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Abstract

Quasitoric spaces were introduced by Davis and Januskigwitheir 1991 Duke
paper. There they extensively studied topological invasiaof quasitoric manifolds.
These manifolds are generalizations or topological capatés of nonsingular pro-
jective toric varieties. In this article we study structir@nd invariants of quasitoric
orbifolds. In particular, we discuss equivalent definiscend determine the orbifold
fundamental group, rational homology groups and cohonyligg of a quasitoric
orbifold. We determine whether any quasitoric orbifold da@ the quotient of a
smooth manifold by a finite group action or not. We prove exise of stable al-
most complex structure and describe the Chen—Ruan cohgggimups of an al-
most complex quasitoric orbifold.

1. Introduction

Quasitoric spaces were introduced by Davis and Januskieini¢8] where topo-
logical invariants of quasitoric manifolds were extenbivetudied. The ternquasitoric
however first appeared in the survey [4] which is also a goéereace for many inter-
esting developments and applications. Quasitoric matsf@njoy many cohomological
properties of nonsingular toric varieties. But they do netessarily have algebraic or
complex structure. For instance, the connected €lift + CP? is a quasitoric mani-
fold that is not even almost complex. Hence these propediidsric varieties are not
contingent upon such structures but a consequence of the &mtion.

In this article we study topological invariants and stabi@ast complex structure
on quasitoric orbifolds. In particular, we discuss equevaldefinitions and determine
the orbifold fundamental group, rational homology groupsl @ohomology ring of a
quasitoric orbifold. We prove existence of stable almoshplex structure and describe
the Chen—Ruan cohomology groups of an almost complex quigsdrbifold. Some of
these results are analogues of well known facts about caenpimplicial toric varieties
in algebraic geometry. However in the tradition of Davis al@huskiewicz, our proofs
are purely topological. In the sequel we will study existeré almost complex struc-
ture and almost complex morphisms. We expect this to be ameisting category.

A quasitoric manifoldX?" may be defined as an even dimensional smooth mani-
fold with a locally standard action of the compact tori8 = U(1)" such that the
orbit space has the structure of andimensional polytope. Locally standard means
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that locally the action i®-equivariantly diffeomorphic to the standard actionTf on
C", wheref is an automorphism of ". That is, every poink € X has aT"-invariant
neighborhoodVy and a diffeomorphisnh: V, — U, whereU is an open set irC"
invariant under the standard action ©f, and an automorphismi,: T" — T" such
that h(t - y) = 0«(t) - h(y) for all y € V. We point out that there are even dimensional
compact manifolds with locally standaf@" action for which the orbit space is not a
homology polytope; see Example 4.3 of [12].

The standard action off(1)" on C" has orbit spac®’, = {(ry,...,rn) € R" |
ri > 0}. The orbit space of the torus action on a quasitoric manifsldherefore a
simple polytope inR"; that is, exactlyn facets meet at each vertex. This leads to a
combinatorial model where a quasitoric manifold is definedte quotient of a trivial
torus bundleP" x T" on a polytopeP" by the action of certain torus subgroups of
T" on the fibers over the faces of the polytope. The dimensiorhefisotropy torus
subgroup over the relative interior of a face matches thenoeasion of the face.

More precisely,T" can be identified withZ" ®z R)/Z". The isotropy subgroup
of each facetF; is a circle subgroup corresponding to a primitive veciprin Z",
which is determined up to choice of sign. The vectpris called a characteristic vec-
tor. The isotropy subgroup corresponding to a face whicthésibtersection of facets
F,,..., F, is the subtorus off" corresponding to the subgroup @f' generated by
Aiys - - -, Ai,. TO ensure smoothness, it has to be assumed that for evesx e the
polytope the corresponding collection of characteristic vectors forms a basis &f
over Z. It turns out that different choices of signs of the correspond to different
stable almost complex structures on the quasitoric mahifeée [2]. A characteristic
vector with a definite choice of sign is calleddicharacteristic vectar A quasitoric
manifold whose characteristic vectors have been assigafitd signs is calledmni-
oriented We will apply the same terminology in the case of orbifoldshroughout,
we will denote an orbifold by a bold upper-case letter anduitslerlying topological
space by the same letter in normal font.

Our first definition of a quasitoric orbifold is constructiand will readily yield
a differentiable orbifold atlas. Namely, the underlyingpadtogical spaceX of an
n-dimensional quasitoric orbifolX is defined to be the quotient d®" x T" by the
action of k-dimensional tori on the fibers over codimensibrfaces of P", via some
finite covering homomorphisms onto subtori ©f. The precise definition is given in
Section 2. The implication for the characteristic vectaghat they need no longer be
primitive, and the collection of characteristic vectorsresponding to any vertex d®"
need not form a basis d&" over Z, but should beZ-linearly independent.

We follow this up with an equivalent axiomatic definition ofdifferentiable) quasi-
toric orbifold akin to the definition of a quasitoric manifioVia locally standard action.
We also give a classification result, Lemma 2.2. Later, intiBed, it will be evident
that our definitions of a quasitoric orbifold are more gehéhan the original defin-
ition in [8], as the quotientZ(P)/Tx of a higher dimensional manifold by a smooth



ON QUASITORIC ORBIFOLDS 1057

torus action. Note that Hattori and Masuda [11] have intreduan even more general
class of spaces called torus orbifolds, relaxing the camdtof local standardness on the
T" action.

Since we restrict the orbit spade to be compact, quasitoric orbifolds are compact
by definition. However this restriction is made mainly to ohaestablished terminology
and state the results in a convenient form. We occasionake the liberty of using
combinatorial model with noncompact base sp&ckke at the beginning of Section 6.

A differentiable orbifoldX is called aglobal quotientif it is diffeomorphic as an
orbifold to the quotient orbifold ¥1/G], where M is a smooth manifold ané is a
finite group acting smoothly oM. It is an interesting problem to decide whether a
given orbifold is a global quotient or not. In Section 3 wewvsothe problem com-
pletely for quasitoric orbifolds by determining thearbifold fundamental groupand
orbifold universal cover These invariants were introduced by Thurston [18].

In Section 4 we compute the homology of quasitoric orbifaldth coefficients in
Q. We need to generalize the notion GfAtcomplex a little bit for this purpose. In
Section 5 we compute the rational cohomology ring of a qaesitorbifold and show
that it is isomorphic to a quotient of the Stanley—Reisneefang of the base poly-
tope P. These results are analogous to similar formulae for stigblitoric varieties.
Our proofs are adaptations of the proofs in [8] for quasitenanifolds and are purely
topological.

