �) ) (g, �) is a 2-isomorphism� W f ) g
such the following 2-cell (again, with� and � suppressed) commutes:

?

Y X

 

!

y  

!

x

 

!

f

 

!

g

(

)

�

In other words, the induced 2-isomorphism�(y) W f (y) Ý g(y) satisfies�(y)� D �.
(Here�(y)D �� idy, the ‘horizontal’ composition of 2-morphisms, while�(y)� denotes
the ‘vertical’ composition of 2-morphisms as in [17].)

Let M be a topological space with a chosen pointp and (M , p) its associated
pointed stack. We begin with a remark regarding morphisms (resp. pointed morphisms)
from M (resp. (M, p)) to a stackX (resp. (X , x)).

REMARK 2.5. Let M be an object inTop. A morphism f W M ! X determines
an objectE f in X (over M) given by evaluation at the identityE f WD f (idM W M !
M). In fact, evaluation at the identity defines a functor evM from HOM(M , X ) to XM

which is surjective on objects and fully faithful (Proposition 2.20 in [4]). That is, given
an objectE in X over M there is a morphismgW M! X such thatEg D E. Moreover,
given an isomorphism'W Eg! E f in XM , there exists a unique 2-isomorphism, which
we will also denote' W g ) f , whose evaluation at the identity is'. Thus, up to
canonical 2-isomorphism a mapM ! X is determined by the data of an objectE in
X over M.

A similar reasoning applies to pointed maps. Fix pointsp in M and x in X . Let
Ex D x(id

?

W ?! ?) in X
?

. A pointed map (f, �) W (M , p)! (X , x) determines objects
E f and E f (p) (over M and ?, respectively), a morphismE f (p)! E f (over pW ?! M)
and an isomorphism�W Ex ! E f (p). Conversely, as in the proof of Proposition 2.20 in
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[4], given objectsE in XM and E0 in X
?

and a morphismE0 ! E over p W ?! M,
there is a morphismf W M ! X such that E f D E, E f (p) D E0 and the induced
morphism E f (p) ! E f is the given one. Since ev

?

is fully faithful, a choice of iso-
morphism� W Ex ! E0 then determines a unique 2-isomorphism, which we will also
denote� W xÝ f (p), and hence a pointed map (f, �) whose evaluation at the identity
yields the dataE0! E with the isomorphism�.

Moreover, given pointed maps (f, �) and (g, �) and isomorphisms' W Eg ! E f

and W Eg(p) ! E f (p) such that the diagram

Eg(p) Eg

Ex

E f (p) E f

 

!

 

!

 

 

!

'

 

!

�

 

!

�

 

!

commutes, there is a unique 2-isomorphism� W (g, �) ) ( f, �) with evM (�) D ' and
ev
?

(�(p))D  . As in the unpointed case above, we conclude that a pointed map (M , p)!
(X , x) is determined up to unique 2-isomorphism by objectsE in XM and E0 in X

?

, a
morphismE0! E over p W ?! M , and a choice of 2-isomorphism� W E0! Ex.

Let I denote the unit interval [0, 1]. Recall that ahomotopyof pointed maps
( f,�), (g,�)W (M , p)! (X , x) is triple (H, �0, �1), whereH is a map (I � M , I � ?)!
(X ,x), which in this case is a morphismHW I � M � I �M! X with a 2-isomorphism
for the diagram,

I � ? � I ?

I � M X

 

!

 

!i 1  

! x
(

)

 

!

H

together with a pair of pointed 2-isomorphisms�0 W f ) H0 and �1 W H1 ) g. Here
i1 D (id, p)W I ! I �M is the inclusion into the first factor, andH0 and H1 denote the
pointed maps induced by restriction to{0} � M and {1} � M respectively. When such
a homotopy exists, we shall sometimes say that (f, �) is homotopic to (g, �) or that
(H, �0, �1) is a homotopy from (f, �) to (g, �). This induces an equivalence relation
on the set of pointed maps (M, p) ! (X , x) and we denote by [(M , p), (X , x)] the
resulting set of equivalence classes (i.e. the set of homotopy classes of pointed maps).

That the relation above is reflexive and symmetric is easily verified. To show it is
also transitive, we must be able to ‘compose’ homotopies—that is, given a homotopy
(H,�0,�1) from ( f,�) to (g,�) and a homotopy (H 0,�00,�01) from (g,�) to (h,
 ), construct
a homotopy (H 00,�000 ,�001) from ( f,�) to (h,
 ). This is proved in Lemma 17.4 in [21] in
greater generality. (In the case of pointed maps whose domain is the associated stack
of a spaceM, we may observe the composition of homotopies more readily in light of
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Remark 2.5. Indeed, the objectsEH and EH 0 in XI�M can be glued together to form
the required objectEH 00 that yields the desired composition of homotopies.)

As in [21, Remark 17.3]), observe that a 2-isomorphism� W ( f, �) ) (g, �) of

pointed maps induces a homotopy. Indeed, letH be the compositionI � M
pr2
�! M

f
�!

X , with 2-isomorphism as indicated by the diagram

I ?

I � M M X

 

!

 

!i 1
 

!

p  

!

x
(

)

id
 

!pr2

 

!

f

(

)

�

(i.e. the 2-isomorphism (idf � id)(� � id
?

)), �0 D id and �1 D �. This observation proves
the following lemma.

Lemma 2.6. Let p be a point in a space M and let(X , x) be a pointed stack. Let
( f, �) and (g, �) be pointed maps(M , p)! (X , x). If there exists a2-isomorphism of
pointed maps( f, �)) (g, �), then the homotopy classes of( f, �) and (g, �) are equal.

REMARK 2.7. It follows from Remark 2.5 that the homotopy class of a pointed
map (M , p) ! (X , x) is determined by specifying objectsE in XM and E0 in X

?

,
along with a morphismE0! E over p W ?! M and an isomorphism� W Ex ! E0.

Let 12 S1, the unit circle inC.

DEFINITION 2.8. Let x be a point in the stackX . Define thefundamental group
of X to be the set of homotopy classes of pointed maps (S1, 1) ! (X , x), denoted
�1(X , x) WD [(S1, 1), (X , x)].

The reader may wish to consult [21] for details concerning the group structure of
�1(X , x).

In Section 4, we shall consider covering projections of (connected) quotient stacks.
Making use of [21, Corollary 18.20], we say that a covering projection Y ! X is the
universal covering projectionif �1(Y, y) is trivial.

An interesting feature of the fundamental group of a stack isthe following natural
homomorphism!x W Ix ! �1(X , x), where Ix WD {� W x Ý x} is the inertia group of
X at x. The homomorphism!x is defined as follows (cf. [21, Remark 17.3]). Given

� 2 Ix, let H
�

W I ! X be defined by the compositionI ! ?

x
�! X and consider the

pair of 2-isomorphisms�0 D id and �1 D � in the following diagrams.

?

I X

 

!

�0
 

!

x

 

!

H
�

(

)

�0

?

I X

 

!

�1
 

!

x

 

!

H
�

(

)

�1
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This data glues together to give a pointed map (S1, 1)! (X , x) whose homotopy class
is denoted!x(�).

3. The fundamental group of X D [X=G]

We now specialize to our case of interest, stacksX D [X=G], where X is a smooth
manifold equipped with a (right) action of a Lie groupG. In this case, recall that the
objects ofX are pairs of maps (B  E ! X) consisting of a (right) principalG-
bundle E ! B and a G-equivariant mapE ! X and that the morphisms ofX are
pairs (E! E0, B! B0), with E! E0 a G-equivariant map, such that in the diagram,

X

E E0

B B0

 

!

 

!

 

!

 

!

 

!

 

!

the square is Cartesian and the triangle commutes. Fix a point x in X , and write (? 
Ex ! X) to denote the objectx(id

?

) in X
?

