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Abstract
We prove that the asymptotic completion of a developable M&Btrip in Euclid-
ean three-space must have at least one singular point didercuspidal edge singu-
larities. Moreover, if the strip is generated by a closed gsad then the number of
such singular points is at least three. These lower boureldath sharp.

1. Introduction

First, we define several terminologies. Let= y(s): R — R3 be aC> map. The
map y(s) is calledl-periodic if y(s+1) = y(s) for se R. A C* map y(s) is called
regular if y’(s) := dy(s)/ds does not vanish ofR. We fix such a periodic regular
curve y. An R3-valued vector fields along y is called |-odd-periodicif it satisfies
E(s+1) = —£&(s) for s € R. We also fix such &> |-odd-periodic vector fiel. A
positive real numbet is taken to be sufficiently small. £ map

(1.1) F(s,u) = y(s) + UE(S) (SER, |ul <e€)

is called aruled Mébius stripif F is an immersion intdR3. Then,y’(s) and £(s) are

linearly independent for eache R. In this situation,y is called thegenerating curve
or directrix of F and & is called theruling vector fieldof F. The ruled stripF is

called developableif F is flat (i.e. zero Gaussian curvature). LE(s, u) be a ruled
Mébius strip as in (1.1). Then, @° map

F(s,u) = y(s) + Us(s) (s, ueR)

is called theasymptotic completiofor a-completiof of F. Let ‘~’ be the equivalence
relation which regards two points,(1) and §+1,—u) as the same point iR?, where
| is the period of the closed curve(s). We setM := R2/~. Then, F can be regarded
as aC>® map of M into R3.

Let U be an open domain ilk? and f: U — R3 a C® map. A pointp e U is
called asingular pointof f if the Jacobi matrix off is of rank less than 2 ap. It is
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well-known that complete and flat surfaces immersediare cylindrical. This fact
implies that the a-completion of a developable Mdbius strigstrhave singular points.
Since the most generic singular points appeared on deud#®arfaces are cuspidal
edge singularities (cf. [4, 5, 9]), we are interested in hdtero singular points other
than cuspidal edge singularities appear on the a-complatfoa developable Mobius
strip. (Izumiya—Takeuchi [5] is a nice reference for siragities of ruled surfaces or
developable surfaces.)

Recently, global properties of flat surfaces with singtikesi in R® were investi-
gated in Murata—Umehara [9]. They defined ‘completenessfl&rfronts (cf. [9, Def-
inition 0.2]) and proved that a complete flat front with eméled ends has at least four
singular points other than cuspidal edge singularitieshd front has singular points.
However, we cannot apply this result, since complete flaitf@re all orientable (cf. [9,
Theorem A]). Therefore, it is interesting to determine loweunds on the number of
non-cuspidal-edge singular points on developable M&biifssstWe show the following:

Theorem 1. The asymptotic completiof : M — R3 of a developable M&bius
strip F(s, u) = y(s) + u&(s) has at least one singular point other than cuspidal edge
singularities on M.

In fact, there are many developable Mébius strips. Chicoradteld [2] constructed
a developable Mobius strip on each generic closed regularecur R3. The topo-
logical types of Mdbius strips are determined by the isotoges of their generating
curves and Mobius twisting numbers. Rggen [12] showed thatetlexists a devel-
opable Mdbius strip of an arbitrarily given topological type

A developable Mobius strip whose generating curve is a clagsatlesic is called
a rectifying Mobius strip Roughly speaking, a rectifying strip can be constructenfr
an isometric deformation of a rectangular domain on a plahdg, Proposition 2.14]).
We also show the following assertion:

Theorem 2. The asymptotic completioR: M — R3 of a rectifying Mébius strip
F(s, u) = y(s) + ué(s) whose generating curve(s) is a closed geodesic has at least
three singular points other than cuspidal edge singuleston M.

The first explicit construction of a rectifying Mobius strip R® was given by
Wunderlich [14]. Recently, Kurono—Umehara [8] proved tkiadre exists a rectifying
Mobius strip which is isotopic to any given Mdbius strip. Seéifv [13] for other
references and the history.

