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Abstract
For oriented closed surfaces of genera up to 4, we list presentations of periodic

maps by Dehn twists. As an application of these presentations, we provide examples
of non-holomorphic Lefschetz fibrations.

1. Introduction

J. Nielsen [29] classified periodic maps on orientable surfaces by using data describ-
ing the homomorphisms from the orbifold fundamental groupsof orbit spaces to the cyclic
groups. On the other hand, M. Dehn [9] showed that any orientation preserving homeo-
morphism is isotopic to a product of Dehn twists. Since theseresults are classical, finding
presentations of periodic maps by Dehn twists from the data of Nielsen’s classification
is a natural problem. We call these presentationsDehn twist presentations. J. Birman
and H. Hilden [6] obtained a presentation of the hyperelliptic involution. Y. Matsumoto
[27] obtained a presentation of a certain involution on62, an oriented closed surface
of genus 2. Using a method similar to [27], T. Ito [22] reobtained the presentation of
the hyperelliptic involution obtained by Birman and Hilden. M. Korkmaz [23] general-
ized Matsumoto’s presentation to the higher genus. Y. Gurtasmade further generaliza-
tion [17, 18] and obtained a presentation of certain fixed point free periodic maps [19].
For hyperelliptic periodic maps, M. Ishizaka [21] obtained presentations by the investiga-
tion on hyperelliptic degenerations and their splittings.S. Takamura [34] will give Dehn
twist decompositions of some automorphisms of Riemann surfaces. In this paper, we list
Dehn twist presentations of periodic maps on orientable closed surfaces of genera up to 4.

This paper is organized as follows. In Section 2, we review Nielsen’s classification
of periodic maps. In Section 3, we list periodic maps such that any periodic maps
on orientable closed surfaces of genera up to 4 are power of these maps, and list the
Dehn twist presentation of these periodic maps. In Section 4, we introduce methods
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to find presentations listed in Section 3. In Section 5, as an application of the list of
Dehn twist presentations, we show examples of non-holomorphic Lefschetz fibrations.
In Section 6, we verify the presentations given in Section 3 and list the powers of
periodic maps whose presentations are given there.

In order to find and verify presentations, we had to check the action of Dehn twists
on simple closed curves very often. The author checked this sometimes by hand and
sometimes by “Teruaki for Mathematica”, implemented by K. Ahara and T. Sakasai.
Many of results in this paper can not be found without this program.

2. Nielsen’s classification of periodic maps

An orientation preserving homeomorphismf from a surface6g to itself is peri-
odic map if there is a positive integersn such that f n D id6g . The period of f is
the smallest positive integer satisfying the above condition. Two periodic mapsf and
f 0 on 6g are conjugateif there is an orientation preserving homeomorphismg from6g to itself such thatf 0 D g Æ f Æ g�1. In this section, we will review the classifica-
tion of conjugacy classes of periodic maps on surfaces by Nielsen [29]. We follow a
description by Smith [30] and Yokoyama [36].

Let f be a periodic map on6g, whose period isn. A point p on 6g is a multiple
point of f if there is a positive integerk less thann so that f k(p)D p. Let M f be the
set of multiple points off . The orbit space6g= f of f is defined by identifyingx in6g with f (x). Let � f W 6g!6g= f be the quotient map, then� f is ann-fold branched
covering ramified at� f (M f ). The set� f (M f ) is denoted byB f , and each element of
B f is called abranch pointof f . We choose a pointx in 6g= f � B f , and a pointQx
in ��1

f (x). We define a homomorphism� f W �1(6g= f � B f , x)! Zn as follows: Let
l be loop in6g= f � B f , whose base point isx, and [l ] be an element of�1(6g= f �
B f , x) represented byl . Let Ql be a lift of l over 6g which begins fromQx. There is a

positive integerr less than or equal ton so that the terminal point ofQl is f r ( Qx). We
define� f ([l ]) D r . SinceZn is an Abelian group, we naturally define a homomorphism! f W H1(6g= f � B f )! Zn induced from� f . For each point ofB f D {Q1, : : : , Qb},
let Di be a disk in6g= f , which containsQi in its interior and is sufficiently small so
that no other points ofB f are in Di . Let SQi be the boundary ofDi with clockwise
orientation.

Theorem 2.1 ([29]). Two periodic maps f and f0 on 6g are conjugate if and
only if the following three conditions are satisfied:
(1) the period of fD the period of f0,
(2) the number of elements in Bf D the number of elements in Bf 0 ,
(3) under a proper change of numbering on elements in Bf 0 , ! f (SQi ) D ! f 0(SQi ) for
each i.
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Let �i D ! f (SQi ). By the above theorem, the data [g, nI �1, : : : , �b] determines a
periodic map up to conjugacy. The following proposition shows a necessary and suffi-
cient condition for the data [g, nI �1, : : : , �b] corresponding to a periodic map.

Proposition 2.2. There is a periodic map whose data is[g, nI �1, : : : , �b] if and
only if the following conditions are satisfied:
(1) �1C � � � C �b D 0 modn,
(2) if 6g= f is a sphere, then gcd{�1, : : : , �b} D 1 modn,
(3) let g0 be the genus of6g= f and qi D gcd{�i , n}, then

2g� 2D n(2g0 � 2)C ∑

i : branch points

(n� qi ).

In the above proposition, (1) means that! f should be a homomorphism andSQ1C� � � C SQb should be null-homologous, (2) means that! f should be a surjection, and
(3) is the Riemann–Hurwitz formula.

