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Abstract
We prove that the asymptotic completion of a developable Möbius strip in Euclid-

ean three-space must have at least one singular point other than cuspidal edge singu-
larities. Moreover, if the strip is generated by a closed geodesic, then the number of
such singular points is at least three. These lower bounds are both sharp.

1. Introduction

First, we define several terminologies. Let
 D 
 (s)W R! R

3 be aC1 map. The
map 
 (s) is called l-periodic if 
 (sC l ) D 
 (s) for s 2 R. A C1 map 
 (s) is called
regular if 
 0(s) WD d
 (s)=ds does not vanish onR. We fix such a periodic regular
curve 
 . An R

3-valued vector field� along 
 is called l-odd-periodic if it satisfies
� (sC l ) D �� (s) for s 2 R. We also fix such aC1 l -odd-periodic vector field� . A
positive real number� is taken to be sufficiently small. AC1 map

(1.1) F(s, u) D 
 (s)C u� (s) (s 2 R, juj < �)

is called aruled Möbius stripif F is an immersion intoR3. Then,
 0(s) and � (s) are
linearly independent for eachs 2 R. In this situation,
 is called thegenerating curve
or directrix of F and � is called theruling vector field of F . The ruled stripF is
called developableif F is flat (i.e. zero Gaussian curvature). LetF(s, u) be a ruled
Möbius strip as in (1.1). Then, aC1 map

QF(s, u) D 
 (s)C u� (s) (s, u 2 R)

is called theasymptotic completion(or a-completion) of F . Let ‘�’ be the equivalence
relation which regards two points (s, u) and (sC l ,�u) as the same point inR2, where
l is the period of the closed curve
 (s). We setM WD R

2
=�. Then, QF can be regarded

as aC1 map of M into R

3.
Let U be an open domain inR2 and f W U ! R

3 a C1 map. A point p 2 U is
called asingular pointof f if the Jacobi matrix of f is of rank less than 2 atp. It is
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well-known that complete and flat surfaces immersed inR

3 are cylindrical. This fact
implies that the a-completion of a developable Möbius strip must have singular points.
Since the most generic singular points appeared on developable surfaces are cuspidal
edge singularities (cf. [4, 5, 9]), we are interested in how often singular points other
than cuspidal edge singularities appear on the a-completion of a developable Möbius
strip. (Izumiya–Takeuchi [5] is a nice reference for singularities of ruled surfaces or
developable surfaces.)

Recently, global properties of flat surfaces with singularities in R3 were investi-
gated in Murata–Umehara [9]. They defined ‘completeness’ forflat fronts (cf. [9, Def-
inition 0.2]) and proved that a complete flat front with embedded ends has at least four
singular points other than cuspidal edge singularities if the front has singular points.
However, we cannot apply this result, since complete flat fronts are all orientable (cf. [9,
Theorem A]). Therefore, it is interesting to determine lower bounds on the number of
non-cuspidal-edge singular points on developable Möbius strips. We show the following:

Theorem 1. The asymptotic completionQF W M ! R

3 of a developable Möbius
strip F(s, u) D 
 (s)C u� (s) has at least one singular point other than cuspidal edge
singularities on M.

In fact, there are many developable Möbius strips. Chicone–Kalton [2] constructed
a developable Möbius strip on each generic closed regular curve in R

3. The topo-
logical types of Möbius strips are determined by the isotopy types of their generating
curves and Möbius twisting numbers. Røgen [12] showed that there exists a devel-
opable Möbius strip of an arbitrarily given topological type.

A developable Möbius strip whose generating curve is a closedgeodesic is called
a rectifying Möbius strip. Roughly speaking, a rectifying strip can be constructed from
an isometric deformation of a rectangular domain on a plane (cf. [8, Proposition 2.14]).
We also show the following assertion:

Theorem 2. The asymptotic completionQF W M ! R

3 of a rectifying Möbius strip
F(s, u) D 
 (s)C u� (s) whose generating curve
 (s) is a closed geodesic has at least
three singular points other than cuspidal edge singularities on M.