. By choosing a base pointe0 2 Ex we shall
further identify Ex � G, in which case theG-equivariant mapx W Ex ! X is realized
by the mapxpW G! X, g 7! p�g where p WD x(e0). Thusxp parameterizes theG-orbit
through p.

An element� 2 Ix induces a gauge transformation� W Ex ! Ex such that the dia-
gram below commutes.

X

Ex Ex
 

!

�

 

!x

 

!

x

Moreover, any such gauge transformation determines an element in Ix. Under the iden-
tification Ex � G determined bye0$ 1, any� 2 Ix is determined byg

�

D �(1), which
must lie in Stab(p) since the above diagram commutes. That is,� W G ! G is sim-
ply left multiplication by g

�

. In what follows, we will implicitly use the isomorphism
� 7! g

�

to identify Ix � Stab(p).
In this setting, the homomorphisms!x discussed at the end of Section 2.2 may

be described explicitly. The data determined byH
�

W I ! X yields the trivial bundle
I � G ! I with G equivariant mapI � G ! X given by (t, g) 7! p � g. The 2-
isomorphisms�0 D id and �1 D � yield the identifications of fibers

{0} � G! G, (0, g) 7! g,

G! {1} � G, g 7! (1, g
�

g).
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This assembles to give a bundle overS1 and an equivariant map representing!x(�)
(cf. Remark 2.7). Namely, we take

(3.1)
E(g

�

) WD (I � G)=�,
where the equivalence relation� is (0, g) � (1, g

�

g) for g 2 G,

and the equivariant map is given byE(g
�

)! X, [(t, g)] 7! p � g.
Let BG WD [?=G] and let�W ?! BG be the choice of point whose value atS! ?

is the trivial bundleS� G! S.

Lemma 3.1 (Cf. [20, Example 4.2]). Let G be a Lie group and let G0 denote
the component of the identity element in G. Then�1(BG, �) � G=G0.

Proof. We define a map� W G=G0! �1(BG,�) and show that� is an isomorphism.
For g 2 G let E(g)! S1 be theG-bundleE(g)D (I �G)=(0,h) � (1,gh). Let � (gG0)D
[( f,�)] where (f,�) is a morphism determined by the bundlesE(g)! S1 andE(g)j{1}!

?, the inclusion of the fiberE(g)j{1} ! E(g) over 1W ?! S1, and the 2-isomorphism�
determined by the identificationG! E(g)j{1}, h 7! [(0,h)]. Here the brackets [ ] denotes
equivalence classes with respect to the relation in (3.1). (Recall that by Remark 2.7, any
other pointed map determined by this data differs from (f,�) by a unique 2-isomorphism
of pointed maps, which by Lemma 2.6 lies in the same homotopy class.) To see that�
is well-defined, observe that if
 W I ! G is any path fromg to g0, we may construct a
bundle isomorphism'




W E(g)! E(g0) by the formula [(t, h)] 7! [(t, 
 (t)g�1h)] that fits
in the diagram

(3.2)

E(g)j{1} E(g)

G

E(g0)j{1} E(g0)

 

!

 

!

'j{1}
 

!

'

 

!

�

 

!

�

0

 

!

where � and �0 are the resulting isomorphisms over?. Let us call such a bundle
isomorphism (i.e. one which respects the given trivializations over ?) a pointed iso-
morphism. By Lemma 2.6, we see that the map� is well-defined.

Since everyG-bundle overS1 is isomorphic toE(g) for someg, it is easy to see
that � is surjective. It remains to show that� is injective. To that end, suppose that
[( f, �)] D � (gG0) D � (g0G0) D [( f 0�0)]. Let (H, �0, �1) be a homotopy from (f, �)
to ( f 0, �0). We claim that this results in a pointed isomorphism of bundles as in the
diagram (3.2) above, which will complete the proof. Indeed,write the resulting bundle
isomorphismE(g)! E(g0) as [(t,h)] 7! [(t,�(t)h)], where�W I ! G is continuous and
satisfiesg0�(0)D �(1)g. That the isomorphism is pointed (i.e. must fit in the diagram
(3.2)) forces�(0) D 1 and we may construct a path
 (t) D �(t)g joining g and g0,
whencegG0 D g0G0.
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We shall now verify the claim that the homotopy produces the required pointed iso-
morphism of bundlesE(g)! E(g0). Let E! I � S1 be the bundle given byH (id W I �
S1
! I � S1) and let E j ! S1 ( j D 0, 1) denote the bundles given byH (" j W S1

D

{ j } � S1
,! I � S1). Note that the 2-isomorphisms of pointed maps� j yield pointed

isomorphisms of bundlesE(g) ! E0 and E1 ! E(g0). Therefore, it suffices to find a
pointed isomorphismE0! E1.

Let � denote the 2-isomorphism for the diagram

I ?

I � S1 BG

 

!

 

!i 1  

!

(

)

�

 

!

H

that in turn induces a trivialization� W I �G! EI , where EI denotes the bundle over
I corresponding toH (i1 W I ! I � S1). We therefore seek a pointed isomorphism

E0j{1} E0

G

E1j{1} E1

 

!

 

!

'j{1}

 

!

'

 

!

�0

 

!

�1
 

!

where the identifications� j of the fibers over 12 S1 are induced from the trivialization
�. By Theorem 9.8 in [13, Chapter 4], there is a bundle isomorphism  W E! I � E0

where E0 is a G-bundle overS1, inducing an isomorphism 0

W EI ! I � E0

j{1}. Notice
that the composition 0

Æ�W I �G! I � E0

j{1} defines an identification�0W G! E0

j{1}.
Consider the composition of bundle maps given by

� W E0! E
 

�! I � E0

! {1} � E0

! I � E0

 

�1

��! E

and observe that it fits in the commutative square below.

E0 E

S1 I � S1

 

!

�

 

!

 

!

 

!

$1

By the universal property of Cartesian squares, this induces a unique isomorphism
' W E0! E1, which is the desired pointed isomorphism.

REMARK 3.2. It is well-known that for a compact Lie groupG, (unpointed) iso-
morphism classes of principalG-bundles over the circle are in bijective correspondence
with the set of conjugacy classes ofG=G0.
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Lemma 3.3. Let X be a topological space and p a point in X. Then

�1(X, p) � �1(X, p)

where the right hand side is the classical fundamental groupof a topological space
with chosen basepoint.

Proof. A pointed map of stacks (S1, 1) ! (X, p) is determined uniquely by a

pointed map (S1, 1)! (X, p) of topological spaces. Since there are no non-trivial
2-morphisms in stacks of the formM , classical homotopies are in one-to-one corres-
pondence with stack homotopies, and the claim follows.

There is a natural morphismq W X ! [X=G], defined on objects as

S! X 7! (S S� G! X � G
act
�! X).

Similarly there is a natural morphism from [X=G] to BG which simply forgets the
equivariant map toX. By choosing identifications of the trivialG-bundle over a point,
these may each be considered as pointed maps. Finally, recall the pointed map�W G0!

X given by parametrizing the orbit of the base pointg 7! p � g. Applying the funda-
mental group functor to each of these maps and using the isomorphism in the previous
Lemma results in the following.

Proposition 3.4. Let G be a Lie group acting smoothly on a connected manifold
X. The following sequence is exact:

(3.3) �1(G0, 1)! �1(X, p)! �1([X=G], x)! G=G0! 1.

Proof. The verification is straightforward. We prove exactness at�1(X, p) and
exactness atG=G0, leaving the rest for the reader. Recall first that the trivial element in

�1([X=G], x) may be represented by the pair (as in Remark 2.7) (S1
 S1

�G
�

�! X),
where� (z, g) D p � g.

We show that the composition of the first two maps in the sequence is trivial. Let
� W S1

! G0 represent an element of�1(G0, 1), whence its image via the composition

of the first two maps in the sequence is represented by the pair(S1
 S1

�G
a
�! X)

wherea(z,g)D p � (�(z)g). The map� determines a gauge transformation�W S1
�G!