In the following, we will use the expression (n, �1=n C � � � C �b=n) in place of
[g, nI �1, : : : , �b]. This data (n, �1=nC � � � C �b=n) is called thetotal valency, which is
introduced by Ashikaga and Ishizaka [5]. In the above data, we call �i =n the valency
of Qi , and often express it as an irreducible fraction.

3. Presentation of periodic maps by Dehn twists

For a simple closed curvea in 6g, we define theright Dehn twist ta about a as
illustrated in Fig. 1. We call each ofta and t�1

a the Dehn twistabout a. The aim of
this paper is to obtain presentations of periodic maps by Dehn twists, up to isotopy
and conjugacy, from total valencies. Once if we obtain a Dehntwist presentation of a
periodic map f , then we obtain a Dehn twist presentation off k automatically. There-
fore, we make a list of periodic maps on6g (g � 4) so that any periodic map on6g

is a power of maps in this list. This list is made by a kind of “Sieve of Eratosthenes”.
The list for the genus 3 case is referred from Ishizaka’s paper [20, Lemma 1.1].

Proposition 3.1. For gD 1, 2, 3, 4,any periodic map on6g (if g D 1, with mul-
tiple points) is a power of a periodic map in the following list:
g D 1,

f1,1D
(

6,
1

6
C 1

3
C 1

2

)

, f1,2D
(

4,
1

4
C 1

4
C 1

2

)

,

g D 2,

f2,1D
(

10,
1

10
C 2

5
C 1

2

)

, f2,2D
(

8,
1

8
C 3

8
C 1

2

)

,

f2,3D
(

6,
1

6
C 1

6
C 2

3

)

, f2,4D
(

6,
1

3
C 1

2
C 1

2
C 2

3

)

,



388 S. HIROSE

Fig. 1.

g D 3,

f3,1D
(

14,
1

14
C 3

7
C 1

2

)

, f3,2D
(

12,
1

12
C 5

12
C 1

2

)

,

f3,3D
(

8,
1

8
C 1

8
C 3

4

)

, f3,4D
(

4,
1

2
C 1

2

)

,

f3,5D (2, ), f3,6D
(

12,
1

12
C 1

4
C 2

3

)

,

f3,7D
(

8,
1

8
C 1

4
C 5

8

)

, f3,8D
(

9,
1

9
C 1

3
C 5

9

)

,

f3,9D
(

7,
1

7
C 2

7
C 4

7

)

,

g D 4,

f4,1D
(

18,
1

18
C 4

9
C 1

2

)

, f4,2D
(

16,
1

16
C 7

16
C 1

2

)

,

f4,3D
(

10,
1

10
C 1

10
C 4

5

)

, f4,4D
(

10,
2

5
C 1

2
C 1

2
C 3

5

)

,

f4,5D
(

15,
1

15
C 1

3
C 3

5

)

, f4,6D
(

12,
1

12
C 1

3
C 7

12

)

,

f4,7D
(

10,
1

10
C 3

10
C 3

5

)

, f4,8D
(

12,
1

12
C 1

6
C 3

4

)

,

f4,9D
(

6,
1

6
C 1

3
C 2

3
C 5

6

)

, f4,10D
(

6,
1

3
C 1

3
C 1

3
C 1

2
C 1

2

)

,

f4,11D
(

6,
1

2
C 1

2

)

, f4,12D
(

5,
1

5
C 2

5
C 3

5
C 4

5

)

.

The powers of these periodic maps are listed in §6.2.
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Fig. 2.

Theorem 3.2. Periodic maps fi , j have Dehn twist presentation expressed as fol-
lows, where k means a right Dehn twist about a simple closed curve indicated by the
letter k, and the order of the twists is from left to right, e.g., for 4 � 3 � 2 � 1, 4 is
applied first:
g D 1,

f1,1D 1 � 2, f1,2D 1 � 2 � 1,

g D 2,

f2,1D 4 � 3 � 2 � 1, f2,2D 4 � 4 � 3 � 2 � 1, f2,3D 5 � 4 � 3 � 2 � 1,

f2,3D 1 � 2 � 3 � 4 � 5 � (5 � 4 � 3 � 2 � 1)3,
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g D 3,

f3,1D 6 � 5 � 4 � 3 � 2 � 1, f3,2D 6 � 6 � 5 � 4 � 3 � 2 � 1,

f3,3D 7 � 6 � 5 � 4 � 3 � 2 � 1, f3,4D 1 � 2 � 3 � 4 � 5 � 6 � 7 � (7 � 6 � 5 � 4 � 3 � 2 � 1)3,

f3,5D 1 � 2 � 3 � 4 � 5 � 6 � 7 � (7 � 6 � 5 � 4 � 3 � 2 � 1)5, f3,6D 6 � 5 � 4 � 3 � 2 � 8,

f3,7D 6 � 5 � 4 � 3 � 2 � 5 � 4 � 3 � 8, f3,8D 6 � 5 � 4 � 3 � 2 � 1 � 8,

f3,9D 6 � 5 � 4 � 3 � 2 � 1 � 5 � 4 � 8,

g D 4,

f4,1D 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1, f4,2D 8 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1,

f4,3D 9 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1,

f4,4D 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9 � (9 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1)5,

f4,5D 8 � 7 � 6 � 5 � 4 � 3 � 2 � 11, f4,6D 6 � 5 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 11,

f4,7D 8 � 7 � 6 � 5 � 4 � 3 � 2 � 7 � 6 � 5 � 4 � 11, f4,8D 3 � 4 � 5 � 6 � 7 � 8 � 6 � 11 � 14,

f4,9D 1 � 2 � 3 � 4 � 10 � 9�1 � 8�1 � 7�1 � 6�1 � 11�1,

f4,10D 1 � 2 � 12�1 � 4�1 � 5�1 � 6�1 � 11�1 � 8 � 9, f4,11D (2 � 3 � 4 � 5 � 6 � 13 � 7)2 � 9�1,

f4,12D 2 � 3 � 4 � 12 � 3 � 4 � 10 � 3 � 8�1 � 7�1 � 6�1 � 13�1 � 7�1 � 6�1 � 11�1 � 7�1.