In Section 6 we show the existence of a stable almost complextsre on a
quasitoric orbifold corresponding to any given omnioréiun, following the work of
Buchstaber and Ray [2] in the manifold case. The univerdafald cover of the quasi-
toric orbifold is used here. As in the manifold case, we shioat the cohomology ring
is generated by the first Chern classes of some complex ramlodsifold vector bun-
dles, canonically associated to facetsRIif. We compute the top Chern number of an
omnioriented quasitoric orbifold. We give a necessary @@ for existence of torus
invariant almost complex structure. Whether this conditis also sufficient remains
open. Finally we compute the Chen—Ruan cohomology groupsnoflmost complex
guasitoric orbifold. These will be used in the sequel.

We refer the reader to [1] and references therein for defimstiand facts concern-
ing orbifolds. The reader may also consult [14] for an exasllexposition of the foun-
dations of the theory of (reduced) differentiable orbifld

2. Definition and orbifold structure

For anyZ-module L denotelL ®z R by Lg. Let N be a freeZ-module of rank
n. The quotientTy = Nr/N is a compacti-dimensional torus. Suppodd is a free
submodule ofN of rank m. Let Ty, denote the torusMir/M. Let j: Mg — Ngr and
js: Tu = Ngr/M be the natural inclusions. The inclusionM — N induces a homo-
morphismi,: Nr/M — Ngr/N = Ty defined byi.(a+ M) = a+ N on cosets. Denote
the composition, o j.: Ty — Ty by éu. keri, ~ N/M. If m = n, then j, is identity
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andi, is surjective. In this caséy: Ty — Ty is a surjective group homomorphism
with kernel Gy, = N/M, a finite abelian group.

2.1. Definition by construction. A 2n-dimensional quasitoric orbifold may be
constructed from the following data: a simple polytopeof dimensionn with facets
Fi indexed byl = {1,...,m}, a freeZ-module N of rank n, an assignment of a vector
Ai in N to each facet of P such that wheneveF;, N---NF, # @ the corresponding
vectorsai,, ..., Aj, are linearly independent ové. These data will be referred to as
a combinatorial modeland abbreviated asP( N, {%;}). The vector),; is called the
dicharacteristic vector corresponding to thth facet.

Each faceF of P of codimensionk > 1 is the intersection of a unique set bf
facetsF,, ..., F,. Let I(F) = {i1,..., ik} C |. Let N(F) denote the submodule of
N generated by the characteristic vectdrs: j € I (F)}. Tnery = N(F)r/N(F) is a
torus of dimensiork. We will adopt the convention thalypy = 1.

Define an equivalence relation on the productP x Ty by (p,t) ~(q,s) if p=q¢
and s~!t belongs to the image of the mapry: Tn) — Tn Where F is the unique
face of P whose relative interior containg. Let X = P x Ty/~ be the quotient space.
Then X is a Ty-space and letr: X — P defined byx([p, t]~) = p be the associated
map to the orbit spacé. The spaceX has the structure of an orbifold, which we
explain next.

Pick open neighborhoods, of the verticesv of P such thatU, is the comple-
ment in P of all facets that do not contain. Let X, = 77'(U,) = U, x Ty/~.
For a faceF of P containingv the inclusion{i:i € I(F)} in {A:i € [(v)} in-
duces an inclusion oN(F) in N(v) whose image will be denoted by (v, F). Since
{ri:i € I(F)} extends to a basig.: i € | (v)} of N(v), the natural map from the torus
TnewFy = N(v, F)r/N(v, F) to Tnw) = N(v)r/N(v) defined bya+N(v, F) = a+ N(v)
is an injection. We will identify its image withTy, ry. Denote the canonical iso-
morphism Ty = Tne,r) bY i(v, F).

Define an equivalence relation, on U, x T by (p, t) ~, (q,s) if p=q and
s7't € Tn,F) WhereF is the face whose relative interior contaips ThenW, = U, x
Tn)/~v is O-equivariantly diffeomorphic to an open ball @' wheref: Ty(,) — U (1)"
is an isomorphism, see [8]. Note that the miapr) factors astnry = &nw) i (v, F).
Sincei(v, F) is an isomorphismt € Ty, r) if and only if &y, (t) € imé&yE). Hence
the mapénew): Tnw) — Tn induces a mag,: W, — X, defined by&,([(p, t)]™) =
[(p, Enw) ()]~ on equivalence classess, = N/N(v), the kernel oféy,y, is a finite
subgroup ofTy,) and therefore has a natural smooth, free actioriTgg) induced by
the group operation. This induces smooth actiorsefon W,. This action is not free
in general. Sincely = Tnw)/Gy, X, is homeomorphic to the quotient spadé /G,.
(W,, G,, &) is an orbifold chart onX,. To show the compatibility of these charts as
varies, we introduce some additional charts.

For any proper faceE of dimensionk > 1 defineUg = (| U,, where the inter-
section is over all vertices that belong toE. Let Xg = 7~1(Ug). For a faceF con-
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taining E there is an injective homomorphisityr)y — Tneey Whose image we denote

by Tnee,F)-
Let

(2.1) N*(E) = (N(E)®z Q) NN and Gg = N*(E)/N(E).

Ge is a finite group. Let, e: Tne) — Tne(e) be the natural homomorphisrg, g has
kernel Gg. Denote the quotienN/N*(E) by N*(E). It is a freeZ-module andN =
N*(E) @ N+(E). Fixing a choice of this isomorphism (or fixing an inner puctl on
N) we may regardN(E) as a submodule oN. ConsequentlyTy = Ty-(g) X Tni(g)-

Define an equivalence relatiene onUg x Tye) X Tneey by (P1,t1,S1) ~E (P2, t2, %)
fp=p, 1= andtz—ltl € Tnee,r) WhereF is the face whose relative interior con-
tains p;. Let We = Ug x Tneg) x Tne(e)/~€- It is diffeomorphic toC"* x (C*). There
is a natural mage : Wg — Xg induced byé, g: Tne) — Tn+e) and the identity maps
onUg and Ty k). (We, Gg, &g) is an orbifold chart onXe.

Given E, fix a vertexv of P contained inE. N(v) = N(E) @ M where M
is the free submodule oN(v) generated by the dicharacteristic vectasssuch that
j € I(v) —I(E). ConsequentlyTy) = Tney x Tw. We can, without loss of general-
ity, assume thaM C N+(E). Thus we have a covering homomorphi§ig — T (k).
For a pointx = [p, t, s] € Xg, choose a small neighborhodsl of s in Ty such
that B lifts to Ty. Choose any such lift and denote it by B — Ty. Let Wy =
Ue x Ty X B/~g. (W, Gg, &g) is an orbifold chart on a neighborhood »f and it
is induced by YWeg, Gg, £&g). The natural mapWy <— W, induced by the map and the
identification Ty = Tnee) @ Tm, and the natural injective homomorphisBe — G,
induce an injection (also called embedding) of orbifold rtha(W, Gg, &g) —
Wy, Gy, &)

The existence of these injections shows that the ch@ns, G,, §,): v any vertex of
P} are compatible and form part of a maximai-8imensional orbifold atlag\ for X.
We denote the paifX, A} by X. We say thaX is the quasitoric orbifold associated to
the combinatorial modelR, N, {A;}).