S1
� G defined by�(z, g) D (z, �(z)g). Since� Æ � D a we see that� determines a

2-isomorphism of the mapsq Æ � Æ � and the constant map to [X=G]. By Lemma 2.6
this induces a homotopy, verifying that the composition of the first two maps is trivial.

Next, suppose thatf W S1
! X is a pointed map representing a class in�1(X, p)

whose image viaq
�

in �1([X=G], x) is trivial. We will show that f is homotopic
to a composition� Æ � for some pointed map� W S1

! G0. Suppose thatq Æ f is
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homotopic to the constant mapS1
! ?

x
�! [X=G]. Let (I � S1

 EH
h
�! X) be a

pair of maps representing the homotopyH W I � S1
! [X=G]. That EH represents a

homotopy implies that there exists a trivialization�0 W S1
�G! EH0 D EH j0�S1 fitting

in the commutative diagram,

X

S1
� G EH0 EH

S1 I � S1

 

!

(z,g)7! f (z)�g

 

!

 

!

�0  

!

 

!

 

!

 

!

h

 

!

$0

where$0(z) D (0, z) Note that by Theorem 9.8 in [13, Chapter 4], the bundleEH !

I � S1 is trivializable. Moreover, we may choose a sections so that the composition

S1 s$0
��! EH0

�

�1
0
��! S1

� G

is simply inclusionz 7! (z, 1).
Since EH represents a homotopy, there exists a trivialization�1W EH1 D EH j1�S1

!

S1
�G. Note that�1 Æ sÆ$1(z) D (z, �(z)) for some loop� W S1

! G, and that�(1) 2
Stab(p) because the homotopyH is a homotopy of pointed maps. By replacing the
2-isomorphism�1 W EH1 ! S1

� G (that is part of the data of the homotopyH ) with
the composition of 2-isomorphisms below if necessary,

X

EH1 S1
� G S1

� G

S1

 

!

 

!

 

!

�1

 

!

�

 !

 

!

L
�(1)�1

 

!

�

 

!

(where Lu denotes the gauge transformation (z, g) 7! (z, ug)) we may assume that
�(1)D 1.

The map� D h Æ sW I � S1
! X is the desired homotopy. It is readily verified that

� (0, z) D f (z), and that� (1, z) D p � �(z) D (� Æ �)(z), as required.
Finally, supposeE(g)! S1 represents an element of�1(BG, �) � G=G0. It suf-

fices to construct an equivariant mapE(g) ! X. Choose a pointz 2 X and a path

 W I ! X with 
 (0)D z and 
 (1)D z � g�1. The mapI � G! X given by (t, h) 7!

 (t) � h descends toE(g) and is G-equivariant.
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Corollary 3.5. Let G be a Lie group acting smoothly on a simply connected
manifold X. The fundamental group�1([X=G], x) � G=G0. In particular, if in add-
ition G is connected, then �1([X=G], x) is trivial.

Proposition 3.6. Under the identifications Ix � Stab(p) and �1(BG, �) � G=G0

given above, the compositionStab(p) � Ix
!x
�! �1([X=G], x) ! G=G0 is the natural

homomorphism�p W Stab(p) ,! G! G=G0.

Proof. For g 2 Stab(p), the image of!x(g) in �1(BG, �) is represented by the
bundle E(g) (in the notation above), which by the proof of Lemma 3.1 is represented
by the cosetgG0.

4. Global quotients and universal coverings

A main purpose of this paper is to determine conditions underwhich a Deligne–
Mumford stack is a global quotient in the sense of the following definition.

DEFINITION 4.1. A Deligne–Mumford stackX is a discrete(resp.global) quo-
tient if X is equivalent to a quotient stack [Y=0], where0 is a discrete (resp. finite)
group acting on a smooth manifoldY.

Recall that a morphism of representable stacksX ! Y is an equivalenceif it is
an equivalence of categories. An equivalence may also be represented in terms of the
corresponding representing groupoids as a principal bi-bundle (e.g. see Definition 3.25
and Remark 3.33 in [17]).

We shall deal only with the special case of quotient stacksX D [X=G] arising
from a smooth proper action of a Lie groupG on a connected manifoldX. Note that
an equivalence of such a pair of quotient stacks [X=G] ! [Y=H ] may then be repre-
sented as a bi-bundle of the action groupoidsX�G� X andY�H � Y, which in this
case amounts to aG� H -spaceP that is simultaneously a principalG-bundle P! Y
(with H -equivariant projection) and a principalH -bundle P! X (with G-equivariant
projection).

REMARK 4.2. The properness assumption does not appear in every result in this
section, though our main interest remains the case of properLie group actions on mani-
folds (giving rise to Deligne–Mumford stacks). When properness is stated as a hypoth-
esis, the reader will note that its main use is to ensure that acertain quotient (appearing
in the proof of that statement) is a smooth manifold.

4.1. Global quotients and the fundamental group. The following Lemma pro-
vides a natural setting to discuss a class of examples of quotient stacks that are equiva-
lent to global quotients.
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Lemma 4.3. Let 1! H ! G ! 0 ! 1 be an exact sequence of topological
(respectively, Lie) groups. Suppose that G acts on a topological space(resp. smooth
manifold) X and that the restriction of this action to H is free(resp. free and proper).
Then [X=G] and [(X=H )=0] are equivalent as stacks overTop (resp. Diff).

Proof. We shall work overDiff, noting that the proof is the same overTop. Since
the H -action is free and proper, the orbit spaceX=H is indeed a smooth manifold.
Define F W [X=G] ! [(X=H )=0] to be the functor defined by the assignment

(B E! X) 7! (B E=H ! X=H )

on objects, and

X

E E0

B B0

 

!

 

!

 

!

 

!

 

!

 

!

7!

X=H

E=H E0

=H

B B0

 

!

 

!

 

!

 

!

 

!

 

!

on arrows. By construction,F commutes with the projections to the base categoryDiff.
We wish to show thatF is an equivalence of categories. To see this, we define a func-
tor K W [(X=H )=0] ! [X=G] as follows. Suppose given a pair (B P! X=H ) con-
sisting of a0-bundle P! B and a0-equivariant mapP! X=H . Let E WD P�X=H X
be the fiber product, and define aG-action onE by setting (p, z) � gD (p � �(g), z � g),
where�W G! 0 denotes the given map in the exact sequence. We claim that thecom-

position E
pr1
�! P! B is a principalG-bundle. Indeed suppose (p,z)�gD (p�(g),zg)D

(p, z). Then sinceP is a principal0-bundle, �(g) is the identity element in0 and
henceg 2 H . On the other hand, by assumptionH acts freely onX so zgD z im-
plies g D id in G. HenceG acts freely onE. Next suppose (p, z) 2 E, (p0, z0) 2 E
map to the same pointb in B. Then sinceP is a principal0-bundle overB, there
existsg 2 G such thatp0 D p�(g). By definition of the fiber productE D P �X=H X,
the equivariance of the mapP! X=H , and normality ofH , we conclude there exists
h 2 H such thatz0 D zhg. Since�(hg) D �(g) 2 0 we conclude (p, z)hgD (p0, z0) and
that G acts transitively on fibers ofE! B. HenceE! B is a principalG-bundle, as
desired. The projection mapE! X is G-equivariant by construction so (B E! X)
is an object in [X=G]. Given an arrow

X=H

E=H E0

=H

B B0

 

!

 

!

 

!

 

!

 

!

 

!
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in [(X=H )=0], it induces a unique arrow

X

E=H �X=H X E0=H �X=H X

B B0

 

!

 

!

 

!

 

!

 

!

 

!

which defines the functorK on morphisms. Again by constructionK commutes with
projection to the base category.