We will verify these presentations in §4.1 and in §6.1.

4. Methods to find presentations in Theorem 3.2

An involution (periodic map of period 2)I of 6g is called ahyperelliptic involu-
tion if there are 2gC1 fixed points ofI , and the isotopy class ofI is also denoted by
I . An orientation-preserving homeomorphism� from 6g to itself is said to behyper-
elliptic if � commutes withI . For hyperelliptic periodic maps, there is a method to
find their presentation investigated by Ishizaka [21].

4.1. Hyperelliptic case. By the investigation on hyperelliptic degenerations,
Ishizaka showed:

Theorem 4.1 ([21]). Let �1 D (4gC 2, 1=(4gC 2)C 2g=(2gC 1)C 1=2), �2 D
(4g, 1=4gC (2g�1)=4gC1=2) and �3 D (2gC2, 1=(2gC2)C1=(2gC2)Cg=(gC1)).
Any hyperelliptic periodic map is equal to the one of following: (A) �k

1, (B) �k
2, (C) �k

3,
(D) I �k

3.

By the maps in this theorem, hyperelliptic periodic maps listed in Theorem 3.2
are rewritten as follows. When genusD 1, f1,1 D �1, f1,2 D �2. When genusD 2,
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Fig. 3.

f2,1 D �1, f2,2 D �2, f2,3 D �3, f2,4 D I �2
3. When genusD 3, f3,1 D �1, f3,2 D �2,

f3,3D �3, f3,4D I �2
3, f3,5D I �4

3. When genusD 4, f4,1D �1, f4,2D �2, f4,3D �3,
f4,4D I �4

3.
By using splitting families, Ishizaka showed:

Theorem 4.2 ([21]). Let 1, : : : , 2gC 1 be simple closed curves in6g as shown
in Fig. 3. Then,
(1) �1 D 2g � � � 2 � 1,
(2) �2 D 2g � 2g � � � 2 � 1,
(3) �3 D 2gC 1 � 2g � � � 2 � 1.

By the above theorem and the equationI D 1�2�2g�2gC1�2gC1�2g� � �2�1 shown
by Birman and Hilden [6], we obtain presentations for hyperelliptic periodic maps.

In what follows, we explain methods to find presentations fornon-hyperelliptic
periodic maps in Theorem 3.2.

4.2. Method to find Dehn twist presentations off3,6, f3,8, f4,5. Let f be a
periodic map on6g whose valency data is (n, �1=nC �2=nC � � � C �b=n). Let D2 be
the unit disk inC whose center is 0. The homeomorphism on6g � D2 defined by
(x, t)! ( f �1(x), exp(2� i =n) � t) generates the action ofZn on 6g � D2. The quotient
space (6g � D2)=Zn has b quotient singular points [branch points off , 0]. Applying
the Hirzebruch–Jung resolution, we obtain a resolution mapr W M ! 6g�D2=Zn. Now
we take a holomorphic map W 6g � D2 ! D2 given by  (x, t) D tn. Since isZn-equivalent, determines a holomorphic mapN W (6g � D2)=Zn ! D2. We then
consider the composite mapr 0 D N Æ r W M ! D2. The preimage (r 0)�1(0) is a closed
surface and 2-spheres transversely intersect each other. S. Takamura, in the second of
his series of works [31, 32, 33, 34, 34] on degenerations of complex curves, explains
the multiplicities of the components of (r 0)�1(0) associated to this mapr 0. We review
his explanation.

Let Q be a branch point off whose valency is�=n. First, we define a sequence of
positive integersm0 >m1 > � � � >mÆ by settingm0D n, m1D � , andm2, m3, : : : , mÆ D
gcd(m0, m1) by the division algorithm:

mi�1 D r i mi �miC1 (0� miC1 < mi ), i D 1, 2,: : : , Æ � 1.
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Fig. 4. The line with multiplicity 12 originates from the orbit
space63= f3,6, and other lines from branch points off3,6.

Next, we takeÆ copies of21, : : : ,2Æ of 2-spheres (D P1). For i D 1, : : : , Æ, we take a
D2-bundle Ni over the 2-sphere2i such that the Chern number ofNi is �r i , and take
a D2-bundle N0 over a 2-disk. We patchNi and NiC1 (i D 0, 1,: : : , Æ�1) by plumbing.
Then we get a 4-manifold with a boundary which is homeomorphic to the boundary
of the regular neighborhood of [Q, 0] in (6g� D2)=Zn. We remove a neighborhood of
[Q, 0] in (6g�D2)=Zn and glue the above 4-manifold. We apply this process for each
singular points in (6g�D2)=Zn, then we get the smooth 4-manifoldM. Let 20 be the
surface inM, which originates from6g= f � {0}. Then, the regular neighborhood of20 is a D2-bundle whose Euler number is�(�1C �2C � � � C �b)=n, and

(r 0)�1(0)D m020C ∑

Q: branch point off

m121C � � � CmÆ2Æ.
For example, we apply the above process tof D f3,6D (12,1=12C2=3C1=4), then

(63= f3,6)�0 is replaced by spheres intersecting transversely as is shown in Fig. 4. We
blow-down 2-spheres whose self-intersection numbers are�1, and continue to blow-
down until there is no 2-sphere with self-intersection�1. For our example, Fig. 5 il-
lustrate how this blow-down process is going on. At the end ofthis process, there
remains a plane curvex4 D y3 with an isolated singular point (0, 0).

