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Let 4 be a ring with unit element. The left dimension (notation: 1. dim 4A4),
the left injective dimension (linj. dim. 44) and the left weak dimension (w.l. dim
4A) for left A-modules and the left global dimension (I. gl.dim 4) and the global
weak dimension (w.gl.dim A) of 4 are those defined in [3].

Len 4 and I' be rings and + a ring homomorphism of 4 to I'. Then each left
I'-module A may be regarded as a left A-module, by setting, for A€4 acA

Aea = rh-a

If I is A-projective in this sence, the following inequalities are shown in [3];
lL.dim 44 =1.dim r4, w.1l.dim4A=w.1l.dim r4 and 1.inj.dim 44 = l.inj. dim r4
for left I"-madules A.

M. Auslander [1] has shown that 1. gl.dim 4 =sup l.dim 4/{ where [ ranges
over all left ideals of 4 and obtained some relations among 1. gi.dim 4;, 1 gl. dim
4, and l.gl.dim 44 @ 4, in the special cases where 4; and 4, are algebras over
a field K.

If A is a two-sided ideal in 4, there is in general very little relation between
1. gl.dim 4 and L. gl. dim (4/%); it was however proved in Elenberg-Nagao-Nakayama
[6] that if 1. gl.dim A=1 and 4 is semi-primary, then gl. dim (4/%) <oo.

Now, we show in section 1 of the present note that for each left A-module A
we have ldim 44 =1 dim 4,4%, w.l.dim 44 = w.L dim 4,A" and I inj. dim 44
= l.inj. dim 4,A4” and conversely, for each left A,-module A, L dim 44 =1 dim
14,4 and so on, where 4, is the total matrix ring of order # over 4. Hence, as
the special case of 43 4, we obtain L gl.dim 4 = L. gl. dim 4, and w. gl. dim 4
=w. gl.dim 4, for any ring 4 and further if 4 is an algebra over a commutative
ring K, we obtain dim 4 = dim 4,.

In section 2 we show that the analogous theorem to Auslander’s is valid for
w. gl. dim 4 and some characterization of ring 4 with w.gl.dim 4 = or 1. gl. dim
A=nm=1). In section 3, we assume that +r is a ring homomorphism of 4 to I
and 1.dim 4" =0 or r.dim 4I" = 0, then we obtain some relations between the dimen-
sions of 4 and I', regarding I"-modules 4 as A-modules. In particular, if two sided
ideal A is equal to Ae or ed (e=e?), we obtain 1. gl. dim 4 =1 gl. dim (4/%) and
w.gl.dim 4 = w.gl.dim (A4/9).
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In section 4 we show that w.gl.dim 4 =0 if and only if 4 is regular, hence we
obtain an example of the case that 1. gl.dim 4 > w. gl.dim 4. Finally in section 5
we study some relations between the dimensions of 4 and ede under some assump-
tions. The definitions and notions employed in this paper are based on those intro-
duced by H. Cartan and S. Eilenberg [3].

1 Let 4 be a ring with unit element and 4, be the total materix ring of order #
over 4. We assume that each 4-module is unitary and that each ring homomorphism
maps unit upon unit. If two rings 4 and I" and a ring homomorphism » of 4 to I’
are given, than each left I"-module A may be regarded as a left 4-module, by setting,
for a€ A, 1€4
(1) ia = P(MDa.

In particular I' may be regarded as 4-module.

The following lemma is an immediate consequence of [3; XVI, Exer. 5]

LEMMA 1. Let A, ' and ) be as avove. Then
if w.l.dim aI' =0, we have w.l. dim AA=w.l dimrA,
if I.dim A" = 0, we have . dim \A = I. dim rA, and
if w.v.dim al' = 0, we have [.inj. dim 1A =< . inj. dim r A, for each left I"-module A.

Let A be a left 4-module and A" and A, be the direct sums of # and #n2 A’'s,
respectively. The left operations of 4, over A" and A, are defined, by setting, for
A=) €dy a=(as...a,) €A" a=(a;;) €A,

/Iaz(%;'zlj aj, ~~~§/l,,,- a;)

(2)
Zd—“— ( ;xik tlkj).