Finally, we sketch the constructions of the natural transformations betweenF Æ K
(resp.K ÆF) and the identity functor on [(X=H )=0] (resp. [X=G]). For K ÆF , observe
that for any object (B E! X) in [X=G], there is a unique isomorphism

X

E E=H �X=H X

B

 

!

 

!

 

!

 

!

 

!

in [X=G]. For F Æ K , observe that (P �X=H X)=H is isomorphic toP via the map
[( p, z)] 7! p. From here it is straightforward to check that these yields the desired
natural transformations.

Observe that the requirement in Lemma 4.3 that theG-action restricted toH be
a free H -action is necessary over bothDiff and Top. (Compare with Proposition 4.6.)
For example, consider the exact sequence

1! Z2! S1 2
�! S1

! 1

where 2W S1
! S1 denotes the squaring map. Lett 2 G D S1 act on X D S3

� C

2

according tot � (z,w)D (t2z, t2
w). The quotient stack [X=G] is the weighted projective

spaceP (2, 2). The restriction of theG-action to H D Z2 D {�1} is trivial, and the
resulting residual action of0 D S1 on X=H D X D S3 is the standard action ofS1 on
S3 giving the quotient [(X=H )=0] D P (1, 1), the complex projective plane. As a stack,
P (2, 2) has a non-trivial inertia group isomorphic toZ2 at each point and is thus not
equivalent to the smooth manifoldP (1, 1).

If G is compact, applying the above Lemma to the caseH D G0, the connected
component of the identity element, provides a natural classof examples of stacks equiva-
lent to global quotients. (SinceG is compact, the quotientG=G0 is automatically a
finite group.)
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Corollary 4.4. Suppose a Lie group G acts smoothly and properly on a con-
nected smooth manifold X. Let0 denote the(discrete) group G=G0 of G. If the re-
striction of the G-action to G0 is free, then [X=G] and [(X=G0)=0] are equivalent as
stacks overDiff and hence[X=G] is a discrete quotient. If in addition G is compact,
then [X=G] is a global quotient.

If in addition X is simply connected, then we shall see in Theorem 4.10 that the
above examples characterize global quotients among quotient stacks. Proposition 4.5
below illustrates how the freeness of theG0-action on X relates to the fundamental
group �1([X=G], x).

Proposition 4.5. Suppose a Lie group G acts smoothly on a connected smooth
manifold X. If the restriction of the G-action to G0 � G is free, then the homo-
morphism!x is injective for all points x in[X=G]. Moreover, if X is simply connected,
the converse holds as well.

Proof. From Proposition 3.6 we know that the composition of the homomorphism
!x with the second arrow in (3.3) is the natural homomorphism�p W Stab(p)! G=G0

obtained as the composition of the natural inclusion Stab(p) ,! G with the canonical
quotient mapG ! G=G0. If the restriction of theG-action to G0 is free, then�p

is injective for all p and hence!x is injective for all x in [X=G]. This proves the
first claim.

For the second claim, ifX is simply connected then by Corollary 3.5�1([X=G], x)�
�1(BG, �) � G=G0 and ker!x D Stab(p)\G0. Therefore, if!x is injective for allx in
[X=G] then G0 acts freely onX.

4.2. On covers of quotient stacks. Lemma 4.3 may be generalized to the con-
text of group actions on stacks, which then fits nicely with covering theory. In prepara-
tion for the statement of Proposition 4.6, we begin with a summary of some ideas found
in the work of Lerman and Malkin [18], which the reader should consult for details.

For a Lie group3, recall that a3-action on a stackX can be encoded using a
3-presentation, a groupoid presentationG D G1 � G0 of X equipped with smooth
and free3-actions on both the manifold of arrowsG1 and the manifold of objectsG0

that is compatible with the structure maps of the groupoidG.
Towards generalizing Lemma 4.3, suppose that

1! H ,! G! 0 ! 1

is an exact sequence of Lie groups and thatG acts smoothly on a manifoldX. The ex-
act sequence above naturally defines aG-action onX �0 and the translation groupoid

(4.1) G � (X � 0) � X � 0
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is then a groupoid presentation for the quotient stack [(X � 0)=G]. As in [18, Sec-
tion 4.1], since translation by0 commutes with the aboveG-actions, we see that (4.1)
is a 0-presentation. By [18, Proposition 4.2] (4.1) is also a0-presentation for the quo-
tient stack [X=H ]. This gives a0-action on [X=H ], which (see [18, Section 3.3])
shows that the translation groupoidG� X � X is a groupoid presentation of the stack
quotient [X=H ]=0. This verifies the following generalization of Lemma 4.3.

Proposition 4.6. Let 1! H ! G! 0! 1 be an exact sequence of Lie groups.
Suppose that G acts smoothly on a smooth manifold X. Then the quotient stack[X=H ]
inherits a0-action; moreover, [X=G] and [X=H ]=0 are equivalent as stacks overDiff.

As in previous discussions, we wish to interpret the above Proposition in the case
H D G0. This interpretation may be placed in the context of covering theory for stacks
[21]. In particular, we shall see in Proposition 4.8 that thenatural mapp W [X=G0] !
[X=G] is a covering projection. (More generally, there is a natural map [X=H ]! [X=G],
given by the associated bundle construction, which is representable by Lemma 4.7 below.)
In other words, we may viewp as a quotient map, for [X=G] � [X=G0]=0 where0 is
the discrete groupG=G0.

Parallel to classical covering space theory, one may define universal covering pro-
jections. For simplicity, we shall define auniversal covering projection( QX , Qx)! (X ,x),
as a covering projection with�1( QX , Qx) D {1} (cf. [21, Corollary 18.20]).

Lemma 4.7. Let H be a closed subgroup of a Lie group G that acts smoothly
on a manifold X. The natural map[X=H ] ! [X=G] given by the associated bundle
construction is representable.

Proof. Let'W W! [X=G] and let (W E
'

! X) denote'(idW). Recall that the
fiber productZ D [X=H ]�[X=G] W has objects given by triples (B E! X, f W B!
W, �) where� 2 [X=G]B is an isomorphism ofG-bundles� W E �H G! f �E

'

(com-
patible with the maps toX). An arrow in Z between two such objects is an arrow
(E! E0, B! B0) in [X=H ] such thatB! B0 is compatible with the maps toW and
that the resulting (vertical) induced maps in the diagram below commute.

E �H G f �E
'

E0

�H G ( f 0)�E
'

 

!

�

 

!

 

!

 

!

�

0

Since E
'

! W is a principalG-bundle, theG-action on E
'

is free and proper;
therefore, the restriction of this action toH � G is also free and proper, whenceE

'

=H
is a manifold in Diff. Define F W Z ! E

'

=H as follows. Using the sectionB !
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(E�H G)=H , which sendsb 2 B to the H -orbit of [(e, 1)] wheree2 E is any element
in the fiber overb, and composing with the induced composition

(E �H G)=H
�=H
��! f �E

'

=H ! E
'

=H

we obtain a mapB! E
'

=H . Hence, on objects, we defineF(B E! X, f W B!
W, �) D (B! E

'

=H ). (The effect ofF on arrows is the natural one.)
To show thatF is an equivalence, we next define a morphismK W E

'

=H ! Z as
follows. Given aB! E

'

=H , let P denote the pullbackH -bundle

P E
'

B E
'

=H

 

!

 

!

 

!

 

!

let f denote the compositionf W B ! E
'

=H ! W. Since the mapP �H G ! E
'

given by [(b, e, g)] 7! e � g covers f , there is a unique isomorphismP �H G! f �E
'

which we denote by�. Hence, on objects, we defineK (B! E
'

=H ) to be the triple
(B P! E

'

! X, f W B! W, �). (The effect ofK on an arrowB! B0 in E
'

=H

is hence determined.)
It is straightforward to verify thatF Æ K is the identity. To realize the natural

transformation betweenK Æ F and the identity, we simply note that pulling back an
H -bundle via a composition yields a canonical bundle isomorphism, so that the first
factor in the triple forK ÆF(B E! X, f W B!W,�) is thus canonically isomorphic
to B E! X, which results in the desired natural transformation.