The first explicit construction of a rectifying Möbius strip in R

3 was given by
Wunderlich [14]. Recently, Kurono–Umehara [8] proved thatthere exists a rectifying
Möbius strip which is isotopic to any given Möbius strip. See Sabitov [13] for other
references and the history.

These lower bounds of the number of non-cuspidal-edge singularities in Theorems 1
and 2 are both sharp. In fact, we give examples which have justone and three non-
cuspidal-edge singularities for Theorems 1 and 2, respectively (see Examples 2.10
and 3.4).
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Fig. 1. A cuspidal edge. Fig. 2. A swallowtail.

2. Singularities of developable Möbius strips

We give definitions of cuspidal-edge and swallowtail singularities and recall the
criteria for cuspidal edges and swallowtails as in [7].

DEFINITION 2.1. Let Ui � R

2 (i D 1, 2) be two open neighborhoods of points
pi 2 R

2 and fi D fi (u, v) W Ui ! R

3 (i D 1, 2) two C1 maps. Thenf1 is said to be
right-left equivalentto f2 if there exist two diffeomorphisms'W R2

! R

2 and8W R3
!

R

3 such that'(p1) D p2, 8 Æ f1(p1) D f2(p2) and8 Æ f1 D f2 Æ ' on U1.

We set

fC(u, v) WD

0

�

2u3

�3u2

v

1

A, fS(u, v) WD

0

�

3u4
C u2

v

�4u3
� 2uv
v

1

A

(see Figs. 1 and 2, respectively). The set{(u,v) 2 R2
I uD 0} is a cuspidal edge singu-

larity of fC and the point (u, v) D (0, 0) is a swallowtail singularity offS. A C1 map
germ which is right-left equivalent to the map germfC (resp. fS) at (u, v) D (0, 0) is
called acuspidal edge(resp. aswallowtail).

DEFINITION 2.2. Let U � R

2 be an open domain. AC1 map f W U ! R

3 is
called afrontal if there exists aC1 map � W U ! S

2 (S2 is the unit sphere) such that
�(p) is perpendicular tod f (TpU ) for p 2 U , where d f is the differential of f and
TpU is the tangent plane atp to U . Such a map� is called aunit normal vector field
of f . Moreover, if theC1 map L WD ( f,�)W U ! R

3
�S

2 is an immersion,f is called
a wave front(or front).

A singular point p 2 U of a frontal f (u,v) is non-degenerateif the differentiald�
of � WD det(fu, f

v

, �) does not vanish atp, where fu WD � f =�u and f
v

WD � f =�v. If a
singular pointp is non-degenerate, the singular set off is a regular curve nearp on
U . This regular curvec(s) is called thesingular curveof f , and a tangent vector to
c is called asingular directionof f . Moreover, a nonzero vector� 2 Tc(s)U satisfying
d f (�) D 0 is called anull direction of f . We can take such�(s) as aC1 vector field
along c(s) near p, and theC1 vector field�(s) is called anull vector fieldof f .
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FACT 2.3 ([7]). Let f D f (u, v) W U ! R

3 be a wave front. We denote byc(s)
the singular curve near a non-degenerate singular pointp 2 U of f such thatc(0)D p,
and by�(s) a null vector field alongc(s). We set� WD det(c0, �). Then,
(i) p is a cuspidal edge if and only if�(0)¤ 0,
(ii) p is a swallowtail if and only if�(0)D 0 and� 0(0)¤ 0.

It should be remarked that criteria for cuspidal edges and swallowtails of devel-
opable surfaces have been given in [5, Theorem 3.7]. One can apply the criteria instead
of those in Fact 2.3. However, developable Möbius strips are frontals but not always
fronts (see Remark 2.6). The following assertion is useful for our later discussions,
which can be proved as a corollary of Fact 2.3:

Cororally 2.4. Let f D f (u, v) W U ! R

3 be a frontal. We denote by c(s) the
singular curve near a non-degenerate singular point p2 U of f such that c(0)D p,
and by �(s) a null vector field along c(s). Then p is a non-cuspidal-edge singular
point if �(s) WD det(c0(s), �(s)) vanishes at sD 0.