A" and A, become left 4,-modules under these operations. We define a ring homo-
morphism ¢ of 4 to 4, as follows,

(3) o) =<j;) for A€ 4.

A" and A, become left 4-modules by (1), (2) and (3), and these coincide with
natural direct sums of # and 72 A’s as A-modules respectively.

ProposITION 1. If aleft A-module A is projectve, then the left A,-module A" so is.

Proof. If A=A, we have 4,=A"¢g ... A" as A,-module, hence 4” is A,-projec-
tive. Thus by a direct sum argument we have proposition.

ProrosITION 2. FEach left A,-modele A is Ay,isomorphic to (eq1 A)", where we
regard esq A) as left A-module.

Proof. Wh have a decomposition of A as follows,

A=el] A"f‘ezl A'+' AR 1 A

and e, A is A-isomorphic to e;; A.  We obtain a A,-isomorphism of A to (e A)"
by the following correspondenc, for a€ A a' € (eyy A)"
a=e1101+exnas+ -+ €,1a, <— &’ =en1+enas+ - +ena,.
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ProrosiTioN 3. For left A-modules A, B and a right A-module C, we have iso-
morphism .

Hom 4(A, By~Hom 4,(A", B"), C®A~ C";?”A".

. @

Proof. We denote an element (0--0a0:-0) by a®. Any element f of Hom
4,(A”, B") is uniquely decided by the image of the first component of A, for f(a®)
=flena®) =e;;a®).  And since f(a®) = f(ena®) = ey f(a®), f is uniquely de-
termined by a element of Hom 4(4. B).

Next we have
(1,000, 6)Q(a, ..., a) =2 cDQa.
17
If i%j, ¢ Qa¥) =ce; Qa? = ¢ Qe yah=0, and O a = cWey;®a)=cOR
ena® = VR a®,
hence (ci...c)@(a; ... a)=2]c;VQa;™.
1
We define an epimorphic mapping V¥: CR A —> C*®R A" by setting
Y Y

Y(c®a)=cPRQam.

Coversely we define a mapping ¢ : C"® A" — CQ A by setting
An A4

PP Qa®) =cQa,
this mapping is defined inedpendent on the choice of representatives.
Then ¢ is epimorphic and +roe is the identity mapping. Therefore +» is isomorphic
ProrosieloN 4. Let A, B and C be as above, then we have isomorphisms ;
Ext 1(A, BY=~Ext 4,(A", B"), Tor 41(C, A)~Tor 4=(C", A").
Proof. Let

dm dm~—1
Xm > Xm—l_

be a projective resolution of A. By the natural manner we can extend this sequence

> — —> X —d—]>Xo~i>A—>0

to a A,-projective resolution of A” using proposition 1, as follows

n~ 3 dﬂ
D, oxp W xa N

d;,
X X
Passing to homology yields the desired results in virtue of the definitions of Ext

and Tor.
COROLLARY 1. For each leaft A-module A we have I. dim.14A=I. dim 4, A", L. inj. dim

AA=1 inj. dim 1,A", and w.l. dim 1,A=w. . dim 4,A".

Proof. We have immediately the conclusion for 1. dim 4 by lemma 1 and the
consideration in the proof of proposition. Let B be a left 4,-module, then we have
following isomorphisms from propositions 2 and 4.

Ext 4(e 1 B, A) ~ Ext.,((eq1 B)", A") = Ext 4,(B, A").
Hence 1 inj. dim 4,A" = L. inj. dim 4A.
The inverse inequality is obtained from lemma 1, noting that A” is the direct sum
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of n A’s as 4 module.

It is similar for w.l. dim.

Remark 1. From corollary 1 and Theorem 18 of Eilenberg-Nakayama [4] we
can obtain the well known result that 4 is quasi-Frobenius if and only if 4, so is.