Proposition 4.8. Suppose a Lie group G acts on a smooth manifold X and let
G0 denote the identity component of G. The natural map pW [X=G0] ! [X=G] is
a covering projection. Moreover, if X is simply connected, p is the universal cover-
ing projection.

Proof. From Lemma 4.7, the natural mapp is representable, and the proof of the
Lemma shows that givenW ! [X=G], that the inducedG=G0-bundle E

'

=G0 ! W
(a covering projection) is a representative forp. If X is simply connected, by Corol-
lary 3.5, p is the universal covering projection.

REMARK 4.9. The above proposition identifies the universal cover ofthe quo-
tient stack [X=G] in the setting whenX is simply connected. In Proposition 4.14
below, we identify the universal cover of [X=G] when X is not simply connected.
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4.3. Characterizations of global quotients among quotientstacks of simply
connected manifoldsX. We now state the main result of this section, which in a
sense also summarizes the previous subsections. Theorem 4.10 below characterizes dis-
crete (resp. global) quotients among quotient stacks of simply connected manifolds.
(The reader may wish to compare with [21, Theorem 18.24], which discusses a more
general setting.)

Theorem 4.10. Let X be a simply connected manifold, equipped with a smooth
proper action of a Lie group G. Let G0 � G denote the connected component of the
identity, and Ix the inertia group of x2 [X=G]. The following statements are equivalent.
(1) [X=G] is equivalent to a discrete quotient.
(2) G0 acts freely on X.
(3) !x W Ix ! �1([X=G], x) is injective for all x in [X=G].
(4) The universal cover of[X=G] is equivalent to a smooth manifold.

Proof. Most implications follow directly from work in previous sections: (2)) (1)
is Corollary 4.4; (3), (2) follows from Proposition 4.5. By Proposition 4.8, the uni-
versal cover of [X=G] is [X=G0], which verifies (4)) (2). Conversely, ifG0 acts freely
on X, the principalG0-bundle X ! X=G0 may be viewed as a bi-bundle equivalence
[X=G0] � X=G0, and hence (2)) (4).

It remains to show (1)) (2). To that end, suppose given a principal bi-bundle
representing an equivalence [X=G] � [Z=3] where3 is discrete. Recall that this yields
a G � 3-spaceP that is simultaneously aG-bundle P ! Z (with 3-equivariant pro-
jection) and a3-bundle P ! X (with G-equivariant projection). SinceX is simply
connected, we haveP � X � 3. And since theG and 3-actions commute, theG-
action on X �3 may be written

g � (x, �) D (g � x, �(g, x)�)

where in the first factor� signifies the originalG-action on X. Since3 is discrete,�
only depends on the component ofg, yielding a homomorphism' W G=G0 ! 3 with
'(gG0)D �(g, x) for any x. Finally, if g 2 G0 stabilizesx in X, theng � (x,�)D (x,�)
and henceg is the identity element, as required.

REMARK 4.11. In the proof of (1)) (2) above, one may obtainP by forming
the Cartesian square

P Z

X [X=G] � [Z=3]

 

!

 

!

 

!

 

!

The authors wish to thank the referee for this observation.



258 M. HARADA AND D. KREPSKI

The condition thatX be simply connected in the above theorem is necessary, as
illustrated by the following example.

EXAMPLE 4.12. Let G D S1 act on X D S1 with weight 2. This action has
a global stabilizerZ2 D {�1} � G0 D G. Nevertheless, we may readily verify that
[X=G] � BZ2 D [?=Z2]. Explicitly, consider the following functorsF and K . On
objects, letF W BZ2! [X=G] be defined by taking associated bundle

F(E! B) D (B E �
Z2 S1 f

�! X)

with f ([(e, z)]) D z2, and let K W [X=G] ! BZ2 be given by K (B  P
f
�! S1) D

( f �1(1)! B). (The effects ofF and K on arrows are the natural ones.) Alternatively,
see Example 4.15 and Proposition 4.14 below.

4.4. The universal cover of a quotient stack of non-simply connected mani-
fold X. We next work towards a statement in the spirit of the equivalence (1), (2)
of Theorem 4.10 for the case of connected manifoldsX that are not necessarily simply
connected. LetX and G be as in Proposition 4.8, and letQX denote the universal cover
of a smooth manifoldX and consider the induced action ofQG0 on QX. Let 3 denote
the image of�1(G0, 1)! �1(X, p) (cf. (3.3)). Since3 is a subgroup of deck trans-
formations, QX=3 is a smooth manifold. Moreover,G0 D QG0=�1(G0, 1) acts on QX=3,
and the covering projectionQX=3! X is G0 equivariant.

The following technical lemma helps to identify the naturalmap [(QX=3)=G0] !
[X=G0] as a covering projection in the following proposition.

Lemma 4.13. Suppose a Lie group G acts smoothly on connected manifolds Y
and X. Assume the G-action on Y is proper and that fW Y ! X is a G-equivariant
submersion. Then the canonical map[Y=G] ! [X=G] is representable.

Proof. Let' W W! [X=G] be given and let (W E
'

! X) denote'(idW). The
fiber productY�X E

'

is a smoothG-invariant manifold sinceY! X is a G-equivariant
submersion. Moreover, the diagonalG-action onY�X E

'

is proper since theG-actions
on Y and E

'

are both proper. Further, since the canonical mapY �X E
'

! E
'

is G-
equivariant andG acts freely onE

'

, then G also acts freely onY�X E
'

. By the slice
theorem for properG-actions, we conclude that the quotientU D (Y �X E

'

)=G is a
smooth manifold.

We claim thatZ D [Y=G] �[X=G] W � U . Recall that the objects ofZ are triples
(B E! Y, f W B!W,�) where�W E! f �E

'

is a bundle isomorphism compatible
with the equivariant maps toX. An object in Z therefore determines a canonical map
E ! Y �X E

'

that is G-equivariant. This map descends to a mapB ! U , which
defines a functorF W Z ! U .
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Towards showing thatF is an equivalence, we next defineK W U ! Z. Given a
map B ! U , by pulling back and composing with the natural projection,we obtain
B  P ! Y �X E

'

! Y, and we may setK (B ! U ) to be the triple (B  P !
Y, B! U !W,�) where� is the canonical isomorphism given by pulling back along
a composition.

That F Æ K is the identity is easily verified. Similarly, the composition K Æ F is
canonically isomorphic to the identity functor.

Proposition 4.14. Suppose a compact Lie group G acts smoothly on a connected
manifold X. The quotient stack[X=G] is equivalent to a quotient of a discrete group
action overDiff if and only if the restriction of the induced G0-action on QX=3 is free,
where3 denotes the image of�1(G0, 1)! �1(X, p). Additionally, the composition of
natural maps[( QX=3)=G0] ! [X=G0] ! [X=G] is a universal covering projection.

Proof. By [21, Theorem 18.24] [X=G] is equivalent (overDiff) to a quotient by
a discrete group action if and only if its universal cover is equivalent to a manifold.
By Proposition 4.8, it suffices to determine conditions under which the universal cover
of [X=G0] is equivalent to a manifold, which is done next.

The representable mappW [( QX=3)=G0]! [X=G0] is a covering projection. Indeed,
by the proof of the previous Lemma, given' W W ! [X=G0], the natural projection
( QX=3)�X E

'

! E
'

is a G0-equivariant covering projection, which induces ((QX=3)�X

E
'

)=G0! E
'

=G0 D W, a covering projection that representsp.

Applying the exact sequence (3.3) to [(QX=3)=G0], and noting that the first map in
this exact sequence is a surjection, we see that [(QX=3)=G0] is the universal cover of
[X=G0]. Finally, [( QX=3)=G0] is equivalent to a manifold if and only if (the compact
group) G0 acts freely on QX=3.