Cuspidal edges and swallowtails are wave fronts asC1 map germs. By (i) of
Fact 2.3, whether a frontalf is a front or not, a singular pointp of f is not a cuspidal
edge if �(s) vanishes atsD 0.

Next, we consider the a-completion of a ruled Möbius stripF(s, u) D 
 (s)Cu� (s)
with singularities. By a suitable change of parameters, we may assume thats is an arc-
length parameter of
 and � (s) is a unit vector for eachs 2 R. Since the difference of
F and QF is only that of their domains, we express a ruled Möbius stripF itself and
its a-completion QF as the same symbolF for the sake of simplicity.

Lemma 2.5. Let F(s, u) D 
 (s)C u� (s) be a ruled Möbius strip, where s is an
arc-length parameter of
 and � (s) is a unit vector for each s2 R. Then,

jFs � Fuj
2
D

8

�

<

�

:

j�

0(s)j2
�

uC



0(s) � � 0(s)

j�

0(s)j2

�2

C

det(
 0(s), � (s), � 0(s))2

j�

0(s)j2
(� 0(s) ¤ 0),

j


0(s) � � (s)j2 (� 0(s) D 0),

where the dot‘ � ’ is the inner product and the cross‘�’ is the vector product inR3.

Proof. SinceFs D 

0

Cu� 0 and Fu D � , this assertion is obvious when� 0(s) D 0.
So we assume� 0(s) ¤ 0, and then

jFs � Fuj
2
D j�

0

j

2

�

uC



0

� �

0

j�

0

j

2

�2

C

j


0

� � j

2
j�

0

j

2
� (
 0 � � 0)2

j�

0

j

2
.
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Since

(2.1)
j(
 0 � � ) � � 0j2 D j
 0 � � j2j� 0j2 � ((
 0 � � ) � � 0)2

D j


0

� � j

2
j�

0

j

2
� det(
 0, � , � 0)2

and

(2.2) j(
 0 � � ) � � 0j2 D j(
 0 � � 0)� � (� � � 0)
 0j2 D (
 0 � � 0)2,

we get the conclusion.

The equation det(
 0, � , � 0) D 0 is a necessary and sufficient condition of flatness
of ruled Möbius strips. Hence, ifF is developable, theC1 map

(2.3) �(s, u) WD



0(s) � � (s)

j


0(s) � � (s)j

gives a unit normal vector field alongF(s, u), so F is a frontal. Since� does not
depend onu when F is developable, we regard as�(s) D �(s, u) and denote� 0 D �s.

REMARK 2.6. Developable Möbius strips are frontals but not always fronts. In
fact, a developable Möbius stripF(s,u) is a front in a neighborhood of a singular point
(s, u) D (s0, u0) if and only if � 0(s0) is not equal to the zero vector, since the Jacobi
matrix of the mapL D (F, �) is given by

dL D

�

Fs Fu

�

0 0

�

.

We give examples of developable Möbius strips one of whose singularities are not fronts
(see Examples 2.10 and 3.4). These singularities look like ‘open swallowtails’ (see Re-
mark 2.11). Moreover, further singularities which are not fronts might appear in general:
In fact, if � 0 identically vanishes on an open intervalI , the image of the restriction ofF
to I � R is contained in a plane. If there exist singular points on theplane, the singu-
larities are not fronts.

Lemma 2.7. Let F W M 3 (s, u) 7! 
 (s) C u� (s) 2 R3 be the a-completion of a
developable Möbius strip, where s is an arc-length parameter of
 and � (s) is a unit
vector for each s2 R. Then,
(i) each singular point of F is non-degenerate,
(ii) the singular set S(F) of F is given by

S(F) D

�

(s, u) 2 M I u D �
j


0(s) � � (s)j2




0(s) � � 0(s)
, � 0(s) ¤ 0

�

,
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(iii) the null vector field of F is given by

�

�s
� (
 0 � � )

�

�u
.