Let 9 be a map fromC2 to C defined by9(x, y) D x4� y3. If � is a sufficiently
small positive number andS3� D {(x, y) 2 C2 j jxj2Cjyj2 D �2}, then L� D S3� \9�1(0)
is a knot (in general, link) inS3� . Let  be a map fromS3� � L� to S1 defined by (x, y) D 9(x, y)=j9(x, y)j, then is a surface bundle map overS1 whose fiber is a
Seifert surface ofL� . This fibration W S3� � L� ! S1 is called aMilnor-fibration [28]
of x4 � y3 D 0. The monodromy of is an orientation preserving diffeomorphism on
the fiber surface with a boundary. If we cap the boundary of this surface with a disk
and extend this monodromy by the identity map on this disk, then the conjugacy class
of this diffeomorphism isf3,6. Therefore, what we should do is finding a Dehn twist
presentation of the topological monodromy of the Milnor-fibration of x4 � y3 D 0. It
is well-known that the knot around the singular point ofx4� y3 D 0 is the (3, 4)-torus
knot [28] and it is easy to find the Dehn twist presentation of the monodromy from
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Fig. 5. 2-spheres with self-intersection�1 are surrounded by
dotted circles.

this fact. Still, as a practical method to find presentationsof periodic maps not only
f3,6 but also other cases which will appear later, we explain the theory of divide link
invented by A’Campo [2, 3, 4]. This type of singularities andtheir monodromies are
also investigated in the context ofreal morsification, for example, by Gusein–Zade [1].

First, we perturbx4 � y3 D 0. By a method introduced by H. Goda, M. Hirasawa,
and Y. Yamada [15], we draw the picture of perturbedx4 � y3 D 0 in a plane. We
draw a rectangle whose horizontal length is equal to the power for x (in our example,
this is 4) and vertical length is equal to the power fory (in our example, this is 3),
and divide this rectangle into unit squares. We draw a line from the right upper corner
along the diagonals of squares. If we arrive at an edge of the rectangle, we continue
to draw this line along the trajectory of light which is goingon the line drawn before
and reflected by the mirror on the edge (see the left hand of Fig. 6). If we arrive at
a corner of the rectangle, we stop to draw. We smoothen corners of the line picture
already drawn, then we get a curve which is the perturbedx4 � y3 D 0 (see the right
hand of Fig. 6). We can embed this curve properly in the unit disk. This is an example
of a divide.

The divide P is a relative, generic immersion of a compact 1-manifold in aunit
disk D in R2. The link L(P) of divide P is defined by

L(P) D {(u, v) 2 T D j u 2 P, v 2 Tu P, juj2C jvj2 D 1} � S3.

Let P be a divide shown in the right hand of Fig. 6, thenL(P) is isotopic toL� . In
Fig. 6, we regard the horizontal coordinate as height. This divide P can be deformed
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Fig. 6. The divide ofx4 � y3 D 0.

into a position whose height function has only one local maximal value and only one
local minimal value. A divide which satisfies this conditionis anordered Morsedivide.
For an ordered Morse divide, there is a method, introduced by O. Couture, B. Perron [8],
H. Goda, M. Hirasawa and Y. Yamada [15], to visualize its linkL(P) and a fiber sur-
face of L(P). We deform the divide superposed on parallel lines as shownon the left
hand of the top of Fig. 7, where dotted lines mean a position ofthe parallel lines. As
shown on the right hand of the top of Fig. 7, we put a disk in place of each dotted
line, we attach a pair of twisted bands to the boundary of the disks in place of each
crossing, one of these bands is on the front and the other is onthe back, and we at-
tach a twisted band to the boundary of disks in place of each maximal or minimal arc.
Let F(P) be the surface obtained from the above process. The boundary of the surface
F(P) is isotopic toL(P), and F(P) is a fiber surface ofL(P). In order to make the
later explanation simpler, we deform the surface as illustrated in the bottom of Fig. 7.
This surface is a genus 3 surface with one boundary. We cap this boundary by a disk.
We fix the identification of this closed surface with the surface illustrated as genus 3
case in Fig. 2, which identifies each curve with the curve of the same number.

A surface R in S3 is a Murasugi sumof two surfacesR1 and R2 in S3 if the
following conditions are satisfied (see [13]):
(1) RD R1[1 R2, where1 is a 2-disk such that�1 D �1[ �1[ � � �[�n[ �n, where�i (resp.�i ) is a proper arc inR1 (resp.R2).
(2) There exist 3-ballsB1, B2 in S3 such that

• B1 [ B2 D S3, B1 \ B2 D �B1 D �B2 D S2, and
• R1 � B1, R2 � B2, and R1 \ �B1 D R2 \ �B2 D 1.

If ( S3, �Ri ) is a fibered link whose fiber isRi and monodromy is�i , then for the
Murasugi sumR of R1 and R2, the link (S3, �R) is a fibered link whose fiber isR
and whose monodromy is�1 � �2 (see [13, 14]). Apositive Hopf bandis an annulus
embedded inS3 as in Fig. 8. In this paper, we treat only positive Hopf bands,so we
call theseHopf bandsfor short. The boundary of a Hopf band is called aHopf link.
The Hopf link is a fibered link whose fiber is the Hopf band and whose monodromy
is a right handed Dehn twist about the core circle of the Hopf band. In the bottom of
Fig. 7, let Bi be a Hopf band whose core is the circlei . Then F(P) is a Murasugi
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Fig. 7.