These lower bounds of the number of non-cuspidal-edge kirities in Theorems 1
and 2 are both sharp. In fact, we give examples which havegustand three non-
cuspidal-edge singularities for Theorems 1 and 2, resmdgti(see Examples 2.10
and 3.4).
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Fig. 1. A cuspidal edge. Fig. 2. A swallowtail.

2. Singularities of developable Mobius strips

We give definitions of cuspidal-edge and swallowtail sigiles and recall the
criteria for cuspidal edges and swallowtails as in [7].

DEFINITION 2.1. LetU; c R? (i =1, 2) be two open neighborhoods of points
p € R? and f; = fi(u, v): Ui — R® (i =1, 2) two C>® maps. Thenf; is said to be
right-left equivalentto f, if there exist two diffeomorphismg: R? — R? and ®: R® —
R2 such thatp(py) = p2, ® o f1(p1) = f2(p2) and ® o f; = fo 0 on Uy.

We set
2u® 3ut + u?y
fo(u,v) :=| =3u? |, fs(u,v):=| —4u®—2uv
v v

(see Figs. 1 and 2, respectively). The get,v) € R?; u = 0} is a cuspidal edge singu-
larity of fc and the point{, v) = (0, 0) is a swallowtail singularity offs. A C* map
germ which is right-left equivalent to the map gerfg (resp. fs) at (u, v) = (0, 0) is
called acuspidal edggresp. aswallowtail).

DEFINITION 2.2. LetU C R? be an open domain. £ map f: U — R® is
called afrontal if there exists aC>® mapv: U — S? (S? is the unit sphere) such that
v(p) is perpendicular tad f(TpU) for p € U, wheredf is the differential of f and
ToU is the tangent plane gi to U. Such a map is called aunit normal vector field
of f. Moreover, if theC>® mapL := (f,v): U — R®xS? is an immersion,f is called
a wave front(or front).

A singular pointp € U of a frontal f (u, v) is non-degeneraté the differentialda
of A := det(f,, f,, v) does not vanish ap, where f, :=0df/du and f, := o f/9v. If a
singular pointp is non-degenerate, the singular set fofis a regular curve neap on
U. This regular curvec(s) is called thesingular curveof f, and a tangent vector to
c is called asingular directionof f. Moreover, a nonzero vector € TygU satisfying
df(n) = 0 is called anull direction of f. We can take such(s) as aC> vector field
along c(s) near p, and theC®> vector fieldn(s) is called anull vector fieldof f.
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FACT 2.3 ([7]). Let f = f(u,v): U — R3 be a wave front. We denote hys)
the singular curve near a non-degenerate singular goit) of f such thatc(0) = p,
and byn(s) a null vector field alonge(s). We setp := det(/, n). Then,

(i) pis a cuspidal edge if and only #(0) # O,
(i) p is a swallowtail if and only ifp(0) = 0 and p’(0) # 0.

It should be remarked that criteria for cuspidal edges andllewtails of devel-
opable surfaces have been given in [5, Theorem 3.7]. Onemaly the criteria instead
of those in Fact 2.3. However, developable Mébius strips esatdls but not always
fronts (see Remark 2.6). The following assertion is useful dur later discussions,
which can be proved as a corollary of Fact 2.3:

Cororally 2.4. Let f = f(u,v): U — R® be a frontal. We denote by(s) the
singular curve near a non-degenerate singular poinge pJ of f such that @) = p,
and by n(s) a null vector field along (). Then p is a non-cuspidal-edge singular
point if p(s) := det(/(s), n(s)) vanishes at s= 0.

Cuspidal edges and swallowtails are wave frontsC& map germs. By (i) of
Fact 2.3, whether a frontdl is a front or not, a singular poinp of f is not a cuspidal
edge if p(s) vanishes as = 0.

Next, we consider the a-completion of a ruled Mobius sFifs, u) = y(s) + UE(S)
with singularities. By a suitable change of parameters, vag assume that is an arc-
length parameter of and&(s) is a unit vector for eacls € R. Since the difference of
F and F is only that of their domains, we express a ruled Mébius skijtself and
its a-completionF as the same symbdt for the sake of simplicity.