Proof. We set� WD det(Fs, Fu,�). SinceF is developable, det(
 0,� ,� 0)D 0 holds.
By Lemma 2.5, (s, u) 2 M is a singular point ofF if and only if

(2.4) u D �



0(s) � � 0(s)

j�

0(s)j2
, �

0(s) ¤ 0.

Since
 0(s) and� (s) are linearly independent and� 0(s) is perpendicular to� (s) for each
s 2 R, the equality
 0(s) � � 0(s) D 0 holds if and only if� 0(s) D 0. Therefore,�u D 


0

�

�

0

=j


0

�� j does not vanish onS(F), so we obtain (i). We havej
 0�� j2j� 0j2 D (
 0 �� 0)2

by (2.1) and (2.2). Therefore, (ii) holds by (2.4). Let (s0,u0) be a singular point. Since
k WD 
 0(s0) � � (s0) (¤ 0) satisfiesFs(s0, u0) D kFu(s0, u0), we have (iii).

Since� is not a constant vector field, there exists a points 2 R such that� 0(s) ¤
0. Therefore, the singular setS(F) is not empty. The following lemma gives a proof
of Theorem 1.

Lemma 2.8. Let F(s, u) D 
 (s)C u� (s) be a developable Möbius strip. The a-
completion of F has at least one singular point other than cuspidal edge singularities
on each connected component of S(F). In particular, the a-completion of F has at
least one singular point other than cuspidal edge singularities.

Proof. We remark that there exists a points 2 R such that� 0(s) D 0, since
 0 � � 0

is an odd-periodic function. Let{(s,u(s))}s2R be the graph of the singular curve ofF in
the (s, u)-plane, and let{(s, u(s))}s1<s<s2 be a connected component ofS(F). Then, the
two pointss1 and s2 satisfy � 0(s1) D � 0(s2) D 0 and � 0(s) ¤ 0 for s 2 (s1, s2). Suppose



0(s) � � 0(s) > 0 for s 2 (s1, s2). By Lemma 2.7 (ii), the functionu(s) satisfies

lim
s&s1

u(s) D lim
s%s2

u(s) D �1,

where& and%mean approaching from above and below, respectively. Then,the function

P(s) WD �u(s) �
Z s

s1




0(t) � � (t) dt (s1 < s< s2)

satisfies

lim
s&s1

P(s) D lim
s%s2

P(s) D1,
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sincej
 0(s) � � (s)j < 1. This implies thatP(s) attains a minimum at a pointsD s0. Let
�(s) be the determinant of the 2�2 matrix consisting of the two vectors (in the (s, u)-
plane) for the singular direction and null direction ofF . Then, the function�(s) D
�u0(s) � 
 0(s) � � (s) D P0(s) vanishes ats D s0. By Corollary 2.4, the singular point
(s0, u(s0)) is not a cuspidal edge singularity. The case
 0 � � 0 < 0 is similar.

REMARK 2.9. Lemmas 2.7 and 2.8 also imply that the number of non-
cuspidal-edge singular points on the a-completion of a developable Möbius strip is
greater than or equal to the number of connected components of the zero set of� 0, if
these numbers are finite.

We close this section with an example having only one singular point other than
cuspidal edge singularities. This implies that Theorem 1 gives the sharpest lower bound.

EXAMPLE 2.10. We define a 2�-periodic regular curve
 D 
 (s) W R! R

3 by


 (s) WD

0

B

B

�

sin 2s
cos 2s
1
p

2
sins

1

C

C

A

,

whose curvature function�(s) does not vanish. Let� D � (s) be the 2�-odd-periodic
and non-vanishing vector field along
 given by

� (s) WD p(s)e(s)C cos

�

s

2

�

n(s)C sin

�

s

2

�

b(s),

where e is the unit tangent vector field,n is the normal vector field andb is the bi-
normal vector field of
 . Moreover,� is the torsion function of
 and

p(s) WD
1

�(s)

�

1

2j
 0(s)j
C � (s)

��

sin
s

2
.