EXAMPLE 4.15 (Example 4.12, revisited). IfG D S1
D R=Z acts onX D S1

D

R=Z with weight 2, then3D 2Z � ZD �1(X,1) and the inducedG-action on QX=3D
R=3 may be writtene2� i �

�e� i t
D e� i (tC2�), which is free (and transitive). Therefore, as

in the proof of the previous proposition, the universal cover of [X=G] is [(R=3)=G] D
? and [X=G] � [?=Z2].

5. Toric DM stacks

We now apply the ideas of the previous section to toric Deligne–Mumford stacks
arising from the combinatorial data ofstacky fans[5] and stacky polytopes[24]. As
we shall review below, these stacks arise as quotients [X=G] of a simply connected
spacesX; therefore, we may apply Theorem 4.10.
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5.1. Stacky fans and polytopes—brief review. Mainly to establish notation, we
briefly recall some basic definitions of the combinatorial data appearing in the above dis-
cussion. In the following we use (–)? to denote the functor Hom

Z

(–,Z) or Hom
R

(–,R);
it should be clear from context which one is meant. We use angled bracketsh–, –i to
indicate a natural pairing defined by duality. Also, –
 – signifies –


Z

–.
Let {e1, : : : , en} be the standard basis vectors inZn

� R

n.

DEFINITION 5.1 ([5]). A stacky fanis a triple (N, 6, �) consisting of a rankd
finitely generated abelian groupN, a rational simplicial fan6 in N 
 R with rays
�1, : : : , �n and a homomorphism� W Zn

! N satisfying:
(1) the rays�1, : : : , �n spanN 
 R, and
(2) for 1� j � n, �(ej )
 1 is on the ray� j .

Given a polytope1 � R

d, recall that the corresponding fan6 D 6(1) is ob-
tained by setting the one dimensional cones6(1) to be the positive rays spanned by
the inward-pointing normals to the facets of1; a subset� of these rays is a cone
in 6 precisely when the corresponding facets intersect nontrivially in 1. Observe that
under this correspondence, facets intersecting in a vertexof 1 yield maximal cones
(with respect to inclusion) in6(1).

DEFINITION 5.2 ([24]). A stacky polytopeis a triple (N, 1, �) consisting of a
rank d finitely generated abelian groupN, a simple polytope1 in (N 
 R)? with n
facetsF1, : : : , Fn and a homomorphism� W Zn

! N satisfying:
(1) the cokernel of� is finite, and
(2) for 1� j � n, �(ej )
 1 in N 
 R is an inward pointing normal to the facetF j .

Condition (2) above implies that the polytope1 in Definition 5.2 is a rational
polytope. Also, from the preceding discussion it follows immediately that the data of
a stacky polytope (N, 1, �) specifies the data of a stacky fan by the correspondence
(N,1,�) 7! (N,6(1),�). Indeed,1 is simple if and only if6(1) is simplicial. More-
over, the fan6(1) is rational by condition 5.2 (2). Finally, (N, 1, �) satisfies condi-
tions (1) and (2) of Definition 5.2 if and only if (N, 6(1), �) satisfies conditions (1)
and (2) of Definition 5.1.

The extra information encoded in a stacky polytope (N,1, �) (compared with the
stacky fan (N, 6(1), �)) results in a symplectic structure on the associated toricDM
stack. Given a presentation of a rational polytope1 as the intersection of half-spaces

1 D

n
\

iD1

{x 2 (N 
 R)? j hx, �(ei )
 1i � �ci }(5.1)

for someci 2 R and where each�(ei )
12 N
R is the inward pointing normal to the
facet Fi , the fan6(1) only retains the data of the positive ray spanned by the normals,
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and not the parametersci , which encode the symplectic structure on the resulting DM
stack (see [24] for details).

Stacky polytopes can be thought of as generalizations of Lerman and Tolman’s la-
belled polytopes. In its original form [16], a labelled polytope is a pair (1, {mi }

n
iD1)

consisting of a convex simple polytope1 in (N 
 R)?, where N is a lattice, withn
facetsF1, : : : , Fn whose relative interiors are labelled with positive integers m1, : : : , mn.
If we denote the primitive inward pointing normals�1 
 1, : : : , �n 
 1, then defining
� W Z

d
! N by the formula�(ei ) D mi �i realizes (N,1,�) as a stacky polytope. Thus

labelled polytopes are precisely the subset of the stacky polytopes for which theZ-
moduleN is a free module. By results of Fantechi, Mann, and Nironi [9, Lemma 7.15]
this is equivalent to the geometric condition that the associated toric DM stack has no
global stabilizers.

5.2. Toric DM stacks from stacky fans and polytopes. Recall (as in [5]) that
given a stacky fan (N,6,�), the corresponding DM stack may be constructed as a quo-
tient stack [Z

6

=G] as follows. As with classical toric varieties, the fan6 determines
an idealJ

6

generated by the monomials
Q

�i��
zi 2 C[z1, : : : , zn] corresponding to the

cones� in 6. Let Z
6

denote the complementCn
n V(J

6

) of the vanishing locus of
J
6

. Note that Z
6

is the complement of a union of coordinate subspaces of complex
codimension at least 2; therefore,Z

6

is simply connected. Next, we recall a certain
group action onZ

6

.
Choose a free resolution

0! Z

r Q
�! Z

dCr
! N ! 0

of the Z-module N, and let B W Zn
! Z

dCr be a lift of �. With these choices, define
the dual group DG(�) D (ZnCr )?=im[B Q]? where [B Q] W ZnCr

D Z

n
� Z

r
! Z

dCr

denotes the map whose restrictions to the first and second summands areB and Q,
respectively. Let�_ W (Zn)? ! DG(�) be the composition of the inclusion (Zn)? !
(ZnCr )? (into the firstn coordinates) and the quotient map (Z

nCr )? ! DG(�). Apply-
ing the functor Hom

Z

(–,C�) to �_ yields a homomorphismG WD Hom
Z

(DG(�),C�)!
(C�)n, which defines aG�action onCn, which leavesZ

6

� C

n invariant. Define
X (N, 6, �) D [Z

6

=G]. By Proposition 3.2 in [5],X (N, 6, �) is a DM stack.
The above construction was adapted to stacky polytopes by Sakai in [24]. As the

reader may verify, the DM stackX (N, 1, �) obtained from a stacky polytope is a
quotient stack [Z

1

=H ] where Z
1

is a retract ofZ
6

(cf. [24, Lemma 27]) equipped
with an action of the compact abelian Lie groupH D Hom

Z

(DG(�), S1). Similar to
the discussion in the preceding paragraph,H acts onCn and the invariant subsetZ

1

is a certain level set��1(c) of the moment map�W Cn
! h? for this H -action (where

h denotes the Lie algebra ofH ). In particular, the regular valuec is determined by the
constantsc1, : : : , cn appearing in (5.1) (see [24, Lemma 16]).
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5.3. The fundamental group and inertia homomorphism of a toric DM stack
associated to a stacky fan. By Corollary 3.5, the fundamental group of a toric DM
stackX (N,6,�)D [Z

6

=G] associated to a stacky fan (N,6,�) is �1(X (N,6,�),z)�
G=G0, where G0 is the connected component of the identity element. Using Propos-
ition 3.6, we compute the inertia homomorphisms!zW Gz! �1(X (N,6,�),z)� G=G0,
for the various isotropy groupsGz that arise.

In [12], both the isotropy groupsGz and the quotientG=G0 are described in terms
of the stacky fan data, which we summarize next. The isotropygroup of a point in
X (N, 6, �) arises as the stabilizer Stab(z) � G of z 2 Z

6

� C

n. These stabilizers
depend only on the cone� in 6 satisfying{i W zi D 0} D {i W �i � � }; namely, for such
a cone� , the corresponding isotropy group0

�

is the kernel of the composition

G
(�_)�

���! (C�)n
! (C�)jJ� j,

whereJ
�

D { j W � j � � }. Hence we shall write the inertia homomorphisms as!