CORORRARY 2. For each left A,-module A we have
L. dim aA=1 dim 1, A, l. inj. dim 1A=L inj. dim 4,A

and w. . dim 1A=w. . dim 1,A

Proor. Ovserbing that A is the direct sum Of n (e;41 A)’s as a A-module, we

have by propositions 1 and 2

L.dim aAA=I dim 4, (ey1 A)"=1.dim 4 e;1A=1. dim 41A.
It is similar for the remainders.
From the above two corollaries we have

TrHeorREM 1. L gl.dim 4=I1.gl.dim 4,, w. gl.dim 4=w. gl.dim 4,,.

Now, let 4 be an algebra over a commutatiue ring K. And we have A4°=AQ A4*
where 4* is the inverse algebra. As for two sided 4-modules A, the standard pro-
cedure will be to convert them into left modules over 4°. Further we observe that
(A4,)°= A, R A,* is isomrphic to AQ A*R Kz = (A, . \
Hence from corollary 2 we have L. dim 4¢A=1. dim (4y¢,A for each two sided 4,-modul
A. In partiqular, setting A=4, we have

THEOREM 2. dim A = dim 4,

PropPoSITION 5. The following properties are equivalent, respectively :

a) A s left hereditary,

b) A, is left hereditary,
and

a’) A is left semi-hereditary,

b") A4, is left semi-hereditary,

The first statements are clear from Theormem 1 and [3, VI, 2:8]. For the
proof of the second statements we need the following well know reslut, (cf. [2:
23+157).

Let 1 be left ideal of A, and m(1) be the left A-module consisting of the first row

of elements in 1.
Then the correspondence 1 <——m (1) gives one to one correspondence between the left
ideals of A, and the A-submodule of n-dimensional vector space A" over A. Moreover,
m (1) is finitely gemerated as a A-module if and only if 1 has finite generators as a
left ideal.

Now we assume that A is left semi-hereditary. If 1 is a finitely generated left
ideal of 4,, we have from the above remark and corollary 1 of proposition 4

1. dim 4,0 = L. dim 4,m (I)” = 1.dim am(D) .

From [3; I, 6-2] Ldim .m () = 0, hence 4, is left semihereditary. Conversely, let
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4, be left semi-hereditary and ! be a finitely generated left ideal of A, then we
have L dim 4!{=1 dim 4,(, and since !, is finitely generated as a left ideal of 4,,
L. dim 4,,=0. Therefore 4 is left semi-hereditary.

2. Now we study here some properties of weak dimensions of rings.

LemmMma 2. Let A be a left A-module and consider an exact sequence

0—>B—>P—>A—>0

wheve w.l.dim aAP=0. If w.l.dim 14 =0, then w.l.dim aAB=w.[.dim 1A—1, and if
w.l.dim AA=0, then w.l. dim 4B=0.

It is clear (cf. [3; VI, 2-3D.
The following theorem is analogous to Auslander’s theorem in the case of left
dimensions.

THEOREM 3.
a) w.gl.dimAd=sup wl.dim 1B
b) =sup w.l.dim 1 A/

wherve B ranges over all left A-modules generated by a singule element and | ranges
over all left ideals of A.

If further w.gl.dim 40

c) w.gl.dim A=1+ sup.w.l. dim 41

Proor. a)—>b)—c) is clear from lemma 2. Hence we prove here only the
statement a) of the theorem. This proof is based on

LemMA 3. Let A be a left A-module, I a non empty well ordered set and (A))ier
a family of sumodules of A such that i%)j Ai=A and if i€l and i=j, then A;= A;.

If w.l.dim a(A;/A!) =n for all i€ I where A/ =_gi Aj, A{ = (0) Q1 is the least
element of I), then w.l.dim A =n ’

Proof. If n =0 the then for all i€ I we have w.l dem 44;/A’=0. From the
exact sequence

0— A/ — A —> A/JA? —> 0

we have for each right 4-module B and n=1

0= Tor.«(B, A;/A/) —> Tord(B, A}) —> Tor}(B, A;)) —> Tord (B, Ai/A!)=0.
Hence Tor/(B, A;/) is isomorphic to Torf(B, A;), that is, w. 1. dim A A/ =w. |, dim 44;,
By our assumption we have w. 1. dim 4(A4;/A{)=w.1l.dim 4A;=0. Then we can use
the transfinite induction. We assume that all modules A; such as j < i are those
with w. 1 dim 414;=0. If 7/ is not a limit element, we have A/=A4;; and by
the above remark w.l dim 44;=0. If { is a limit element, than A; is the direct
limit of A; (j<7) and inclusion mappings 7;/"(j=j <i) (see [5; VIII, Exer. B]).
Since Tor commutes with the direct limit, we have Tor{ (B, A/) = 0 for n>0.
Hence by the abve remark we obtain w.l dim 44; = 0.