REMARK 2.1. Note that the orbifoldX is reduced, that is, the group in each
chart has effective action. Also note that changing the siga dicharacteristic vector
gives rise to a diffeomorphic orbifold.

Recall that for any poink in an orbifold, the isotropy subgrou@y is the stabi-
lizer of x in some orbifold chart around. It is well defined up to isomorphism. We
recall the following definition for future reference.

DEFINITION 2.1. A pointx € X is called a smooth point iG is trivial, other-
wise x is called singular.
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In the case of a quasitoric orbifold, for any x € X, 7(x) belongs to the relative
interior of a uniquely determined faceé* of P. The isotropy groupGyx = Ggx (see
(2.1)). We adopt the convention th&tp = 1.

DEFINITION 2.2. A quasitoric orbifold is called primitive if all its clhacteristic
vectors are primitive.

Note that in a primitive quasitoric orbifold the local groagtions are devoid of
complex reflections (that is maps which have 1 as an eigeawaith multiplicity n — 1)
and the classification theorem of [16] for germs of complebifold singularities applies.

2.2. Axiomatic definition. Analyzing the structure of the quasitoric orbifold as-
sociated to a combinatorial model, we make the followingomdtic definition. This
is a generalization of the axiomatic definition of a quagitananifold using the notion
of locally standard action, as mentioned in the introdurctio

DEeErINITION 2.3. A 2n-dimensional quasitoric orbifoldd is an orbifold whose
underlying topological spac¥ has aTy action, whereN is a fixed freeZ-module of
rank n, such that the orbit space is (diffeomorphic to) a simpldimensional polytope
P. Denote the projection map frovi to P by 7: Y — P. Furthermore every point
x €Y has
Al) a Ty-invariant neighborhood/,

A2) an associated freE-module M of rank n with an isomorphismd: Ty — U(1)"
and an injective module homomorphismM — N which induces a surjective covering
homomorphisméy : Ty — T,

A3) an orbifold chart \V, G, &) over V where W is 0-equivariantly diffeomorphic to
an open set inC", G = ker&§y andé: W — V is an equivariant map i.&(t - y) =
Em(t) - £(y) inducing a homeomorphism betwe®/G and V.

It is obvious that a quasitoric orbifold defined construelyvfrom a combinatorial
model satisfies the axiomatic definition. We now demonstitadit a quasitoric orbifold
defined axiomatically is associated to a combinatorial motike any facet of P and
let FO be its relative interior. By the characterization of lochhts in A3), the isotropy
group of theTy action at any poink in 7 ~1(F°) is a locally constant circle subgroup of
Tn. It is the image undegy, of a circle subgroup offy,. Thus it determines a locally
constant vector, up to choice of sigh,in N. Sincer 1(F°) is connected, we get a
characteristic vectok, unique up to sign, for each facet &. That the characteristic
vectors corresponding to all facets Bfwhich meet at a vertex are linearly independent
follows from the fact that their preimages under the appeder form a basis ofM.
Thus we recover a combinatorial modé,(N, {A;}) starting fromY.

Let X be the quasitoric orbifold obtained fronP( N, {%;}) by the construction
in the previous subsection. We need to show tkaand Y are diffeomorphic orbi-
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folds. The hard part is to show the existenceT@fequivariant a continuous map from
X — Y. This can be done following Lemma 1.4 of [8]. The idea is tatdfly Y ac-
cording to normal orbit type see Davis [7]. Here we need to use the fact that the
orbifold Y being reduced, is the quotient of a compact smooth manifgldhle foli-
ated action of a compact Lie group. Then one béow up (see [7]) the singular strata
of Y to get a manifoldY equivariantly diffeomorphic toTy x P. One has to modify
the arguments of Davis slightly in the orbifold case. The am@nt thing is that by the
differentiable slice theorem each singular stratum hasighberhood diffeomorphic to
its orbifold normal bundle, and is thus equipped with a fideeninear structure so
that the constructions of Davis go through. Finally theraisollapsing mapy — Y
and by composition with the above diffeomorphism a nfaqpx P — Y. It is easily
checked that this map induces a continuous equivariant ¥nap Y.

DEFINITION 2.4. LetX; and X, be quasitoric orbifolds whose associated base
polytope P" and freeZ-module N are identical. Le® be an automorphism ofy. A
mapf: X1 — X, of quasitoric orbifolds is called é-equivariant diffeomorphism if is
a diffeomorphism of orbifolds and the induced map on undeglyspacesf: X; — X,
satisfiesf(t-x) = 0(t) - f(x) for all x € X; andt € Ty.

Two 6-equivariant diffeomorphismé and g are said to beequivalentif there exist
equivariant diffeomorphismé;: X; — X, i = 1, 2, such thatgo h; = h, o f. We
also define, fom as above, th@-translation of a combinatorial modelR, N, {1;}) to
be the combinatorial modelP( N, {#(%;)}). The following lemma classifies quasitoric
orbifolds over a fixed polytope up t@-equivariant diffeomorphism.

Lemma 2.2. For any automorphisn® of Ty, the assignment of combinatorial
model defines a bijection between equivalence classéseqgtiivariant diffeomorphisms
of quasitoric orbifolds and-translations of combinatorial models.

Proof. Proof is similar to Proposition 2.6 of [2]. The existe of a sectiors: P —
Y for an axiomatically defined quasitoric orbifoM follows from the blow up construc-
tion above. O]

2.3. Characteristic subspaces. Of special importance are certaify-invariant
subspaces oX corresponding to the faces of the polytope If F is a face of P
of codimensionk, then defineX(F) := 7~ 1(F). With subspace topologyX(F) is a
quasitoric orbifold of dimensionr2— 2k. Recall thatN*(F) = (N(F) ®2z Q) N N
and N*+(F) = N/N*(F). Let or: N — N*(F) be the projection homomorphism. Let
J(F) C | be the index set of facets d®, other thanF in casek = 1, that intersect
F. Note thatJ(F) indexes the set of facets of thee— k dimensional polytopd-. The
combinatorial model forX(F) is given by &, Nt(F), {or(Ai) | i € J(F)}). X(F) is
called acharacteristic subspacef X, if F is a facet ofP.
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3. Orbifold fundamental group

A covering orbifold or orbifold cover of am-dimensional orbifoldZ is a smooth
map of orbifoldsp: Y — Z whose associated continuous mppY — Z between un-
derlying spaces satisfies the following condition: Eachnpaie Z has a neighborhood
U >~ V/I" with V homeomorphic to a connected open seRfh for which each com-
ponentW of p~1(U) is homeomorphic tov//I'; for some subgroug’; C I' such that
the natural mapp; : V/I'} — V/I" corresponds to the restriction @f on W,.