We remark thatp(s) and� (s) are both smooth atsD k (k 2 Z). Since det(
 0,� ,� 0)D 0,
the mapF(s, u) D 
 (s)C u� (s) is a developable Möbius strip (see Fig. 3).

The generating curve
 (s) can be expressed by a rational function; ifx(s) WD tan(s=2)
for �� < s< � , then we have


 (x) D
1

(1C x2)2

0

�

4x(1� x2)
(1� 2x � x2)(1C 2x � x2)

p

2x(1C x2)

1

A (x 2 R).

We set

O

� (x) WD
� (s)

cos(s=2)
D Op(x)e(x)C n(x)C xb(x),
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Fig. 3. The image ofF(s, u). Fig. 4. An open swallowtail inR3.

where Op(x) is a certainC1 function. Let�(x) be the determinant of the 2� 2 matrix
consisting of the two vectors for the singular direction andnull direction of F(x, v) D

 (x)C v O� (x). We obtain1

� D

1

j

O

� �

O

�xj
2

(b1C b12
p

f2)2

(a1C a12
p

f2)

x A(x)

(1C x2)3( f1)7=2( f2)2
,

where f1(x) WD 3C 5x2
C 3x4, f2(x) WD 9C 14x2

C 9x4. Here,a1, a12, b1, b12 and A
are polynomials inx such that they have only even-degree terms and are non-negative.
Moreover, the asymptotic line atx D 1 has no singular points, so�(x) D 0 if and
only if x D 0 (i.e. sD 0). By Corollary 2.4, the singular point corresponding tosD 0
is not a cuspidal edge singularity. On the other hand,�

0(s) D 0 if and only if sD 0,
where �(s) is defined by (2.3). Therefore, each singular point except at s D 0 is a
cuspidal edge by Fact 2.3 (i).

REMARK 2.11. By author’s computer graphics, the singularity on theasymptotic
line at sD 0 looks like an ‘open swallowtail’ (see Fig. 4; cf. [1]). The author does not
know a criterion for open swallowtails of developable surfaces.

3. The proof of Theorem 2

Let F(s, u) D 
 (s) C u� (s) be a rectifying Möbius strip whose generating curve

 is a closed geodesic (see the introduction). We may assume that s is an arc-length
parameter of
 . Then,
 (s) and � (s) satisfy

(3.1) 


00(s) � � (s) D 0 (s 2 R),

since 
 (s) is a geodesic. Conversely, the generating curve
 (s) is a geodesic if
 (s)
and � (s) satisfy (3.1) (cf. [8]). We normalize the ruling vector� (s) for eachs 2 R so

1The softwareMathematica(Version 7.0.0, Wolfram research) was used for this calculation.
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that the projection of� (s) into the normal plane at the point
 (s) is a unit vector, i.e.

(3.2) j


0(s) � � (s)j D 1 (s 2 R),

where the normal plane is the plane perpendicular toe(s) D 


0(s). Then, � can be
expressed by (cf. [4, 8])

(3.3) V WD
�

�

e C b

when � is nonzero, where� is the curvature function,� is the torsion function and
{e,n,b} is the Frenet frame of
 . This vector fieldV is called thenormalized Darboux
vector fieldof 
 . The ratio� WD �=� is called theconical curvatureof 
 (cf. Heil [3]).
We remark thatV may not be defined at zeros of�, so we cannot use the expression
(3.3) as a representation of� if � D 0. To avoid this difficulty, we define the new
framing {e, On, Ob} instead of{e, n, b} later (cf. (3.4)), and useOV as in (3.5) instead of
V . Then, On, Ob and OV are smooth at the zeros of�.