For #>0 we can use the same method as that of proof of [1; pr. 3]. The proof
of a) of theorem is also similar to that of [1; Th, 1].
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From lemma 2, Theorem 3 and the analogous properties to them in the case of
the left dimensions we have the following corollary which is a generalization of
[3;1 5-4]

CoroLLARY. The following properties are equivalent for n =1, respectively ;

a) LgldimA=n

b) For each A-submodule A of a left projective A module we have I. dim sA=n—1
and

a) w.gldimAd=mn

b”) For each A-submodule A of a left A-module P with w.l.dim sP=0 we have

w. l.dimaA=n—1
3. we now consider some relations between dimensions of two ring 4 and I'

which are connected by a ring homorphism +r of 4 to I.

PropPoSITION 6. Let A, I' and r be as above and we assume that l. dim I’ = 0
and I.dim vB =1 implies I. dim rB=1 for left '-modules B. Then we have I. dim 1A
=L dim vA for each left I'-module A with Il.dim rA < oo .

Proof If 1.dimrA =0, l.dim sA=0 by lemma 1. Now, we assume that the
proposition is proved for left I"-modules A’ with L. dim 14" <q. (1<g<eo), and that
l.dim rA =q. There exsits a I'-exact sequence of A with X projective as

D) 0—>Q—>X—>A—>0.

Since 1.dim rA>1, we have L. dim r@ = ¢—1, hence by the hypothesis of induction
l.dim aQ =q¢—1 and L dim sX =0. Regarding (E) as -exact sequence, we have
L.dim s A =gq.

If there are the same assumptions for week or injective dsmensions, it is ture

for them. In partiqular if ) is epimorphic, the second condition of proposition

is satisfied (cf. cor of pr. 9).
PropoLTION 7. Let A, I' and < be as avove and | be a left ideal of A. We set
= IY(l). If w.v.dimal’ =0, then l.dimr I'/1*=<1. dim 1 A/1.

w.ldimrT'/t*=w.l dimaA/l.
Proof. We obtain the following commutative diagram
3
4 —24— 4/t
l |
'sb'l @
ér
I
where e is the natural mapping of 4 to 4/{ and er is that of I" to I'/l* and ¢:
A/l —>T/1* is defined as follows,

for A€ 4/t (X is a residue class of 2 mod )
@(2) = Y(2) (P(A) is a residue class of Y(1) mod [*),
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We define a homorphism g of F®A/I to I'/t* as follows; for T €I, A€ A4/l g(TXX)
=To(A) = Txb(l) Observe that F®A/I I“®1 and the kernel of g is *®1. For

x€1*®1 we have x =37, «,b(l)®1—— 27 ®l =0 where 7; €I, I;€1 Hence g is
isomorphic. Since by the assumption Tor* ([T, A4/) =0 for n >0 we have from the
mapping theorem [3; VIII, 3-1]

Tor 4(A, A/\) =~ Tor 4(A, I'/1¥),

Ext 4(A4/1,C) ~ Ext 4(4/,C)
for right I"-modules A and left I"-modules C. This proves the first half. For the
second half we have the same thorem as the mapping theorem and we can prove
the last statements.

COROLLARY. Let ) be epimorphic and N be its kernel. If w.r.dim A/N =0, then
Lgl.dim A/IN=Igl.dim. A. And if w.r.dimaA/N =0 or w' l. dim ad/N = 0, then

w.gl.dim A/N = w.gl.dim 4.