Fig. 8.

sum of Bi ’s. Therefore, the monodromy forL(P) is the product of monodromies of
Hopf bandsBi , that is 6� 5 � 4 � 3 � 2 � 8.

We apply the above method, then we see thatf3,8 is the monodromy of the Milnor-
fibration of x3y � y3 D 0 capped by disks andf4,5 is that of x5 � y3 D 0 capped by a
disk. The divide forx3y� y3 D 0 and the fiber of the divide link for this divide is illus-
trated in the upper part of Fig. 9, and those forx5� y3 D 0 is shown in the lower part
of the same figure. From this figure, we obtain presentations of these periodic maps.

4.3. Digression: A family of periodic maps and their presentations by right
Dehn twists. In this subsection, we introduce Dehn twist presentations of a family of
periodic maps listed in the following. These presentationsare obtained by the method
explained in 4.2.
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Fig. 9.

Phase 0:

g D 1,

(

3,
1

3
C 1

3
C 1

3

)

, x3 � y3 D 0, for k D 0,

g D 3kC 1,

(

3kC 3,
k

kC 1
C 1

3kC 3
C 1

3kC 3
C 1

3kC 3

)

,

x3kC3 � y3 D 0, for k � 1.

Phase I:

g D 3kC 3,

(

3(3kC 4),
2

3
C kC 1

3kC 4
C 1

3(3kC 4)

)

, x3kC4 � y3 D 0.

Phase II:

g D 3kC 3,

(

3(2kC 3),
3kC 5

3(2kC 3)
C kC 1

2kC 3
C 1

3(2kC 3)

)

, x2kC3y � y3 D 0.

Phase III:

g D 3kC 4,

(

3(3kC 5),
2kC 3

3kC 5
C 1

3
C 1

3(3kC 5)

)

, x3kC5 � y3 D 0.

On each line of the above list,g is a genus, the second one is a total valency
data, and the third equation defines a plane curve with a singularity whose monodromy
capped by disk(s) is the periodic map defined by the total valency data. An integer
k � 0 in the above list is called alevel.

In Fig. 11, we illustrate Milnor fibers for plane curve singularities listed above.
In this figure, a long horizontal line indicates a 2-disk, anda short vertical line indi-
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Fig. 10.

Fig. 11.

cates a twisted band connecting two 2-disks (see, for example, Fig. 10). We decom-
pose these fibers into Murasugi sum of Hopf bands, then we obtain Dehn twist pres-
entations of the periodic maps. In this subsection, we express Dehn twist presentations
by figures. In each figure, there are two types of simple closedcurves drawn on sur-
faces, thicker curves and thinner curves. We take a product of the right Dehn twists
about thinner simple closed curves from right to left and take a product of the right
Dehn twists about thicker simple closed curves from right toleft. The product of Dehn
twists obtained as a result is a Dehn twist presentation of the periodic map. In Fig. 12,
the presentations of the level 0 case is given. We remark thatthese are monodromies
of well-known singularities (see for example [1, Chapter 4]). Namely, I is the mono-
dromy of the E6 singularity: x4 � y3 D 0, II is the monodromy of theE7 singularity:
x3y� y3 D 0, and III is the monodromy of theE8 singularity: x5 � y3 D 0.
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Fig. 12.

As we can observe in the presentations of level 0 case, there is the following
relationships among four phases. For a presentation of phase 0, we attach handles to
both sides and append one thinner circle in each handle, thenwe get a presentation of
phase I of the same level. For a presentation of phase I, we append one more thin-
ner circle to the left handle, then we get a presentation of phase II of the same level.
For a presentation of phase II, we attach a handle to left sideand append one thin-
ner circle in the attached handle, then we get a presentationof phase III of the same
level. Therefore, if we obtain presentations of all periodic maps of phase 0, then we
obtain Dehn twist presentations of all listed periodic maps. For example, we illustrate
the presentation of periodic maps of phase 0 of level 1 to 4, inFig. 13.

For the levelk � 2, we draw figures expressing Dehn twist presentations of periodic
maps of phase 0 as follows. First of all, we prepare several pieces listed in Fig. 14.
When the levelk is even, we prepare one piece of type 0, (k � 2)=2 pieces of type A,
(k�2)=2 pieces of type B, and one piece of type T. When the levelk is odd, we prepare
one piece of type 0, (k � 3)=2 pieces of type A, (k � 1)=2 pieces of type B, and one
piece of type T. Next, we put these pieces on a line from the left to the right. When
the levelk is even, the piece of type 0 comes the first, and type A, type B, .. . , type B,
and the piece of type T comes the last. When the levelk is even, the piece of type 0
comes the first, and type B, type A, . . . , type B, and the piece oftype T comes the last.
Finally, we glue these pieces along the parts indicated in Fig. 15, such that the arcs
drawn on these parts are glued properly. Then we obtain a figure expressing the Dehn
twist presentation.
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Fig. 13.
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Fig. 14.

Fig. 15.
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Fig. 16.

4.4. Method to find Dehn twist presentations off3,7, f3,9, f4,6, f4,7. Here we
explain a method to find a presentation forf3,7. We find presentation for other three
periodic maps by the same method.

Following the explanation in 4.2, we apply Hirzebruch–Jungresolution to63 �
D2=Z8 of f3,7D (8, 1=8C 1=4C 5=8), then we get a configuration of lines on the left
hand of Fig. 16. After we blow-down�1-curves for this diagram then we get the right
hand of Fig. 16. Although the curve illustrated in this picture has a non-isolated singu-
larity, we can not blow-down anymore. Therefore, we can not apply the method intro-
duced in 4.2 to this case. If the singular curve is splitted into Lefschetz type singular
fibers, then the number of singular fibers should be�(a singular curve)� �(63) D 9.
Hence, we tried to find a presentation off3,7 by 9 right handed Dehn twists. Fortu-
nately, we can find a product of right Dehn twists about 1 to 8 written in genus 3
case of Theorem 3.2, whose length is 9 and whose action onH1(63I Z) is period 8.
We check the action of this product to simple closed curves on63 by using “Teruaki
for Mathematica”, implemented by K. Ahara and T. Sakasai.