Given an orbifold covep: Y — Z a diffeomorphismh: Y — Y is called a deck
transformation ifp o h = p. An orbifold coverp: Y — Z is called a universal orbi-
fold cover of Z if given any orbifold coverp,: W — Z, there exists an orbifold cover
p,: Y — W such thatp = p; op,. Every orbifold has a universal orbifold cover which
is unique up to diffeomorphism, see [18]. The correspondjraup of deck transform-
ations is called the orbifold fundamental group dfand denotedr™(Z).

SupposeZ = [Y/G] where Y is a manifold andG is a finite group. Then the
following short exact sequence holds.

(3.1) 1— m(Y) = 79®@2Z) - G — 1.

This implies that an orbifoldZ can not be a global quotient #2™(Z) is trivial,
unlessZ is itself a manifold.

We first give a canonical construction of a quasitoric ordifcover O for any given
quasitoric orbifoldX. We will prove later thatO is the universal orbifold cover oX.

DEFINITION 3.1. LetN be the submodule oN generated by the characteristic
vectors ofX. Let A; denote the characteristic vectbr as an element oN. Let O be
the quasitoric orbifold associated to the combinatoriadeidP, N, {%;}). Denote the
corresponding equivalence relation Byso that the underlying topological space @f
is O = P x Ty/~. Denote the quotient map x Ty, — O by 7.

Proposition 3.1. The quasitoric orbifoldO is an orbifold cover of the quasitoric
orbifold X with deck group NN.

Proof. The inclusion: N <> N induces a surjective group homomorphismTg =

(N ®R)/N — Ty = (N ® R)/N with kernelN/N. In fact for any faceF of P we have
commuting diagram

EKm:)
Tamy— T

(32) l l
EN(F)

TN(F) —_— TN
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where N(F) is N(F) viewed as a sublattice ofl and L, is an isomorphism induced
by . Thus there is an induced surjective map

(3.3) t: Ty/imEg ) = Tn/imEner))-

We obtain a torus equivariant mafp: O — X defined fiberwise by (3.3), that is,
for any pointg € P belonging to the relative interior of the fade, the restriction of
f: 77%(q) — #~(q) matchesi;.

The mapf lifts to a smooth map of orbifolds: O — X. Consider orbifold charts
on X and O corresponding to vertex. Identifying N(v) and N(v, F) with N(v) and
N(v, F) respectively, we note thal, = U, x TN(U)/&U may be identified withw, =
U, x Tnw)/~. Hence O, = Wu/év and f: O, — X, is given by the projection
W,/G, — W,/G, whereG, = N/N(v) is a subgroup oz, = N/N(v). Sof: O — X
is in fact an orbifold covering. The deck group for this congris clearly N/N. [

Theorem 3.2. The quasitoric orbifoldO is the orbifold universal cover of the
quasitoric orbifold X. The orbifold fundamental grouprfrb(x) of X is isomorphic

to N/N.

Proof. LetX denote the singular loci oK (refer to Definition 2.1). The seE
has real codimension at least 2 ¥ Note thatz(X) is a union of faces ofP. Let
Py = P—n(X%).

Observe thatX — = = 7 1(Pg) = Py x Tn/ ~. Since Py is contractible,z1(Py x
Tn) == 71(Ty) = N. When we take quotient oPs x Ty by the equivalence relation
~, certain elements of this fundamental group are killed.cBedy, if Py contains a
point p which belongs to the intersection of certain fac€ts. .., Fx of P, then the
elementsiy, ..., Ax of N given by the corresponding characteristic vectors map &o th
identity element ofry (X — X). Let I(X) be the collection of facets oP that have
nonempty intersection withPs. Let N(X) be the submodule generated by thaseor
whichi € I (Z). Then the argument above suggests thdX — %) = N/N(X). Indeed,
this can be established easily by systematic use of therSeitsm Kampen theorem.

It is instructive to first do the proof in the caseis primitive (see Definition 2.2).
Here G, = 1 (see (2.1)) for each facdy. Hencel (X) = | and Ny = N. Therefore
m(X—=X) = N/N. Hence by Proposition 3.1fg: O — f(X) — X — X, where fg is
the restriction off, is the universal covering. Now f: W — X is any orbifold cover
then the induced mapy: W— p~1(X) — X— X is a manifold cover. Sincg1(X) has
real codimension at least two W, W — p~1(X) is connected. By a metric completion
argument it follows thatfy factors throughpy andf factors throughp.

For the general case we will use an argument which is simdathat of Scott
[17] for orbifold Riemann surfaces. The underlying ideaoadppeared in remarks after
Proposition 13.2.4 of Thurston [18].
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The groupN/N is naturally a quotient ofr;(X — £) = N/N(Z) and the corres-
ponding projection homomorphism has keri€l= N/N(E). Consider the manifold
covering fo: f~1(X — £) = X — = obtained by restricting the map: O — X. Note
that ,(f ~2(X — =)) = K and the deck group of, is N/N. Let W be any orbifold
covering of X with projection mapp. ThenW, = W — p~1(X) is a covering ofX — X
in the usual sense. We claim that(Wp) containsK as a subgroup.

Let A; denote the image of; in N/N(X). Obviously {A;:i € | —1(X)} generate
K. Physically such a; can be represented by the conjugate of a small lgom
X — ¥ going around some point € 7~}(F°) once in a plane transversal to-}(F),
where F° denotes the relative interior of the fadgt The pointx; has a neighborhood
U in X homeomorphic taC" 1 x (C/Gg). Therefore a connected componahtof the
preimagep—1(U) ¢ W is homeomorphic taC"* x (C/GE) where GL is a subgroup
of Gg. We may assume, without loss of generality, tleatlies in the plane{0} x
C/Gg,. By the definition ofGg, Xi is trivial in Gg and hence inG’Fi. Identifying
Gg, with the deck group of the covering* — C*/Gg, we infer thatc lifts to a
loop in C* and consequently i€* /G . Henceg; lifts to a loop inV — p~X(X). Thus
each generator and therefore every elemenK o represented by a loop M. This
induces a homomorphisi{ — 1(Wp). This homomorphism is injective sind¢€ is a
subgroup of the fundamental group of the space X which hasW, as a cover.

For any orbifold coveringV of X, the associated coveringf, of X — X admits
a covering by f (X — X) c O sincem(f}(X — X)) = K is a normal subgroup of
71(Wp). Thus O is an orbifold cover ofW. HenceO is the universal orbifold cover
of X and N/N is the orbifold fundamental group of. ]

REMARK 3.3. Note that the orbifold fundamental group of a quasitanibifold
is always a finite group. It follows that a quasitoric orbifols a global quotient if
and only if its orbifold universal cover is a smooth manifoltherefore Theorem 3.2
yields a rather easy method for determining if a quasitoriiifold is a global quotient
or not.