�

W 0

�

!

�1(X (N, 6, �)).
As shown in [12], we may identify0

�

with Tor(N=N
�

), the torsion submodule of
the quotientN=N

�

, whereN
�

D span{�(�i ) j �i � � }. Moreover, the inclusion0
�

! G
may be modelled by an explicit homomorphism


�

W Tor(N=N
�

) ! G constructed in
[12]. Additionally, the quotientG! G=G0, which is obtained by applying Hom(–,C�)
to the inclusion of the torsion submodule Tor(DG(�) ,! DG(�), may also be modelled

by an explicit isomorphism Hom(Tor(DG(�)), C�)
�

�! coker�. (See [12] for details.)
It is then straightforward to verify that the diagram

Tor(N=N
�

) N=N
�

N=im(�)

0

�

Hom(DG(�), C�) Hom(Tor(DG(�)), C�)

 - !

 

!

�

 

!




�

 - !

 - !

 

!

 

!

�

commutes; therefore, the inertia homomorphism may be identified with the composition
in the top row, which proves the following.

Proposition 5.3. Let (N,6, �) be a stacky fan and let� be a cone in6. Using
the identifications above, the inertia homomorphisms!

�

W 0

�

! �1(X (N,6, �), z) may
be identified with the composition

!

�

W Tor(N=N
�

) ,! N=N
�

! coker�.

We may apply the above Proposition to characterize global quotients among toric
DM stacks in terms of their stacky fan data, giving another proof of Corollary 5.7 be-
low. By Theorem 4.10, it follows thatX (N, 6, �) is a global quotient if and only if
the kernels ker!

�

D Tor(im�=N
�

) are trivial for all cones� , if and only if im�=N
�

is trivial for all maximalcones� .
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5.4. The universal cover of a toric DM stack associated to a stacky fan. By
Proposition 4.8, the universal cover of the DM stackX (N,6,�) is [Z

6

=G0], whereG0

is the connected component of the identity element ofG D Hom
Z

(DG(�), C�). Next
we describeG0 in terms of the stacky fan (N, 6, �). As we shall see, this can be
roughly described as replacing the abelian groupN with the image of�.

Let N 0

� N denote the image of�, and let60 be the fan inN 0


R corresponding
to 6 under the natural isomorphismN 0


 R � N 
 R. Finally, let � 0 W Zn
! N 0 be �

with restricted codomain. The following lemma is easily verified.

Lemma 5.4. Let (N, 6, �) be a stacky fan, and let (N 0, 60, � 0) be defined as
above. Then(N 0, � 0, 60) is a stacky fan.

Proposition 5.5. Let (N,6, �) be a stacky fan, and let (N 0,60, � 0) be defined as
above. Then the toric DM stackX (N 0, 60, � 0) is the universal cover ofX (N, 6, �).

Proof. By Proposition 4.8, it suffices to verify that the toric DM stack
X (N 0, 60, � 0) D [Z

6

=G0], where the groupG D Hom
Z

(DG(�), C�), which is verified
in [12].

For a stacky fan (N, 6, �), given a cone� in 6, let N
�

� N denote span{�(ei ) j
�i � � }. The following lemma describes well-known conditions on a stacky fan
(N, 6, �) that characterize when the toric DM stackX (N, 6, �) is in fact a smooth
(toric) manifold. The corollary that follows then immediately characterizes global quo-
tients among toric DM stacks.

Lemma 5.6. Let (N,6,�) be a stacky fan. Then the toric DM stackX (N,6,�)
is (equivalent to) a smooth manifold if and only if ND N

�

for all maximal cones
� 2 6.

Proof. Recall that sinceX (N,6,�) is Deligne–Mumford, it admits an étale pres-
entation, and the diagonal map1 W X (N, 6, �)! X (N, 6, �) �X (N, 6, �) is proper
therefore a closed embedding. By Proposition 74 in [19] it suffices to check that all
isotropy groups are trivial. This follows from Theorem 4.2 [12].

Corollary 5.7. Let (N, 6, �) be a stacky fan. The following are equivalent:
(1) The toric DM stackX (N, 6, �) is equivalent to a global quotient overDiff.
(2) N 0

D N 0

�

for all maximal cones� in 6.

REMARK 5.8. Corollary 5.7 is also obtained in joint work of the authors with
Goldin and Johanssen [12] by working out the combinatorial condition (2) directly
from the equivalent condition that the connected componentof the identityG0 � G D
Hom(DG(�), C�) act freely onZ

6

.
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REMARK 5.9. A similar result to Proposition 5.5 was obtained by Poddar and
Sarkar for quasi-toric orbifolds, which are effective/reduced orbifolds studied using
methods from toric topology (see Theorem 3.2 in [23]).

We may recast the above in terms of stacky polytopes. Given a stacky polytope
(N, 1, �), let N 0

D im � and � 0 W Zn
! N 0 as before and let10 be the polytope in

(N 0


 R)? described by

1

0

D

n
\

iD1

{x 2 (N 0


 R)? j hx, � 0(ei )
 1i � �ci }

where the numbersc1, : : : , cn are the same as those appearing in (5.1) for the polytope
1. This ensures that the corresponding level setsZ

1

and Z0

1

coincide. Equivalently,
1

0

� (N 0


R)? is the polytope corresponding to1 under the dual of the natural iden-
tification N 0


R� N
R. Analogous to Proposition 5.5,X (N 0,10,� 0) is the universal
cover ofX (N,1, �). In addition, the natural coveringpW X (N 0,10, � 0)! X (N,1, �)
(as in Proposition 4.8) is compatible with the underlying symplectic structures.

Proposition 5.10. Let (N, 1, �) be a stacky polytope, (N 0, 10, � 0) be as above,
and let pW X (N 0,10, � 0)! X (N,1, �) be the universal covering projection. If! and
!

0 denote the symplectic forms onX (N, 1, �) and X (N 0, 10, � 0), respectively, then
p�! D !0.

Proof. Recall that the symplectic form! on a toric DM stack arising from a
stacky polytope (N, 1, �) can be identified with the differential 2-form��! on Z

1

where� W Z
1

! [Z
1

=G] is a presentation (see Proposition 2.9 in [18] and Theorem 14
(and the discussion preceding it) in [24]). Furthermore, if�

0

W Z
1

! [Z
1

=G0] denotes a
presentation forX (N 0,10,� 0) we have that (� 0)�!0 D ��!, as they are each the restric-
tion of the same 2-form onCn. Therefore, it suffices to verify that (� 0)�p�! D ��!.

The natural isomorphism ofG-bundles (B � G0) �G0 G � B � G (over any base
B) gives rise to the 2-commutative diagram,

Z
1

[Z
1

=G0] [ Z
1

=G]

 

!

�

0

 

!

�

 

!p

(

)

which shows that (� 0)�p�! D �

�

!. Indeed, a differential form! on a stackY is an
assignment of a differential form!(y) 2 ��(U ) for every objecty over U that is com-
patible with maps, in the sense that an arrowx ! y over f W V ! U forces!(x) D
f �!(y). It follows that ��! is a the 2-form assigned to the objectZ

1

 Z
1

�G! Z
1

and that (� 0)�p�! is the 2-form assigned to the objectZ
1

 (Z
1

� G0) �G0 �G !
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Z
1

. But the natural isomorphism covering the identity betweenthese objects (i.e. the
2-isomorphism in the diagram above) and the compatibility condition forces these 2-
forms to coincide.

Notice that the polytopes10 and1 are the same up to a rescaling of the underly-
ing lattices via the natural identificationN 0


R� N
R; therefore, their corresponding
volumes satisfy the relation vol(10) D jN=N 0

j vol(1). Corollary 5.11 below verifies a
similar relation among the corresponding symplectic volumes.