Lemma 2.5. Let F(s, u) = y(s) + u&(s) be a ruled Mobius stripwhere s is an
arc-length parameter of and &£(s) is a unit vector for each € R. Then

(e an YO EON (9,606 OF
GO ECE A

ly'(s) x §(s)? E'(s)=0),

| Fs x |:u|2 =

where the dot -’ is the inner product and the cross’ is the vector product irR3.

Proof. SinceFs = y'+ug¢’ and F, = &, this assertion is obvious whegi(s) = 0.
So we assumég’(s) # 0, and then

v 5’)2 v < EPIET - (/&)

IF xF|2=|§’|2(u+ : +
o RE |&7]2
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Since
2.1 (v x &) < &' = Iy x E7€"1 — (v x §) - ')
=|y' x £[°[§'| — det/', &, £)°
and
(2.2) (' x &) xEP =€) —E-EW =&
we get the conclusion. []

The equation det(, &, &') = 0 is a necessary and sufficient condition of flathess
of ruled Mébius strips. Hence, iF is developable, th€> map

y'(s) x &(s)
[y'(s) x §(5)|

gives a unit normal vector field along(s, u), so F is a frontal. Sincev does not
depend oru when F is developable, we regard ags) = v(s, u) and denotev’ = vy,

(2.3) v(s, u) :=

REMARK 2.6. Developable Mobius strips are frontals but not alwaysith. In
fact, a developable Mdbius strip(s,u) is a front in a neighborhood of a singular point
(s, u) = (80, Up) if and only if V() is not equal to the zero vector, since the Jacobi
matrix of the mapL = (F, v) is given by

_(Fs Fu
o (7 5
We give examples of developable Mobius strips one of whosgutanities are not fronts
(see Examples 2.10 and 3.4). These singularities look bken swallowtails’ (see Re-
mark 2.11). Moreover, further singularities which are noints might appear in general:
In fact, if v’ identically vanishes on an open interdalthe image of the restriction df

to | x R is contained in a plane. If there exist singular points onlame, the singu-
larities are not fronts.

Lemma 2.7. Let F: M > (s, u) = y(S) + U&(S) € R® be the a-completion of a
developable Mdbius strjpvhere s is an arc-length parameter pf and £(s) is a unit
vector for each &= R. Then
(i) each singular point of F is non-degenerate
(i) the singular set §) of F is given by

() xEE)P

F) = {(S’ WeMu=—"9 e

E(s) # o},
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(iii) the null vector field of F is given by
0 , 0
s (v 'é)a-

Proof. We set. := det(Fs, Fy,v). SinceF is developable, det(,&,£") = 0 holds.
By Lemma 2.5, ¢, u) € M is a singular point ofF if and only if

_ YeE
(2.4) U= £'(s) # 0.

Sincey’(s) and&(s) are linearly independent arf(s) is perpendicular tg(s) for each
s € R, the equalityy'(s)-&’(s) = 0 holds if and only if¢’(s) = 0. Therefore,ry, =y’ -
£'/ly’ x&| does not vanish oiB(F), so we obtain (i). We have’' x&|?|€'|? = (y'-&')?
by (2.1) and (2.2). Therefore, (ii) holds by (2.4). Leg,(0) be a singular point. Since
k:=y/(s) - &(s0) (# 0) satisfiesFs(so, Ug) = kFy(So, Ug), we have (iii). L]

Sinceé& is not a constant vector field, there exists a pa@irt R such thatg’(s) #
0. Therefore, the singular s&(F) is not empty. The following lemma gives a proof
of Theorem 1.

Lemma 2.8. Let F(s, u) = y(S) + ué(s) be a developable Mo&bius strip. The a-
completion of F has at least one singular point other thanpades edge singularities
on each connected component dffFE In particular, the a-completion of F has at
least one singular point other than cuspidal edge singtikesi

Proof. We remark that there exists a pog¥ R such thaté’(s) = 0, sincey’ &’
is an odd-periodic function. Ldi(s,u(s))}scr be the graph of the singular curve Bfin
the (s, u)-plane, and lef(s, u(s))}s,<s<s, be a connected component 8(F). Then, the
two pointss; and s, satisfy £/(s;) = &£'(s) = 0 and &/(s) # 0 for s € (s1, ). Suppose
y'(s)-&'(s) > 0 for s € (51, ). By Lemma 2.7 (ii), the functioru(s) satisfies

lim u(s) = lim u(s) = —oo,
s\t © s/'s © >
where\, and / mean approaching from above and below, respectively. Ttheriunction