ExaMPLE 3.4. If N = N, thenX is not a global quotient unless is a mani-
fold. For instance, lefP be a 2-dimensional simplex with characteristic vectorsljl,
(1,-1), (-1, 0) and letX be the quasitoric orbifold corresponding to this model. The
N = N, but X has an orbifold singularity at—'(v) wherev = F; N F,. Therefore
X is not a global quotient. In facK is equivariantly diffeomorphic to the weighted
projective space(1, 1, 2).

4. Homology with rational coefficients

Following Goresky [9] one may obtain @W structure on a quasitoric orbifold.
However it is too complicated for easy computation of horggloWe introduce the
notion of g-CW complex where an open cell is the quotient of an open disk by ac
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tion of a finite group. Otherwise the construction mirrore ttonstruction of usuaCW
complex given in Hatcher [10]. We show that ogfcellular homology of aq-CW
complex is isomorphic to its singular homology with coefficis inQ. We then fol-
low the main ideas of the computation for the manifold casg8into compute the
rational homology groups oK.

4.1. g-Cellular Homology.

DEFINITION 4.1. Let G be a finite group acting linearly, preserving ciagion,
on ann-dimensional diskD" centered at the origin. Such an action preserg&s.
We call the quotientD"/G an n-dimensionalg-disk. Call S™1/G a g-sphere. An
n-dimensionalg-cell e} = €"(G)/G is defined to be a copy oD"/G where €"(G)
is G-equivariantly homeomorphic t®". We will denote the boundary o&"(G) by
S without confusion.

Start with a discrete seXo, where points are regarded as O-dimensiapeélls. In-
ductively, form then-dimensionalg-skeletonX, from X,_; by attachingn-dimensional
g-cells ega via continuous map, : S{y‘*l/Ga — Xp—1. This means thatX, is the
quotient space of the disjoint uniok,_1 L, é”Gu of Xn—1 with a finite collection of
n-dimensionalg-disks €1(G,)/G, under the identificatiorx ~ ¢,(x) for x € §-1/G,.

Assume X = X, for some finiten. The topology ofX is the quotient topology
built inductively. We call a spac& constructed in this way a finitg-CW complex.

By Proposition 2.22 and Corollary 2.25 of [10],

~ ( D"/G, )
(4-1) Hp((xna xn—l)l Q) = @ Hp(ma Q)
Note that
- ( D1/G, _ [Hp1(S7Y/G,: Q) if p=2,
(4.2) Hp(M’ Q) = {o otherwise.

Lemma 4.1. Let D"/G be ag-disk. Then $1/G is a Q-homology sphere.

Proof. S'! admits a simplicialG-complex structure. Apply Theorem 2.4 of Bredon
[3] and Poincaré duality for orbifolds. []

Lemma 4.2. If X is a g-CW complexthen
@
0 for p#n,
Hp((xny Xn-1): Q) = @ Q for p=n,

iely
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where }, is the set of n-dimensionaj-cells in X.

(2) Hp(Xn; Q) =0 for p > n. In particular Hp(X; Q) = 0 for p > dim(X).

(3) The inclusion t X, < X induces an isomorphism i Hp(Xn; Q) — Hp(X; Q) if
p<n.

Proof. Proof is similar to the proof of Lemma 2.3.4 of [10]. €Tkey ingredient
is Lemma 4.1. O

Using Lemma 4.2 we can defirgecellular chain complexH (X, Xp-1), dp) and

g-cellular groupsHS'CW(X; Q) of X in the same way as cellular chain complex is de-
fined in [10], p. 139.

Theorem 4.3. HJ"(X; Q) = Hy(X; Q) for all p.
Proof. Proof is similar to the proof of Theorem 2.35 of [10]. ]

4.2. Rational homology of quasitoric orbifolds. Realize P as a convex poly-
tope inR" and choose a linear functional: R" — R which distinguishes the vertices
of P, as in proof of Theorem 3.1 in [8]. The vertices are lineantgeved according to
ascending value op. We make the 1-skeleton d? into a directed graph by orienting
each edge such that increases along it. For each vertex Bf define its indexj(v),
as the number of incident edges that point towards

Let F, denote the smallest face & which contains the inward pointing edges
incident tov. Then dimF, = f(v) and if F’ is a face of P with top vertexv then F’
is a face ofF,. Let va be the union of the relative interiors of those fade€sof P,

P included, whose top vertex is.

For each vertex pute, = 7~X(F,). e, is a contractible subspace ¥{(F,) homeo-
morphic to the quotient of an open digk®® in R?®) by a finite groupG(v) deter-
mined by the orbifold structure oX(F,) described in Subsection 2.%, is homeo-
morphic to the intersection of the unit disk iR with RT’). Since the action of
the groupG(v) is obtained from a combinatorial model, see Subsection &.3s a
2f(v)-dimensionalg-cell.

X can be given the structure of(@CW complex as follows. Define thk-skeleton
Kok = Uf(v):k X(F,) for 0 <k <n. Xgy1 = X for 0 <k <n-—1 and Xy, =
X. Xg can be obtained fronXy_; by attaching thosey-cells e, for which f(v) = k.
The attaching maps are to be described. kebe the equivalence relation such that
X(Fy) = Fy x Ty(r,)/~. Theg-disk DV /G(v) can be identified withF, x Ty.(,)/~
where ,t) =~ (q,s) if p=q € F’ for some faceF’ whose top vertex i® and (p,t) ~
(9,5). The attaching mag,: S7)1/G(v) - Xj)-1 is the natural quotient map from
(Fo = F) x Ty /~ = (Fu = B) x Teey/~



ON QUASITORIC ORBIFOLDS 1067

X is a g-CW complex with no odd dimensional cells and witit(k) number of
2k-dimensionalg-cells. Hence byg-cellular homology theory

P @ if p<n and pis even,
(4.3) HIY(X: Q) = { /2
0 otherwise.

Hence by Theorem 4.3

Q if p<n and pis even,
(4.4) Hp(X; Q) = § 112
0 otherwise.

5. Cohomology ring of quasitoric orbifolds

Again we will modify some technical details but retain thedu framework of the
argument in [8] to get the anticipated answer. All homologyl @ohomology modules
in this section will have coefficients Q.

5.1. Gysin sequence for g-sphere bundle.Let p: E — B be an orientable rank
n vector bundle with paracompact base spd&:e Restrictingp to the spaceky of
nonzero vectors irfE, we obtain an associated projection map Eq — B. Fix a finite
group G and an orientation preserving representationGobn R". Such a representa-
tion induces a fiberwise linear action & on E and Eq that preserves orientation.