4.5. Method to find Dehn twist presentations off4,9, f4,10, f4,11, f4,12. An es-
sential 1-submanifoldof 6g is a disjoint union of simple closed curves in6g such
that (1) each component does not bound a disk in6g and (2) no two components
are homotopic. An orientation preserving self-homeomorphism of 6g is reducible if it
leaves some essential 1-submanifold of6g invariant. Four homeomorphismsf4,9, f4,10,
f4,11, f4,12 of 64 are reducible. Letf be a reducible periodic map of6g, and l be
a simple closed curvel on 6g= f so that��1

f (l ) is an essential 1-submanifold of6g.

Let N be a thin regular neighborhood ofl in 6g= f , and let
∐

Ni D ��1
f (N) be the

decomposition into connected components. We denoteFc D 6g �∐ Ni , then f jFc is
a periodic map. The restriction offFc to � fFc bounds a rotationg on disks Di , D0

i ,

so that�Di q �D0
i D �Ni . Let QF D Fc

⋃�Fc

((∐

Di
)q (∐ D0

i

))

, then we can define a

periodic map Qf on QF so that Qf jFc D f jFc , Qf j(∐ Di )q(
∐

D0
i ) D g. We say this mapQf is

obtained from f by an equivariant 2-surgeryalong l . The genus of each components
of QF is smaller thang.
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Fig. 17.

For example, we explain how we find the presentation off4,11D (6, 1=2C 1=2).
We make an equivariant 2-surgery along the circlea as in the top of Fig. 17. Then the
resulting periodic mapQf4,11 is equal to (6, 1=6C5=6C1=2C1=2)D f 2

3,2D (12, 1=12C
5=12C 1=2)2 on 63. The middle of Fig. 17 illustrate the graph in63 which is the
inverse image of the arc in63= f3,2 connecting the branch points whose valencies are
1=12 and 5=12. In this picture, the left (resp. right) vertex is the preimage of the branch
point whose valency is 1=12 (resp. 5=12). Up to isotopy fixing these vertices, the prod-
uct of twists 1� 2 � 3 � 4 � 5 � 6 � 7, where each number means a right handed Dehn twist
about the circle shown in the bottom of Fig. 17, fixes the graphset-wisely, and trans-
forms the each edge to the edge clock-wisely adjacent at the left vertex. We dig small
holes around vertices and glue these boundaries, then we geta surfaceF homeomorphic
to 64. Namely, there is a homeomorphism fromF to the surface illustrated in genus 4
case in Fig. 2, which maps 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 13, 7 to 7 and
the circle obtained from the boundary to 9. Therefore, (2� 3 � 4 � 5 � 6 � 13 � 7)�2 � f4,11

is isotopic to some powers of Dehn twist about 9. By checking the action of the above
map into simple closed curves on64, we find the Dehn twist presentation forf4,11.
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4.6. Method to find a Dehn twist presentation off4,8. For this periodic map,
we can not use the above methods to find a presentation. We write a picture of the cell
decomposition of64 as in the top of Fig. 26, from this figure we observe the action
of this map on the simple closed curves, and apply Lickorish’s method [26] to find the
presentation expressed in Theorem 3.2.

5. Application: examples of non-holomorphic Lefschetz fibrations

The remarkable works by Donaldson [10] and Gompf [16] show that Lefschetz
fibrations are one of the most interesting objects for the study on 4-dimensional top-
ology. We recall the definition:

DEFINITION 5.1. A Lefschetz fibrationon an oriented compact smooth 4-manifold
M over an oriented smooth surfaceS is a smooth mapf W M ! S which is a submersion
everywhere except at finitely many non-degenerate criticalpoints p1, : : : , pr , near which
f identifies in orientation-preserving complex coordinateswith the model map (z1, z2) 7!
z2

1C z2
2.

The smooth fibers off are compact oriented surfaces and diffeomorphic each other.
If the genus of the fiber isg, we call M a genus gLefschetz fibration. In this paper,
we always assume that the imagesq1, : : : , qk of critical points p1, : : : , pk are distinct.
Under this assumption, each singular fiber is obtained by collapsing a simple closed
curve (which we call avanishing cycle) in the smooth fiber. The monodromy of a
Lefschetz fibration f over S2 is characterized by the homomorphism from the funda-
mental group ofS2 n {q1, : : : , qk} to the mapping class groupMg. We choose a base
point t0 of S2 n {q1, : : : , qk}, and k embedded arcsAi (i D 1, : : : , k) beginning att0
and ending atqi so that intAi \ int A j D ; if i ¤ j and the arcs sit on the order
A1, A2, : : : , Ak counter-clockwisely aroundt0. Let l i be the simple loop beginning att0,
going besideAi , going aroundqi counter-clockwisely, and going besideAi back to t0.
Then l1 � l2 � � � lk is homotopic to the trivial loop. The image ofl i by the monodromy is
the right Dehn twistti about an essential simple closed curve on6g. Then the mono-
dromy is characterized by the relationt1 � t2 � � � tk D id6g of the right Dehn twists, which
we call apositive relation. On the other hand, any positive relation defines a Lefschetz
fibration overS2. From here, we write� in place of �1 � � �  , and N� in place of��1, for abbreviation.