P =—ue) - [ 0-EDdt (s <s<s)
s

satisfies

lim P(s) = lim P(s) = oo,
S\t (s) s/'s (s)
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since|y’(s)-£(s)| < 1. This implies thatP(s) attains a minimum at a poirg= . Let
p(s) be the determinant of the>22 matrix consisting of the two vectors (in ths, @)-
plane) for the singular direction and null direction Bf Then, the functiono(s) =
—u'(s) — y'(s) - £(s) = P’(s) vanishes ats = 9. By Corollary 2.4, the singular point
(0, U(s0)) is not a cuspidal edge singularity. The cgse &' < 0 is similar. O

REMARK 2.9. Lemmas 2.7 and 2.8 also imply that the number of non-
cuspidal-edge singular points on the a-completion of a ldpedle Mobius strip is
greater than or equal to the number of connected componérte @ero set ot’, if
these numbers are finite.

We close this section with an example having only one simgptant other than
cuspidal edge singularities. This implies that Theoremvegithe sharpest lower bound.

EXAMPLE 2.10. We define as-periodic regular curves = y(s): R — R3 by

sin s

cos &
V(S) = 1 ,

— sins

V2
whose curvature functior(s) does not vanish. Let = &(s) be the Zr-odd-periodic
and non-vanishing vector field along given by

£(9)i= p(oee) + cof 3 (s + sin(; )b

where e is the unit tangent vector field) is the normal vector field and is the bi-
normal vector field ofy. Moreover,t is the torsion function ofy and

1 1 .S
p(s) := @(m + r(s))/sm >

We remark thatp(s) and&(s) are both smooth & = k (k € Z). Since dety’,£,£') =0,
the mapF(s, u) = y(s) + ué(s) is a developable Mdbius strip (see Fig. 3).

The generating curvg(s) can be expressed by a rational functiorx($) := tan(s/2)
for -7 < s < &, then we have

1 4x(1 - x?)
yX) = ——=| @=2x=x)(L+2x—=x?) | (x €R).
(2457 ( V2X(L + ) )

We set

B = O

= m = f)(X)e(X) + n(X) + Xb(X),
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Fig. 3. The image ofF(s, u). Fig. 4. An open swallowtail ifR?,

where p(x) is a certainC> function. Letp(x) be the determinant of the 22 matrix
consisting of the two vectors for the singular direction andl direction of F(x, v) =
y(X) + vE(x). We obtairt

o= 1 (by+ biay/T)? x A(X)
& x &2 (a1 + away/T2) (14 x2)3(f1)7/2(f2)?’

where f1(X) 1= 3+ 5x2 4+ 3x*, fo(x) := 9+ 14x? + 9x*. Here, ay, aip, by, b1y and A
are polynomials irx such that they have only even-degree terms and are nonheegat
Moreover, the asymptotic line at = co has no singular points, sp(x) = 0 if and
only if x =0 (i.e. s = 0). By Corollary 2.4, the singular point correspondingste- 0

is not a cuspidal edge singularity. On the other hari(s) = 0 if and only if s = 0,
where v(s) is defined by (2.3). Therefore, each singular point excéps & 0 is a
cuspidal edge by Fact 2.3 (i).

REMARK 2.11. By author's computer graphics, the singularity onadkgmptotic
line ats = 0 looks like an ‘open swallowtail’ (see Fig. 4; cf. [1]). Thethor does not
know a criterion for open swallowtails of developable soes

3. The proof of Theorem 2

Let F(s, u) = y(s) + ué(s) be a rectifying Moébius strip whose generating curve
y is a closed geodesic (see the introduction). We may assuates tis an arc-length
parameter ofy. Then,y(s) and £(s) satisfy

3.1) y'(s)-§(s) =0 (seR),

since y(s) is a geodesic. Conversely, the generating cur(g) is a geodesic ify(s)
and &(s) satisfy (3.1) (cf. [8]). We normalize the ruling vecté(s) for eachs € R so