Consider the two fiber bundles®: E/G — B and p(?: Eo/G — B. There exist
natural fiber bundle mapd,: E — E/G and f,: Eg — Eo/G. These induce iso-
morphisms f;": HP(E/G) — HP(E) and f;: HP(Eo/G) — HP(Ep) for eachp. The
second isomorphism is obtained by applying Theorem 2.4 bffifgrwise and then
using Kunneth formula, Mayer—Vietoris sequence and a diietgt argument as in the
proof of Thom isomorphism in [13]. The commuting diagram

j1

Eo—t > E (E, Eo)
le fll lf3
Eo/G —2— E/G —2> (E/G, E,/G)

induces a commuting diagram of two exact rows

* o %

---—>Hp‘1(Eo)—1>Hp(E, Eo)h—)Hp(E);Hp(EO)—»--

f T T 5 ,‘\ )

iz

oo HPY(Eo/G) —> HP(E/G, Eo/G) —> HP(E/G) —> HP(Eo/G) — -
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By the five lemmafy is an isomorphism. Using the Thom isomorphisg: HP "(E) —
HP(E, Eo) we get the isomorphisry,,: HP"(E/G) — HP(E/G, E;/G) whereU,, =
fs**l o Uy o ff. Substituting the isomorphic moduléiP"(E/G) in place of
HP(E/G, Eo/G) in the second row of the above diagram, we obtain an exacteseg

o> HP(E/G) 2 HP(E/G) — HP(Eo/G) — HP™YE/G) — - - ,

whereg = j; o Uy,. The pull back of cohomology classs|(E/G) in H"(B) by the
zero section ofp® will be called the Euler clasg of p©. Now substitute the iso-
morphic cohomology ringH*(B) in place of H*(E/G) in the above sequence. This
yields the Gysin exact sequence for thpesphere bundleog: Eq/G — B

(5.1) ---— HP(B; Q) =% HP(B; Q) — HP(Eo/G; Q) — HP™(B;Q) = --- .

REMARK 5.1. Euler classes gf: E — B and p®: E/G — B are the same since
f" is an isomorphism.

5.2. A Borel construction. Let K be the simplicial complex associated to the
boundary of the dual polytope d®. ThenP is the cone on the barycentric subdivision
of K. P can be split into cube®, whereo varies over 1§ — 1)-dimensional faces of
K. These correspond bijectively to vertices Bf We regard thek-cube as the orbit
space of standarll-dimensional torus action on thek-2lisk

(5.2) D* ={(z1,...,2) €C: |z]| < 1}.

Define BP, = ETy x71, (P, x Ty)/~) = ETy x1, (D?*/G,), whereG, = G,,,

v, being the vertex inP dual too. If o; is another f — 1) simplex in K such that
o Noy is an fi—2) simplex thenBP, and BF,, are glued along the common part of
the boundaries oP, and P,,. In this way BP, fit together to yieldBP = ETy x1, X.
Let p: BP — BTy be the Borel map which is a fibration with fibe¢. The fibration
p: BP — BTy induces a homomorphispr: H*(BTy; Q) — H*(BP; Q).

The face ring or Stanley—Reisner rif®RP) of a polytopeP over Q is the quo-
tient of the ringQ[wy, ..., wy], Where the variablesy; correspond to the facets of
P, by the idealZ generated by all monomials;, - - - wi, such that the corresponding
intersection of facets;, N---NF;, is empty. The face ring is graded by declaring the
degree of eachw; to be 2. The following result resembles Theorem 4.8 of [8].

Theorem 5.2. Let P be an n-polytope and $R) be the face ring of P with
coefficients inQ. The mapp*: H*(BTn:; Q) — H*(BP; Q) is surjective and induces
an isomorphism of graded rings *BP; Q) =~ SRP).

Proof. Suppose is an fi—1)-simplex inK with verticeswy, ..., w,. Note that
there is a one-to-one correspondence between faceB wieeting atv, and vertices
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of o. Let P, be the corresponding-cube inP. ThenBP, = ETy x1, (D?*"/G,) is
a D?/G, fiber bundle overBTy. HenceETy x1, ($"1/G,) — BTy give the asso-
ciated g-sphere bundlg,: BP), — BTy. Also consider the disk bundle: ETy xr,
D?" — BTy. It is bundle homotopic to the complex vector bundle E Ty x7, C" —
BTy. Since Ty acts diagonally onC", the last bundle is the sum of line bundles
L1 @ ---® Ly where £; corresponds toj-th coordinate direction inC" and hence
to wj. Without confusion, we set;(£i) = wi € H?(BTy; Q). By the Whitney prod-
uct formulac,(v') = w1 ---wy. Hence from Section 5.1 the Euler class of thgphere
bundlep, ise= wy--- wp.

Now consider the Gysin exact sequence desphere bundles

-+ —> H*(BP)y,) > H*(BTy)

2 HH2(BTy) 25 HH2(BPy,) — H* ¥ 2(BTy) — ---.

Since the mapJ. is injective, by exactnesg! is surjective and we get the follow-
ing diagram

00— H*(BTh) —= > H*2(BTy) — > H**2/(BP,,) —> 0

(5.3) idl idl

w1-Wp

Qwy, ..., wp] —— Q[wy, ..., wyn].

Hence from diagram (5.34*(BP),) = Q[wx, ..., wn]/(w1... wy). SinceD?/G,
is contractible,H*(BP,; Q) = H*(BTy; Q) = Q[wy, ..., wy]. Using induction on the
dimension ofK and an application of the Mayer-Vietoris sequence we get tinelc-
sion of the theorem. ]

Consider the Serre spectral sequence of the fibraiioBP — BTy with fiber
X. It has Ep-term EJ'® = HP(BTy; HY(X)) = HP(BTy) ® HY(X). Using the for-
mula for Poincaré series of it can be proved that this spectral sequence degenerates,
EDY = ERY (see Theorem 4.12 of [8]). Lej: X — BP be inclusion of the fiber.
Then j*: H*(BP) — H*(X) is surjective (see Corollary 4.13 of [8]).

We have natural identificationbl;(BP) = Q™ and Hy(BTy) = Q". Here QM is
regarded as th@® vector space with basis corresponding to the set of codilmerme
faces of P. p,: Hy(BP) — Hy(BTy) is naturally identified with the characteristic map
A: QM — Q" that sendsw;, the i-th standard basis vector @™, to A;. The map
p*: H3(BTy) — H2(BP) is then identified with the dual map*: (Q")* — (QM)*.
Regarding the map\ as ann x m matrix A;;, the matrix forA* is the transpose. Col-
umn vectors ofA* can then be regarded as linear combinationsgf. .., wy. Define

(5.4) Al = Ajiqwy + -+ + AimWm.
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We have a short exact sequence

0—— H2(BTy) —— H2(BP) —— H2(X) —> 0

Q") —X— @M.