ProposITION 8. Let A, I' be semi-primary® and a ring homomorphism  of A
to T" be given. And let Nibe the radical of A and we assume that Nr = I'}p (Na)
be the redical of I' and that v.dim 4aT" =0. Then we have for each right I'-module A
and left I'-module B

rv.dimrA=vr.dim 1A, I inj.dimrB=1[inj. dim 4B.
Proof. From the consideration in proposition 7 we obtain the following isomor-
phism,
Tor 4 (A, A/Ns) =~ TorT (A, I'/Nr).
We have from the analogous properties of [1; pr. 7] such equivalent relations as
v.dim 1A < n<—— Tor #(A, 4/Na) =0 <—— Tor (A, I'/Nr) =0
——r.dimrA<mn.
It is similar for left injective dimension .

ProrosiTioN 9. Let N be a two sided ideal of A and we assume that w.r.dim
AA/N=0 or w.l.dimaA/N=0, then we have for each left A/N-module B and right
A/N-module C Tor 4 (C, By~ Tor 4y%(C, B). And if I.dim 4 4/N=0 or r.dim 4 4/N
=0, we have Ext 49 (A, B) for each left A/U-modules A and B.

Proof.

It is easily seen that Hom 4(A/%, B) is isomorphic to B. We define a homo-
morphism +» of A/A® A to A/NA by setting, for IQa€ A/AR A is a residue
class of 1 mod N)

YvA®a) =d (dis a residue class of a mod NA).
Then it is clear that + is isdmorphic. From [3, VI. pr. 4-1-2:3-47] we obtain iso-
morpnisms.,

(1) A ring A is called semi-primary if it cantains a nilpotent two-dided idal N such that the residue
ring A/N is semi-simple. It does not coincide with “half primar” of Deuring, Algebren,
Ergebn. Math,
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CorOLLARY. If Ldimad/N =0 we have for left A/N-modules A I dim 1A
=Ldim gu A, w.ldimiA=w.l.dim g9 A. If w.r.dim 1 4/U=0, then I inj. dim 14 A
=L inj. dim 491 A.

Proof. For each left 4/A-module B we have a isomorphism: Exti (A, B)
~ Ext 49 (A, B), hence we obtain 1. m.dim 49t A=1.dim 4 A. The inverse inequality
is obtained from lemma 1. It is similar for the remainders.

TuroreEM 4. If a two-sided ideal N of A is genervated by an idempotent element
e as a left ideal or a right, then 1. gl. dim A=1. gl. dim A/N, w. gl. dim A=w. gl dim A/N.

RemARrK 2. If I' is a corossed product over A with a finite complete outer auto-
morphisms & of 4, then all the assumptions of propositions 7 and 8 are satisfied.

If I' is a commutative semi-primary ring and & is a finite complete automor-
phisms of I and 4 is the G-invariant subring of I', then I' ahd A satisfy all assump-
tions of propositions 7 and 8.

ProrosiTioN 10. Let I' be a crossed product over A as above, then

gl.dimd=gl.dimT.

Proof. Let A be a left A-module. We defind a I'-module p(A) as follows,

PA=D"Q V,A ({V,} is a base of p(A4))
for x€4, V,ae VA €0
x(Vsa) = Vr,x"zi u, (Vo) =V, 0a..;a
where {u.} is a base of I" over 4 and {a..,} is a factor set of I" over 4. Since
#; A is a direct sumand of p(A) as left 4 module we obtain by lemma 1. dim rp(A)
=l1.dim 4 A. Which proves propotion.

Observing that we can obtain naturally a I' projective resolttion of p(A) from
A-projective one of A. we have l.dim4 A =1 dim r p(A).

If 4 is semi-primary, from proposition 8 we obtain,

CoroLLARY 1. If A is semi-primary, then gl.dim A= gl. dimT.

We obtain a similar result for the second example of remark 2 as follows.