REMARK 3.1. In [4], V is called themodified Darboux vectoralong 
 . More-
over, the criteria of cuspidal edges and swallowtails on therectifying developable sur-
faces associated to
 are given in terms of conical curvature� D �=� if � does not
vanish. For example, on the assumption that� ¤ 0, a point (s0, u0) is a non-cuspidal-
edge singularity ofF(s,u)D 
 (s)CuV(s) if and only if u0D�1=� 0(s0), � 0(s0)¤ 0 and
�

00(s0) D 0 (see [4, Theorem 2.2]). However, it is known that the curvature functions
of closed geodesics of rectifying Möbius strips must have zeros (cf. [11]).

We recall the following facts in order to explain propertiesof the conical curvature
of a regular space curve.

FACT 3.2 (cf. [3]). Let I � R be an open interval and
 W I ! R

3 a regular
curve. If the curvature function� of 
 does not vanish, then the geodesic curvature
function of the unit tangent vector fielde W I ! S

2 of 
 as a spherical curve is equal
to the conical curvature� D �=� of 
 .

A C1 function g D g(s) W I ! R is said to beC1-strictly increasing(resp. C1-
monotone increasing in the wider sense) if g0(s)> 0 (resp.g0(s) � 0) for s2 I . A regu-
lar spherical curve� D �(s) W I ! S

2 is called anhonestly positive spiral(resp.posi-
tive spiral) if the geodesic curvature function of� is C1-strictly increasing (resp.C1-
monotone increasing in the wider sense).

FACT 3.3 ([6, 10]). Let� D �(s)W I ! S

2 be an honestly positive spiral (resp.posi-
tive spiral). We denote byC(s) � S2 the osculating circle of� at s 2 I and assignC(s)
the orientation compatible with that of�(s) for eachs 2 I . Let D(s) be the left-hand
domain ofC(s). Then,s1 < s2 implies D(s2) � D(s1) (resp.D(s2) � D(s1)).
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Proof of Theorem 2. LetF(s, u) D 
 (s) C u� (s) be a rectifying Möbius strip
whose generating curve
 is a closed geodesic. We may assume thats is an arc-length
parameter of
 and normalize� (s) as in (3.2) by a suitable change of the parameter
u. Then,
 (s) and � (s) satisfy (3.1).

The Frenet frame of
 (s) cannot be defined if�(s)D 0. However, we can construct
an ‘extended’ Frenet frame defined onR by using the ruling vector field� (s). We set

(3.4) On WD �e � � , Ob WD e � On, O� WD e0 � On, O� WD �

Ob
0

� On, O� WD e � � .

These vector fields and functions are of classC1. Then {e, On, Ob} satisfies

e0 D O� On, On0 D �O�e C O� Ob, Ob
0

D �O� On.

Therefore, we have� D jO�j. Moreover, if �(s) ¤ 0, then

On(s) D �n(s), Ob(s) D �b(s),

where � WD O�(s)=�(s) (D �1). The function O� (s) is exactly equal to� (s) if �(s) ¤ 0.
Then, � is exactly equal to

(3.5) OV WD O�e C Ob.

Since det(e, � , � 0) D 0, we haveO� D O� O�. Therefore, we regardOn, Ob, O�, O� and O� as
smooth extensions ofn, b, �, � and � , respectively. We set

OK
C

WD {s 2 R W O�(s) > 0}, OK0 WD {s 2 R W O�(s) D 0}, OK
�

WD {s 2 R W O�(s) < 0}.

We regarde D 


0 as a closed curve inS2. The spherical curvee has singular points
at zeros of�. For eachs 2 R, the vectorsOn(s) and Ob(s) can be regarded as a unit
tangent vector and a unit conormal vector of the spherical curve e(s), respectively. In
particular,{On, Ob, e} gives a smooth positive orthonormal frame alonge. Since O� is of
classC1, we can smoothly extend toR the osculating circleC(s) � S

2 of e(s). In
fact, the extended osculating circleOC(s) can be canonically defined by a circle onS2

which passese(s) and whose center is

expe(s)

�

1

2

�

arctan
2

O� (s)

�

Ob(s)