1The softwareMathematica(Version 7.0.0, Wolfram research) was used for this catmna
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that the projection of(s) into the normal plane at the poigi(s) is a unit vector, i.e.
(3.2) [¥'(s) x&(s)| =1 (s€R),

where the normal plane is the plane perpendiculae® = y’(s). Then, & can be
expressed by (cf. [4, 8])

(3.3) Vi=letb
K

when « is nonzero, wherec is the curvature functions is the torsion function and
{e,n,b} is the Frenet frame of. This vector fieldV is called thenormalized Darboux
vector fieldof . The ratioo := t/« is called theconical curvatureof y (cf. Heil [3]).
We remark thatv may not be defined at zeros ef so we cannot use the expression
(38.3) as a representation gfif ¥« = 0. To avoid this difficulty, we define the new
framing {e, A, b} instead of{e, n, b} later (cf. (3.4)), and us& as in (3.5) instead of
V. Then, A, b andV are smooth at the zeros ef

REMARK 3.1. In [4], V is called themodified Darboux vectoalong y. More-
over, the criteria of cuspidal edges and swallowtails onrdwifying developable sur-
faces associated tp are given in terms of conical curvature = 7/« if ¥ does not
vanish. For example, on the assumption that 0, a point &, Ug) is a non-cuspidal-
edge singularity of~(s,u) = y(s)+uV(s) if and only if ug = —1/0’(s), o'(%) # 0 and
o"(%) = 0 (see [4, Theorem 2.2]). However, it is known that the cumatfunctions
of closed geodesics of rectifying Mébius strips must havegdcf. [11]).

We recall the following facts in order to explain propert@sthe conical curvature
of a regular space curve.

FAcT 3.2 (cf. [3]). Let| C R be an open interval angt: | — R3 a regular
curve. If the curvature functiom of y does not vanish, then the geodesic curvature
function of the unit tangent vector field: | — S? of y as a spherical curve is equal
to the conical curvature = t/«x of y.

A C> function g = g(s): | — R is said to beC!-strictly increasing(resp. C?-
monotone increasing in the wider seh#eg’(s) > 0 (resp.g’(s) > 0) forse |. A regu-
lar spherical curvex = a(s): | — S? is called anhonestly positive spira{resp. posi-
tive spira) if the geodesic curvature function of is C-strictly increasing (respC?-
monotone increasing in the wider sense).

FAacT 3.3 ([6, 10]). Letxr = «(s): | — S? be an honestly positive spiral (regmsi-
tive spiral). We denote byC(s) C S? the osculating circle of ats € | and assigrC(s)
the orientation compatible with that of(s) for eachs € |. Let D(s) be the left-hand
domain ofC(s). Then,s, < s, implies D(s,) C D(s1) (resp.D(s;) € D(s1)).
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Proof of Theorem 2. LetF(s, u) = y(s) + ué(s) be a rectifying Mobius strip
whose generating curve is a closed geodesic. We may assume thit an arc-length
parameter ofy and normalizez(s) as in (3.2) by a suitable change of the parameter
u. Then, y(s) and &(s) satisfy (3.1).

The Frenet frame of (s) cannot be defined it (s) = 0. However, we can construct
an ‘extended’ Frenet frame defined &by using the ruling vector field(s). We set

A A~/

(3.4) i:=—-ex& b:=exA, Kk:=¢€-

These vector fields and functions are of cl&3. Then{e, A, 6} satisfies

A/

=ih, A =—ke+1b, b =—%A.
Therefore, we have = |¢|. Moreover, ifk(s) # 0, then
A(s) = en(s), b(s) = eb(s),

wheree := k(s)/k(s) (= +1). The functionz(s) is exactly equal tor(s) if «(s) # 0.
Then, ¢ is exactly equal to

(3.5) V:=ée+b.

Since det§, &, £') = 0, we havet = 6k. Therefore, we regard, b, &, ¢ and 6 as
smooth extensions df, b, «, T ando, respectively. We set

Ki:={seR:&(s) >0}, Ko:={seR:%(s)=0}, K_:={seR:i(s)<O0}.