COROLLARY 2. Let A and I" be the same as the second example, then

gl.dimA = gl.dimT . ‘
4. We now characterize rings 4 with w. gl.dim 4 =0
ProposiTioN 11. Let { be a left ideal of A. Then
w.l.dim a A/l =0 if and only if, for each right A-moule
A and each right A-snbmodule A’ of A A’ ~Al = A’ holds.
Proof. We assume w.l.dim44/[=0 and we obtain a exact sequence as follows
0— A —>A—>A/A—>0

From our assumption we obtain the exact sequence; 0 —> AR A/l —> AR 4/1

—)A/A’(%)A/I~—>O. By the isomorphism + in the proof of proAposition 9 AﬁimAI

=A’l holds. Conversely if A'~Al= A’l we obtain w.l.dim a4/{ =0 by the above
consideration
We call an element a of a ring 4 regular if there exists such an element x as
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axa=a and a left ideal ! regular if all elements of [ are regular.
PromoTION 12 If a left ideal | is regular then
w. L dim a4/l =0

Proof. For a right A-module A and its submodule A’ we prove the equality
A’ ~Al=Al. For x€ A’~Al, we have x =3 a,;y;, a;€ A, y;€1.

Since [ is regular, the left ideal generated by {y;} is generated by an idempotent
e. Honce x+¢ = D> a;y,e =D a;y;x € A’'l

LemMA 4 For each left A-module B we obtain w.l.dem sB=mn if and only if
Torp1(xAB) = 0, where x4 is a right A-module generated by a single element x.

Proof. The “if part” is trivial. It is sufficient to show Torg.1(A, B) =0 for
each finitely generated right 4-module A, since Tor commutes with the direct limits.
We assume that it is true for right A-module A’ generated by (z—1) elements.
Let A be generated by x;...x, and A’ by %;...%,, then we obtain 0 — A" —>
A—>A/A"—>0. Then —>0=Torg.1(A’, B)—> Tor #.1(A, B)—> Tor #,4(A/A’, B)
=0 —> is exact, that is, Torf.1(A, B) =0. We have the lemma by the incuction.

CoroLLARY We have for each left A-modul B

w.l.dimaB=n if and only if Torf. (A4/N, B) =0
Jor each vight ideal W of A.

ProposITiON 13  Let | be a left ideal of A. Then w.l. dim 4 A/{ =0 if and only
if L~AN =1 holds for each right ideal N of A.

Proof. 1If we replace A by 4 and A’ by U in proposition 11, we obtain the first
half. Conversely, we assume [~ =2!. From the exact sequence: 0—>%—>
A—> A/A—>0, we obtain the following exact one: 0—> Tor{ (4/N, A/)) —>
NQQ A/l —> AQ Al —>. By our assumption we see that the third arrow is monomor-

phi/é and Torfl‘(//ll/?l, A/l = 0. Hence we obtain the proposition by lemma 4.

CoroLLARY If w.l dim 4 A/l =0, then for any element x of | x| contains x and
[ is idempotent: 2=1. In particular if | is principal ({ = da) then w.l.dim 4 4/1=0
if and only if theve exists some element x in Aa as a-x = a.

From propositions 12 and 13 and theorm 3 we obtain

TueoREM 5 For each ring A, the following conditions ave equivalent:

a) w.gldim 4=0

b) A’'~Al= Al for each right A module A, each right A-sub-module A’ of A
and each left ideal | of A.

c) 4 is regular

From corollary of proposition 7 and proposition 12

TueEOREM 6 If U is a regular two-sided ideal of A, then

L.gl.dim Az=1 gl dim. A/N and w. gl. dim A= w. gl. dim A/N.

If 4 is regular without minimal conditions, for instance a direct product of infinite

number of fiels, the w.gl.dim 4 is smaller then gl.dim 4, We note that from
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theorems 1 and 5 we obtain that A is regular if and only if 4, so is, which was
obtained by Neumann [7] and that if 4 is regullar, then 4 is semi-hereditary.

5. We consider now some relations between dimensions of 4 and ede(e = e?)
under particular assumptions.

Let A and B be left ede-modules.

Since 4e is a direct sum of ede and (1—e)Ae, we may regard B as a sub-module

of 4e@ B. Hence we obtain an isomorphism: Hom A(Ae®A Ade @ B) =~ Hom
ede

efe
e4e(A, B) by the following mappings ¢ ann +: for f (EHom A(/le®A Ae®B))

of@=fe®@a=cfle®a, Vgle®@a =ri-gla@.