Corollary 5.11. Let (N, 1, �) be a stacky polytope, and let (N 0, 10, � 0) be as
above. The corresponding symplectic volumes satisfyVol(X (N 0, 10, � 0)) D jcoker�j �
Vol(X (N, 1, �)).

Proof. LetX D X (N,1, �) andX 0

D X (N 0,10, � 0) and pW X 0

! X denote the
universal covering projection. Choose an étale presentation 'W X0! X with a partition

of unity so that Vol(X )D
R

X0
!

d (see [3] for details about integration on stacks). Since
p is a covering projection, the fiber productX 0

�X X0 � W for some manifoldW
and W ! X0 is a covering projection with fiberG=G0 � coker�, where G0 is the
connected component ofG D Hom

Z

(DG(�), S1). (In fact, as in Lemma 4.7, we may
take W D E

'

=G0 where X0 E
'

! Z
1

is the object representing'(idX0).) Then we
have the following 2-Cartesian diagram

W X0

X 0 X

 

!

'

0

 

!

p0

 

!

'

 

!

p

It follows that '0 W W ! X 0 is an étale presentation forX 0. Moreover, we may pull
back the partition of unity onX0 to W. By the previous proposition,

Vol(X 0) D
Z

W
('0)�p�! D

Z

W
(p0)�'�! D deg(p0) �

Z

X0

'

�

! D jG=G0j � Vol(X ).

5.5. Examples. We conclude with some examples illustrating the discussion
above.

The following class of examples is studied in [12].

EXAMPLE 5.12 (Labelled sheared simplices). LetaD (a1, : : : ,ad) be a primitive
vector in N D Z

d with ai � 1 and let m0, : : : , md 2 Z>0. Let 6(a) be the fan in
N
R� Rd whose rays are generated by�a and the standard basis vectors. Note that
6(a) is the normal fan of asheared simplex1(a). Letting f0, : : : , fd be the standard
basis vectors forZdC1, set� W ZdC1

! Z

d to be �( f0) D �m0a and �( f j ) D m j ej for
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(a) 6(a) in N
R, with N 0 indi-
cated by darkened dots.

(b) 1(a) in (N 
 R)?, with non-
trivial labels indicated.

Fig. 5.1. A fan6(a) � N 
 R and its corresponding labelled
polytope1(a) � (N 
 R)?.

(a) 6(a)0 in N 0


R � R

2 corres-
ponding to the fan in Fig. 5.1 (a).

(b) 1(a)0 in (N 0


R)? � R2 cor-
responding to the labelled polytope
in Fig. 5.1 (b).

Fig. 5.2. The fan6(a)0 and corresponding labelled polytope
1(a)0 of the universal cover of the symplectic toric DM stack
represented in Fig. 5.1.

j D 1,: : : ,d. It is straightforward to verify that (N,6(a),�) is the stacky fan associated
to the labelled polytope (1(a), {m j }

d
jD0). (See Fig. 5.1 illustrating a concrete example

with aD (1, 2) and labelsm0 D m1 D 1 andm2 D 2.)
In [12], it is shown that the toric DM stackX (N, 6(a), �) is a global quotient if

and only if m j Dm0a j for all j D 1,: : : ,d. In this case,N 0

D

Ld
jD1m jZ � N and that

under an identificationN 0

� Z

d we find60 is the fan inRd whose rays are generated
by �

P

ej and the standard basis vectorse1,:::,ed and that� 0W ZdC1
! N 0

� Z

d may be
expressed by the formulas� 0( f0) D �

P

ej , � 0( f j ) D ej . That is,X (N 0,60,� 0) D CPd

so thatX (N,6(a),�) is a quotient of complex projective space whenever it is a global
quotient. (See Fig. 5.2 illustrating the (stacky) fan and polytope of the universal cover
of the symplectic toric DM stack whose fan and polytope appear in Fig. 5.1.)



GLOBAL QUOTIENTS AMONG TORIC DELIGNE–MUMFORD STACKS 267

(a) A labelled polytope1(a) in
(N 
R)? � R2 corresponding to a
stack that is a global quotient.

(b) The polytope1(a)0 in (N 0




R)? � R

2 corresponding to the
universal cover of the stack associ-
ated to Fig. 5.3 (a).

Fig. 5.3. The labelled polytopes1(a) and1(a)0 of a of a quotient
of a Hirzebruch surface and its universal cover (a Hirzebruch sur-
face), respectively.

EXAMPLE 5.13. LetaD (a1,a2) be a primitive vector inN D Z2 with a1,a2 � 1.
Consider the fan6 in N
R � R2 with four rays�1, : : : , �4 generated by�a, e2, e1,
�e2 respectively, and maximal cones�12, �23, �34, and�41, where�i j denotes the two
dimensional cone generated by�i and � j . Let m1, : : : , m4 be positive integers and let
� W Z

4
! N be

� D

�

�m1a1 0 m3 0
�m1a2 m2 0 �m4

�

.

Note that the stacky fan (N, 6, �) corresponds to a labelled right trapezoid. (See
Fig. 5.3 (a) illustrating a concrete example withaD (1, 2).)

By Corollary 5.7, the toric DM stackX (N,6,�) is a global quotient if and only if
N 0

D N 0

�

for all maximal cones� . This occurs precisely whenm1a1 D m3, m2 D m4,
and m2jm1a2. In this case,N 0

D m3Z � m2Z � N and that under an identification
N 0

� Z

2 we see that60 is the fan inR2 with four rays generated by�(1, b), e2, e1,
and�e2, wherebD m1a2=m2. Moreover, under this identification

�

0

D

�

�1 0 1 0
�b 1 0 �1

�

I

therefore,X (N, 6, �) is a quotient of a Hirzebruch surface whenever it is a global
quotient. (See Fig. 5.3 illustrating the labelled polytopeof a global quotient of a
Hirzebruch surface.)

The remaining three examples consider toric DM stacks with non-trivial global sta-
bilizer (due to the presence of torsion in the abelian groupN). The first example ex-
hibits a global quotient with global isotropy, while the last two illustrate how the con-
dition in Corollary 5.7 may fail.
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EXAMPLE 5.14. Let N D Z � Z=2Z and 6 be the fan inN 
 R � R with
rays�1. Let � W Z2

! N be given by (a, b) 7! (2a � 2b, a C b mod 2). ThenN 0 is
generated by (2, 1 mod 2), as isN 0

�

for each maximal cone� . Therefore,X (N, 6, �)
is a global quotient. Under an identificationN 0

� Z, we see that� 0(a, b) D a� b and
thatX (N 0,60,� 0)D CP1. Moreover, a direct calculation shows thatG=G0� coker� �
Z=4Z so thatZ=4 acts onCP1 with global stabilizer isomorphic toZ=2Z (the torsion
submodule ofN), andX (N, 6, �) � [CP1

=(Z=4Z)].

EXAMPLE 5.15. Let (N,6,�) be any stacky fan withN containing a non-trivial
torsion subgroup and� surjective (e.g. the stacky fan of a weighted projective space
with non-trivial global stabilizer). ThenX (N, 6, �) is not equivalent to a global quo-
tient sinceN 0

D N has torsion andN 0

�

is necessarily torsion free for any cone� in
the rational simplicial fan6 (cf. the proof of Theorem 3.1 in [12]). (More generally,
if N 0

� N contains non-trivial torsion, thenX (N, 6, �) is not equivalent to a global
quotient.)

EXAMPLE 5.16. Let N D Z � Z=4Z and 6 be the fan inN 
 R � R with
rays�1. Let � W Z2

! N be given by (a, b) 7! (a � 2b, a C 2b mod 4). ThenN 0 is
torsion-free, generated by (1, 1)2 N; however,N 0

�

is generated by (2, 2) for the cone�
generated by�1. By Corollary 5.7,X (N,6, �) is not equivalent to a global quotient.
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