Let 7 be the homogeneous ideal @[wy, ..., wn] generated by the! and let.7
be its image in the face rin§ RP). Since j*: SRP) — H*(X) is onto and.7 is in
its kernel, j* induces a surjectio® RP)/J — H*(X).

Theorem 5.3. Let X be the quasitoric orbifold associated to the combinatorial
model (P, N, {Ai}). Then H(X; Q) is the quotient of the face ring of P hy; i.e,
H*(X: Q) = Qwy, ..., wm]/(Z + J).

Proof. We know thaH*(BTy) is a polynomial ring om generators, anti*(B P)
is the face ring. Since the spectral sequence degenekatéB,P) ~ H*(BTy)® H*(X).
Furthermorep*: H*(BTy) — H*(BP) is injective and7 is identified with the image
of p*. ThusH*(X) = H*(BP)/J = Q[wy, . .., wm] /(Z + J). O

6. Stable almost complex structure

Buchstaber and Ray [2] have shown the existence of a stablesalcomplex struc-
ture on omnioriented quasitoric manifolds. We generallz@rtresult to omnioriented
quasitoric orbifolds (see Section 1 for definition). lmetbe the cardinality ofl, the set
of facets of the polytopd. We will realize the orbifoldX as the quotient of an open
set of C™. Consider the natural combinatorial mod®"\, L = Z™, {g}) for C™. Let
7s: C™ — R be the projection map corresponding to taking modulus coatelwise.
Embed the polytopeP in R by the mapdr: P — R™ where thei-th coordinate of
dz(p) is the Euclidean distancel(p, F)) of p from the hyperplane of the-th facet
F in R". Consider the thickeningV®(P) c R™ of dx(P), defined by

(6.1) WEB(P) = ({f: | - R, | f7}0) e £:(P)},

where £ (P) denotes the face lattice d?.

Denote then-dimensional linear subspace Bf™ parallel tod=(P) by Vp and its
orthogonal complement by/s. As a manifold with cornersW®(P) is canonically
diffeomorphic to the cartesian produdi(P) x exp(Va) (see [2], Proposition 3.4).

Define the space®/(P) and Z(P) as follows.

(6.2) W(P) := ng {(WH(P)), Z(P):= 5 {(d#(P)).
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W(P) is an open subset d&™ and there is a canonical diffeomorphism
(6.3) W(P) = Z(P) x exp(Vp).

Let A: L — N be the map ofZ-modules which maps the standard generaor
of L to the dicharacteristic vectoy;. Let K denote the kernel of this map. Recall the
submoduleN of N generated by the dicharacteristic vectors and the orbifolgersal
cover O from Section 3. Since th&-modulesL and N are free, the sequence

(6.4) 0-K->LAEN=0

splits and we may writd. = K @& N. HenceKgrN L = K and applying the second iso-
morphism theorem for groups we can consider the tdius= Kr/K to be a subgroup
of T_. In fact we get a split exact sequence

For any faceF of P let L(F) be the sublattice of. generated by the basis vectors
g such thatdr(F) intersects tha-th facet of RT, that is the coordinate hyperplane
{x; = 0}. Note that image ofL(F) under A is preciserN(F), so that the preimage
A"Y(N(F)) = K - L(F). Consider the exact sequence

A

K-.LF) L a N
LR e e P

(6.6) 0—

Since the dicharacteristic vectors corresponding to tketfawhose intersection is
F are linearly independent, it follows from the definition i§f and A that K NL(F) =
{0}. Hence by the second isomorphism theorem we have a canasocabrphism

K- L(F)

(6.7) 0

I

K.

So (6.6) yields

A

L a N
(6.8) 0—>K—>m—>ﬁ—>0

In generalN/N(F) is not a freez-module. LetN'(F) = (N(F)®zQ)NN. Define
(6.9) AN =Aog¢

where ¢ is the canonical projection

N N
—_

(6.10) o: R (P KE)
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Since N/N'(F) is free, the following exact sequence splits

A*%N’(F))_} L » N
L(F) L(F)  N/(F)

(6.11) 0

— 0.

Denoting the modules in (6.11) ¥, L and N respectively we obtain a split exact
sequence of tori

A
(6.12) 0 Tg BT 25 T4 — 0.

Note thatK is a submodule of same rank of the free modHleand there is a
natural exact sequence

N'(F)
— —

N(F)

(6.13) ST & T S0
K

The composition

(6.14) Bro06: Tk — Tt

defines a natural action df on T; with isotropy Gr = N’(F)/N(F) and quotientT.

Since Ty is the fiber of7: O — P andT; is the fiber ofrs: Z(P) — P over any
point in the relative interior of the arbitrary fade, it follows O is quotient of Z(P)
by the above action ofx. This action of Tx is same as the restriction of its action
on C™ as a subgroup of. and henceCY. By (6.3) it follows thatO is the quotient
of the open seW(P) in C™ by the action of the subgroupx x exp(Vp) of CT,

(6.15) = ﬂ
Tk x exp(Vp

The induced action o := Tx x exp(Vp) on the real tangent bundiEW(P) of
W(P) commutes with the almost complex structute 7W(P) — 7W(P) obtained by
restriction of the standard almost complex structure7a™. Therefore the quotieriﬁI
of TW(P) by H has the structure of an almost complex orbibundle (or oldit@ctor
bundle) overO. Moreover this quotient splits, by an Atiyah sequence, agtrext sum
of a trivial rank 26— m) real bundleﬁ over O corresponding to the Lie algebra of
and the orbifold tangent bundigO of O. The existence of a stable almost complex
structure on7 O is thus established.

TC™ splits naturally into a direct sum a@h complex line bundles corresponding to
the complex coordinate directions which of course corredpm the facets ofP. We
get a corresponding splittingW(P) = € Cg. The bundlesCg are invariant unded
as well H. Therefore the quotient o€ by H is a complex orbibundlé(F) of rank
one onO and 20 = @ H(F).
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It is not hard to see that the natural actionTaf on 20 commutes with the almost
complex structure on it. The quotiedD := QAU/(N/N) is an orbibundle onX with an
induced almost complex structure sindg/(N) is a subgroup offy. FurthermoreT X
is the quotient of7O by N/N. Therefore2l = 7X & b whereh is the quotient off
by N/N. Since the action offy and henceN/N on h is trivial, § is a trivial vector
bundle onX. Hence the almost complex structure 9 induces a stable almost com-
plex structure o7 X. We also have a decompositid® = ®v(F) where the orbifold
line bundlev(F) := H(F)/(N/N).

6.1. Line bundles and cohomology. Recall the manifoldZ(P) of dimension
m + n defined in equation (6.2). LeB P = ET_ x1_ Z(P). Since O = Z(P)/Tk,
BLP = ET. x7, Z2(P) = ETL x1 Z(P)/(TL/Tk) = ETL x(2(P)/Tk)/(Tg) =~ ETg X7,
O = ETy xt, O/(N/N) ~ ETy x7, X = BP.