We regarde = y’ as a closed curve i§%. The spherical curve has singular points
at zeros ofx. For eachs € R, the vectorsfi(s) and 6(5) can be regarded as a unit
tangent vector and a unit conormal vector of the sphericateca(s), respectively. In
particular, {f, b, e} gives a smooth positive orthonormal frame alongSinceés is of
classC™, we can smoothly extend tR the osculating circleC(s) C S? of e(s). In
fact, the extended osculating ciro(é(s) can be canonically defined by a circle 64
which passe®(s) and whose center is

eXPys) (% (arctan%) 6(3)) ,

where exp: TpS? — S? is the exponential map at a poimt € S2. We assigné(s)

the orientation compatible with the direction bfs). If s € K, (resp.K_), then the
orientation ofé(s) is equal (resp. opposite) to that 6f(s). Let 15(5) be the left-hand
domain of C(s).



SINGULARITIES OF DEVELOPABLE MOBIUS STRIPS 435

Since¢’ = 6’e, by Remark 2.9, it is sufficient to show that the number of tha-c
nected components of the zero point sets(s) is at least three. We suppose that the
number of locally maximal or locally minimal points of the dgeriodic functions is
only one. We may assume that= 0 is the locally minimal point. Thew is a C!-
monotone increasing function in the wider sense on the dlasterval [0]], wherel is
the period ofy(s). The restriction of the spherical cuneeto each connected compo-
nent ofK+ (resp.K,) is a positive (resp. negative) spiral. If we take two poigitsand
s, satisfyings; < s, in each connected component Kf. UK_, we haveD(s;) C D(s;)
by Fact 3.3. On the other hand, if we take two poistsand s, satisfyings; < s,
in each connected component Kf, it holds that = ¢ = 0 on the closed interval
[s1, $2]. Thereforeh andb are constant onsf, s;], so we haveD(s;) C D(s;). Since
the domainD(s) depends smoothly o8 € R, we haveD(s;) C D(s;) for s; and s,
satisfyings; < . In particular, we obtairD(I) € D(0). On the other hand, the orien-
tation of C(l) is opposite to that o£(0), sincef is odd-periodic. HenceD(0) N D(I)
is empty. However, sinc®(l) is not empty, this is a contradiction. Sinéeis odd-
periodic, & must have at least three locally minimal or locally maximalngs. Then,
by Remark 2.9, we obtain Theorem 2. []

EXAMPLE 3.4. We set

2
§s+ss+s5
1 3
§)i= — S+s ,
v 1+ (s+s%)? 8
5

which gives a closed regular curve 8f = R U {oo} in R3. Moreover,y has only one
inflection point ats = oo, where the inflection point is a zero of the curvature furrctio
of y. We sety(t) := y(1/t). Since

P'() x PI()o # 0, det'(t), PI(t), PP(t))—0 = O

and [8, Corollary 2.11], thec>™ map F(s, u) = y(s) + ué(s) is a rectifying Mobius
strip, where&(s) is as in (3.3). The a-completion df has just three singular points
other than cuspidal edges (see Figs. 5 and 6).

By Lemma 2.7, the singular curve &f is given by

S (s, u(s) := _|y’(s)|).

a'(s)

Moreover, the null vector field oF is 0/ds. We denote byp(s) the determinant of the
2 x 2 matrix consisting of the two vectors for the singular dil@t and null direction
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Fig. 5. The image ofF (s, u). Fig. 6. The a-completion of.

of F. Then, we can calculate

(14 s? + 25* + s9a(s)¥2Q(s)
s2b(s)? ’

p(s) = U'(s) =

wherea(s), b(s), Q(s) are certain polynomials which have only even-dimensideahs
and a(s), b(s) > 0. It can be rigorously checked that the polynom(s) has just two
roots by Sturm’s theorem. Moreover, consideringunder the parametdr= 1/s, we
have p(t) — 0 (t — 0), so p(t) has three zeros including= 0 (s = c0). On the
other hand, since(s, u) := fi(s) is a unit normal vector field along, the C* map

L = (F, v) is not immersed only ats(u) = (co, u(c0)). Then, F has exactly three
non-cuspidal-edge singular points by Fact 2.3 (i) and Qanpl2.4. We remark that the
singularity at 6, u) = (0o, u(c0)) is a shape like an open swallowtail (see Fig. 4). The
other two non-cuspidal-edge singularities are both swadlids (cf. (ii) of Fact 2.3).
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