We explain a sort of “fiber sum” of Lefschetz fibrations. A Lefschetz fibration over
S2 defined by the positive relationW D id6g is denoted byLf(W). A Lefschetz fibra-

tion overD2 defined by the product of right Dehn twists (positive word) W is denoted by
LfD2(W). Let id6g D V D V1 �V2 andid6g DWDW1 �W2 be the positive relations so that

V1 is conjugate toW1 in Mg, i.e. there is an element� of Mg so that��1 �V1 �� DW1.
Then id6g D V1� � W1, where V1� is a positive word whose letters are conjugates of
each letter ofV1 by �, i.e. if V1 D 1 � 2 � 3 � 4 then V1� D 1� � 2� � 3� � 4� . We define
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V1 ℄ W2 D V1� �W2. The positive relationV1 ℄ W2 D id6g defines a Lefschetz fibration
Lf(V1 ℄ W2). We can construct this Lefschetz fibration fromLfD2(V1�) and LfD2(W2) by
glueing along their boundaries. By the Novikov additivity,the signature ofLf(V1 ℄ W2)
is � (Lf(V1 ℄ W2)) D � (LfD2(V1�)) C � (LfD2(W2)) D � (LfD2(V1)) C � (LfD2(W2)). The
last equation follows from the equivalence ofLfD2(V1�) andLfD2(V1). For the Lefschetz
fibration Lf(W) (resp.LfD2(W)), the number of singular fiber is denoted byn(Lf(W))
(resp.n(LfD2(W))), which is equal to the word length ofW. The slope�(Lf(W)) is de-
fined by

�(Lf(W)) D 12� 4

1C � (Lf(W))=n(Lf(W))
.

By using a sort of “fiber sum” explained above, we construct examples of non-
holomorphic Lefschetz fibrations from our presentation of periodic maps. Letf1 and f2

be periodic maps on6g with periodsn1 and n2 respectively, andXi be a presentation
of fi by right hand Dehn twists. We assume that there are integersk1 and k2 so that
f k1
1 is conjugate to f k2

2 and 0< ki < ni (i D 1, 2). Then Xk1
1 ℄ Xn2�k2

2 D id6g is a

positive relation and we define a Lefschetz fibrationLf(Xk1
1 ℄ Xn2�k2

2 ). We show that
the following examples are not holomorphic by the method introduced by Endo and
Nagami [12].

EXAMPLE 1. On 63, f 4
3,3D (2, 1=2C 1=2C 1=2C 1=2)D f 6

3,6 up to conjugacy.
Let X1 be a Dehn twist presentation off3,3 shown in Theorem 3.2, andX2 be that
of f3,6. From the above construction, we get a genus 3 Lefschetz fibration Lf(X4

1 ℄
X6

2) over S2. By calculating the Meyer’s signature cocycles, we get� (Lf(X4
1 ℄ X6

2)) D� (LfD2(X4
1))C� (LfD2(X6

2))D (�16)C(�20)D�36. Easily, we seen(Lf(X4
1℄X6

2))D 64.
We assume thatLf(X4

1℄X6
2) is hyperelliptic. Since the vanishing cycle of each singular

fiber Lf(X4
1 ℄X6

2) is non-separating, by the result of Endo [11], we obtain theequation� (Lf(X4
1 ℄ X6

2)) D n(Lf(X4
1 ℄ X6

2)) � �(gC 1)=(2gC 1). But this contradicts� (Lf(X4
1 ℄

X6
2)) D �36. ThereforeLf(X4

1 ℄ X6
2) is not hyperelliptic. K. Konno [24] showed that

if a non-hyperelliptic Lefschetz fibrationLf(W) is isotopic to a holomorphic fibration
of genus 3 then�(Lf(W)) � 3. But in our case,�(Lf(X4

1 ℄ X6
2)) D 20=7 < 3, hence

Lf(X4
1 ℄ X6

2) is non-holomorphic.

REMARK 5.2. Although we do not need to find� such that��1X4
1� D X6

2 in
order to calculate the signature ofLf(X4

1 ℄ X6
2), we find the explicit form of� for its

own interest.
The product of Dehn twistsX4

1 D (7 �6 �5 �4 �3 �2 �1)4 transforms the simple closed
curves 1,: : : , 8, which are as shown in genus 3 case of Fig. 2, to the simple closed
curves shown in Fig. 18. The product of Dehn twistsX6

2 D (8�7�6�5�4�3�2)6 transforms

the same simple closed curves to the simple closed curves shown in Fig. 19. SinceN7� N6�N5�1�2�3 transforms Fig. 19 to Fig. 18, (7�6�5�4�3�2�1)4D (8�7�6�5�4�3�2)6N7� N6� N5�1�2�3,
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Fig. 18.

Fig. 19.

where N� denotes��1. On the other hand,(7 � 6 � 5 � 4 � 3 � 2 � 1)4 transforms 1 to 5, 2 to
6, and 3 to 7. Therefore, (7� 6 � 5 � 4 � 3 � 2 � 1)4 D 5 � 6 � 7(8 � 7 � 6 � 5 � 4 � 3 � 2)6N7 � N6 � N5D
(8N7N6N5 � 7N7N6N5 � 6N7N6N5 � 5N7N6N5 � 4N7N6N5 � 3N7N6N5 � 2N7N6N5)6.