�

,

where expp W TpS
2
! S

2 is the exponential map at a pointp 2 S2. We assign OC(s)

the orientation compatible with the direction ofOn(s). If s 2 OK
C

(resp. OK
�

), then the
orientation of OC(s) is equal (resp. opposite) to that ofC(s). Let OD(s) be the left-hand
domain of OC(s).
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Since� 0 D O� 0e, by Remark 2.9, it is sufficient to show that the number of the con-
nected components of the zero point set ofO� 0(s) is at least three. We suppose that the
number of locally maximal or locally minimal points of the odd-periodic functionO� is
only one. We may assume thats D 0 is the locally minimal point. ThenO� is a C1-
monotone increasing function in the wider sense on the closed interval [0,l ], where l is
the period of
 (s). The restriction of the spherical curvee to each connected compo-
nent of OK

C

(resp. OK
�

) is a positive (resp. negative) spiral. If we take two pointss1 and
s2 satisfyings1 < s2 in each connected component ofOK

C

[

OK
�

, we haveD(s2) � D(s1)
by Fact 3.3. On the other hand, if we take two pointss1 and s2 satisfying s1 < s2

in each connected component ofOK0, it holds that O� D O� D 0 on the closed interval
[s1, s2]. Therefore On and Ob are constant on [s1, s2], so we haveD(s2) � D(s1). Since
the domainD(s) depends smoothly ons 2 R, we haveD(s2) � D(s1) for s1 and s2

satisfyings1 < s2. In particular, we obtainD(l ) � D(0). On the other hand, the orien-
tation of C(l ) is opposite to that ofC(0), since On is odd-periodic. Hence,D(0)\ D(l )
is empty. However, sinceD(l ) is not empty, this is a contradiction. SinceO� is odd-
periodic, O� must have at least three locally minimal or locally maximal points. Then,
by Remark 2.9, we obtain Theorem 2.

EXAMPLE 3.4. We set


 (s) WD
1

1C (sC s3)2

0

B

B

B

�

2

5
sC s3

C s5

sC s3

�

8

5

1

C

C

C

A

,

which gives a closed regular curve ofS1
D R[ {1} in R

3. Moreover,
 has only one
inflection point atsD1, where the inflection point is a zero of the curvature function
of 
 . We set O
 (t) WD 
 (1=t). Since

O


0(t) � O
(3)(t)jtD0 ¤ 0, det(O
 0(t), O
(3)(t), O
(4)(t))jtD0 D 0

and [8, Corollary 2.11], theC1 map F(s, u) D 
 (s) C u� (s) is a rectifying Möbius
strip, where� (s) is as in (3.3). The a-completion ofF has just three singular points
other than cuspidal edges (see Figs. 5 and 6).

By Lemma 2.7, the singular curve ofF is given by

s 7!

�

s, u(s) WD �
j


0(s)j

O�

0(s)

�

.

Moreover, the null vector field ofF is �=�s. We denote by�(s) the determinant of the
2� 2 matrix consisting of the two vectors for the singular direction and null direction
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Fig. 5. The image ofF(s, u). Fig. 6. The a-completion ofF .

of F . Then, we can calculate2

�(s) D u0(s) D
(1C s2

C 2s4
C s6)a(s)3=2Q(s)

s2b(s)2
,

wherea(s), b(s), Q(s) are certain polynomials which have only even-dimensionalterms
and a(s), b(s) > 0. It can be rigorously checked that the polynomialQ(s) has just two
roots by Sturm’s theorem. Moreover, considering� under the parametert D 1=s, we
have �(t) ! 0 (t ! 0), so �(t) has three zeros includingt D 0 (s D 1). On the
other hand, since�(s, u) WD On(s) is a unit normal vector field alongF , the C1 map
L D (F, �) is not immersed only at (s, u) D (1, u(1)). Then, F has exactly three
non-cuspidal-edge singular points by Fact 2.3 (i) and Corollary 2.4. We remark that the
singularity at (s, u) D (1, u(1)) is a shape like an open swallowtail (see Fig. 4). The
other two non-cuspidal-edge singularities are both swallowtails (cf. (ii) of Fact 2.3).
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