Let ws,..., wy be the generators di?(BP) as in Subsection 5.2 and |& denote
the facet of P corresponding taw;. Let oj: T, — T be the projection onto theth
factor andC(«;) denote the corresponding 1-dimensional representapacesof T, .
Define L; = ET_ x7, i, wherel; = C(«;) x Z(P) is the trivial equivariant line bundle
over Z(P). ThenL; is an orbifold line bundle oveBP. Let cy(L;) be the first Chern
class ofL; in H?(BP; Q). We will show thatcy(L;) = w.

Since thei-th factor of T_ acts freely onZ(P) — = 1(F), the restriction ofL; to
BP — BF is trivial. Consider the following commutative diagram

H(Li) ——— L

(BP—-BF)—— BP,

where. is inclusion map. By naturalitg; (¢*(L;i)) = ¢*(ci(L;)). Since the bundle*(L;)
over BP — BF; is trivial (*(ci(Li)) = ci(¢*(Lj)) = 0. It is easy to show thaB(P —
F)=ET. x7, (nXP — F)) ~ BP — BF. From the proof of Theorem 5.2 it is
evident thatH*(BP — BF;: Q) = SRP — F). HenceH? BP — BF) = @#i Quwj.
*: H3(BP; Q) — H?(BP — BF; Q) is a surjective homomorphism with kern@w;
implying ci(Lj) € Qw;. Naturality axiom ensures, as follows, that(L;) is nonzero,
so that we can identifyg; (L) with wj.

Let F be an edge in. Then

BF := ET, x7, (7;X(F))

~ ETy x7, (7 *(F))

= (ETn x1e 7 *(F))/(Tn/Te) = (ETn x (7 H(F)/T))/(Tn/Te)
E(Tn/TE) X117 7 2(F)
ES xg &,

12

12
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where T¢ is the isotropy subgroup df in Ty and action ofS* on S? is corresponding
action of Ty/Tr on 7~1(F). Let L;(F) is the pullback of orbibundlé ;. Using Thom
isomorphism and cohomology exact sequence obtained from

BF > Li(F) — (Li(F), Li(F)o),

wheres is zero section of ; bundle, we can show(L;(F)) is honzero. Sincey(L;(F))
is pullback ofcy(Li), ci(Li) is nonzero. Hencey(L;) = wj.

Note that if F is the facet ofP corresponding td;, Li = ET_ xy, L= ETg x7,
(Ei /TK) = ETN X-rN IA)(Fi) = ET,(l XTN ﬁ(F,)/(N/N) ~ ETN XTN v(Fi). Letj: V(Fi) — Li
be the inclusion of fiber covering: X <— BP. Thenj*(L;) = v(F). Hencec,(v(F)) =
j*ci(Li) = j*w;. Hence by Theorem 5.3 the first Chern classes of the bundlgs
generate the cohomology ring &f. We also obtain the formula for the total Chern class
of 7X with the stable almost complex structure determined by thengdicharacteristic.

(6.16) o(T) = [[(@+ caw(F))).

i=1

6.2. Chern numbers. Chern numbers of an omnioriented quasitoric orbifold,
with the induced stable almost complex structure, can bepated using standard lo-
calization formulae, given for instance in Chapter 9 of [Bhe fixed points of theTly
action correspond to the vertices Bf'. While computing the numerator contributions
at a vertex, one needs to recall thgt action on the bundlg is trivial. We will give
a formula for the top Chern number below. In the manifold csiseilar formula was
obtained by Panov in [15]. In principle any Hirzebruch gemssociated to a series
may be computed similarly.

Fix an orientation forX by choosing orientations foP" ¢ R" and N. We order
the facets or equivalently the dicharacteristic vectoreath vertex in a compatible
manner as follows. Suppose the vertexf P" is the intersection of facets;,, ..., Fi,.
To each of these facets;, assign the unique edgEy of P" such thatF, N Ex =

v. Let e be a vector alongex with origin at v. Theney,..., & is a basis ofR"
which is oriented depending on the ordering of the facets.willeassume the ordering
F,,..., F, to be such thagy, ..., & is positively oriented.

For each vertexw, let Ay be the matrixAq) = [Ai, - - - Ai,] whose columns are
ordered as described above. lodb) := detA(,). Then we obtain the following formula
for the top Chern number,

1
o)’

REMARK 6.1. If the stable almost complex structure of an omniogdnguasi-
toric orbifold admits a reduction to an almost complex suie, theno (v) is positive
for each vertexv. This follows from comparing orientations, taking to be oriented

(6.17) c(X) = %,
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according to the almost complex structure. The converseuss in the case of quasi-
toric manifolds, see Subsection 5.4.2 of [4]. The orbifolse& remains unsolved at
the moment.

6.3. Chen—-Ruan cohomology groups. We refer the reader to [6, 1] for defin-
ition and motivation of the Chen—Ruan cohomology groupsrofknost complex orbi-
fold. They may be thought of as a receptacle for a suitablévagqant Chern character
isomorphism from orbifold or equivariant K-theory with cplax coefficients, see The-
orem 3.12 of [1]. Briefly, the Chen—Ruan cohomology (with flioents in Q or C)
is the direct sum of the cohomology of the underlying space e cohomology of
certain subspaces of it calledisted sectorsvhich are counted with multiplicities and
rational degree shifts depending on the orbifold structiitee multiplicities depend on
the number of conjugacy classes in the local groups and thes€eshifts are related
to eigenvalues of the linearlized local actions. The veatfan of the statements below
is straightforward and left to the interested reader.

For an almost complex quasitoric orbifoi, each twisted sector is &y-invariant
subspaceX(F) as described in Subsection 2.3. The contributionX¢f) is counted
with multiplicity one less than the order of the gro@-, corresponding to the non-
trivial elements ofGg. However the degree shift of these contributions dependhen t
particular element ofs¢ to which the twisted sector corresponds.gl= (a+ N(F)) €
Gk wherea € N*(F), then the degree shifti@) can be calculated as follows. Sup-
poseis, ..., Ak is the defining basis oN(F). Thena can be uniquely expressed as
a= Z!(zl giAi where eachg is a rational number in the interval [0, 1), an@)) =
Zik:l g- Note that the rational homology and hence rational cohogybf X(F) can
be computed using its combinatorial model given in Subsaci.3.

Recall from Subsection 6.1 that Il = N then X is the quotient of the mani-
fold Z(P) by the groupTk. In this case theTk-bundlesL; over Z(P) generate the
complex orbifold K-ring of X. The images of their tensor powers under the equi-
variant Chern character map generate the Chen—Ruan cobgynof X. These follow
since the restrictions of the bundlés to the subspaceX(F) generate the cohomology
ring of X(F).
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