PropPoSITION 14 If Tor*4¢(de, A)=0 for n >0 and a left ede module A, then
Ext a(de ® A, 4e ® B) =~ Ext «4.(A, B) for each left ede-module B.

Proof Slnce Ae is left A-projective, we obtain the proposition by the same
consideration as that of the change of rings in [3, VI].

We can obtain the analogous proposition to the above one for Tor

ProrosiTioN 14a If Tored<(A, ed) =0 or Tor<d¢(de, B) =0 for n>0 and a right
ede module A and a left ede module B. Then Tor 4(AQed, Ae@ B) =~ Torede(A, B).

ede efde
Proof We only note that since ed @ Ae is isomorphic to ede as a two sided ede

module by the mapping: el ® Ae—>elide, we obtain (AR eA) ® (Ae®B) ~ARB.
ProPosITION 15 If w. 7. dim cdede =0, we obtain e
Ldim ade @A =1dimete A w.l.dim ade @ A = w. . dim ese A
Jor each left ede mc;Z’eMIe A. e
Proof. If 1.dim .4. A is infinite, proposition is clear from the above. We prove
it by induction with respect to the dimensition # of A. It is clear for n=0 We
assume the proposition for each module A’ with 1.dim 4. A’ =n—1. We take

an exact sequence of a left ede module A with L.dimete A=n: 0 Q P

A——>0, where P is ede-projective. By the hypothesis we obtain 1. dim 44e Q@ @
e/e
=#n—1and l.dim 14e @ P =0. Furthermore we can obtain the exact sequence of

Ade@RA: 0—> 4@ Qef» Ae ® P——> de ® A——>0 from the above one. Hence
wee gave L. dim a AZA(ZX) A=n for . dim a Ae ® A=0. For the weak dimension we
only observe that W;Aecan obtain the exact sei:fl;ence :0—> B de—> CQ Ae from
a A-exact one: 0 —> B—— C and further if w.l. dimede A 26 we have finally the

exact one: 0—>BR®RxAe@A—>CRQ 4e R A.
From the proposi/%ion elAt'c) we can (/)lbtaililAe
THEOREM 7 If w.7. dim cdo Ae =0 then we obtain
Lgl.dimAd=l gl dim ede and w. gl dim A= w. gl. dim ede
In order to obtain an analogous theorem to this we need the following lemma

LEMMA 5 If L.dim cse ede = 0, we have for each left A-module A I dim 1A
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= [ dim 0 eA.

Proof Let —> X, —> X;—> Xo—> A—>0 be a projective resolution of A.
Then —eX, —>eX; —>eX,—>eA—>0 is clearly a ede-projective resolution
of eA from our assumption. This proves proposition.

THEOREM 8 If [l dimcte ed =0 then

Lgl.dimAd=l gl dim ede.

Proof Let I be a left ideal of ede. then [ = A’ is a left ideal of 4 contained
in de and further 4/ is isomorphic to Ae/{® Au_,). From lemma 5 we obtain
Ldim 44/{ = 1. dim pde/{ =1. dim .4, e(de/l) =1.dim .4, ede/el = 1. dim ,4.e4e/l’.

Next we consider algebras over a commutative ring K.

PropoSITION 16 If I dim o4, ed = 7. dim 4, de = 0,
then dim A = dim ede

Proof 1t is easily seen that (ede)® is isomorphic to (e @ e*)A°(e @ e*) and
L dim. (ede*e*4* is equal to r.dim .4, de. Hence from lemma 5 and [3, IX, 2-5]
we obtain 1. dim 4¢4 = 1. dim (eQe*) (eQRe*) A = 1. dim (ede)e ede .

ReEMARK 3 If we take the total matrix ring of order n over A instead of A4 and
ey instead of e, then our hypotheses are satisfied and propositions 14 and 1l4a
coincide with proposition 4.

We can eaily obtain isomorphisms of propositions 4, 14 and 14a by using the
formulas (4) and (4a) of [3, XVI, 4].
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