EXAMPLE 2. On 64, f 4
4,8 D (3, 1=3C 1=3C 1=3) D f 6

4,1 up to conjugacy. Let
X1 be a Dehn twist presentation off4,8 shown in Theorem 3.2, andX2 be that of
f4,1. Then � (Lf(X4

1 ℄ X12
2 )) D � (LfD2(X4

1)) C � (LfD2(X12
2 )) D (�18)C (�54)D �72,

and n(Lf(X4
1 ℄ X12

2 )) D 132. By the same argument as we gave in the above example,
we seeLf(X4

1 ℄ X12
2 ) is not hyperelliptic. Z.J. Chen [7] and K. Konno [25] showedthat

if a non-hyperelliptic Lefschetz fibrationLf(W) is isotopic to a holomorphic fibration
of genus 4, then�(Lf(W)) � 24=7. But in our case,�(Lf(X4

1 ℄ X12
2 )) D 16=5, hence

Lf(X4
1 ℄ X12

2 ) is non-holomorphic.

REMARK 5.3. We see�(Lf(W8
3 ℄W6

4 )) D 24=7, so we can not determine whether
Lf(W8

3 ℄ W6
4 ) is holomorphic or not by our method.

EXAMPLE 3. On64, f 6
4,6D (2, 1=2C 1=2)D f 5

4,3 up to conjugacy. LetX1 be a
Dehn twist presentation off4,6 shown in Theorem 3.2, andX2 be that of f4,3. Then� (Lf(X6

1 ℄ X5
2))D � (LfD2(X6

1))C � (LfD2(X5
2))D (�32)C (�25)D�57, n(Lf(X6

1 ℄ X5
2))D

105 and�(Lf(X6
1 ℄ X5

2))D 13=4. By the same argument as we explained in the above
example, we see thatLf(X6

1 ℄ X5
2) is non-holomorphic.
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6. Verification of presentations and powers of periodic maps

6.1. Verification of presentations in Theorem 3.2. As we explained before, the
presentations for the hyperelliptic periodic maps are obtained by Ishizaka [21]. The
periodic mapsf3,6, f3,7, f3,8, f3,9, f4,5, f4,6, f4,7, f4,8, f4,9, f4,10, f4,11, f4,12 are non-
hyperelliptic periodic maps. For these periodic maps, we will verify the presentation by
investigating the action of Dehn twist on simple closed curves and arcs in6g. These
are three cases to consider
(1) not reducible with at least two fixed points (f3,7, f3,8, f3,9, f4,6, f4,7),
(2) not reducible with only one fixed point (f3,6, f4,5, f4,8), and
(3) reducible (f4,9, f4,10, f4,11, f4,12).
We verify the presentations case by case.

(1) not reducible with at least two fixed points:
f3,7 D (8, 1=8 C 1=4 C 5=8): The orbit space63= f3,7 is a 2-sphere with three

branch points, whose valencies are 1=8, 1=4 and 5=8. In the top of Fig. 20, the vertex
p1 is the preimage of the branch point with valency 1=8 by � f3,7, the vertexp2 is the
preimage of the branch point with valency 5=8, and edges are the preimages of arc
connecting these branch points. Up to isotopy fixing these vertices, a product of Dehn
twists 6� 5 � 4 � 3 � 2 � 50 � 4 � 3 � 8 (these loops are shown in the bottom of Fig. 20) fixes
the graph set-wisely, and transforms each edge to the edge clock-wisely adjacent at the
vertex p1. If we forget p2, then 5D 50, so we conclude 6� 5 � 4 � 3 � 2 � 5 � 4 � 3 � 8D f3,7.

f3,8D (9, 1=9C1=3C5=9): In the top of Fig. 21, the vertexp1 is the preimage of the
branch point with valency 1=9 by � f3,7, the vertexp2 is the preimage of the branch point
with valency 5=9, and edges are the preimages of arc connecting these branchpoints. We
number the thick edge by 0, and other edges by I, II, . . . , VIII clockwise aroundp1. A
product of Dehn twists 6� 5 � 4 � 3 � 2 � 1 � 8 (these loops are shown in the bottom Fig. 21)
transforms 0 to I, I to II, . . . , VIII to 0, so we conclude 6� 5 � 4 � 3 � 2 � 1 � 8D f3,8.

f3,9D (7, 1=7C2=7C4=7): We delete edges I and VI from Fig. 21, then we get a
graph on63 which is the preimage of a edge connecting branch points withvalencies
1=7 and 4=7 by � f3,9. A product of Dehn twists 6� 5 � 4 � 3 � 2 � 1 � 5 � 4 � 8 (these loops
are shown in the bottom of Fig. 21) transforms edges clockwise at p1, so we conclude
6 � 5 � 4 � 3 � 2 � 1 � 5 � 4 � 8D f3,9.

f4,6D (12, 1=12C 1=3C 7=12): In the top of Fig. 22, the vertexp1 is the preimage
of the branch point with valency 1=12 by � f4,6, the other vertex is the preimage of the
branch point with valency 7=12, and edges are preimages of arc connecting these branch
points. We observe the action of the product of Dehn twists 6� 50 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 11
(these loops are shown in the bottom of Fig. 22). If we forget the vertex which is notp,
then 5D 50, so we conclude 6� 5 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 11D f4,6.

f4,7D (10, 1=10C3=10C3=5): In the top of Fig. 23, the vertexp1 is the preimage of
the branch point with valency 1=10 by� f4,7, the other vertex is the preimage of the branch
point with valency 3=10, and edges are the preimages of arc connecting these branch
points. We observe the action of a product of Dehn twists 8�7 �6 �5 �4 �3 �2 �70 �6 �5 �4 �11
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Fig. 20.

Fig. 21.
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Fig. 22.

(these loops are shown in the bottom of Fig. 23). If we forget the vertex which is notp1,
then 7D 70, so we conclude 8� 7 � 6 � 5 � 4 � 3 � 2 � 7 � 6 � 5 � 4 � 11D f4,7.

(2) not reducible with only one fixed point:
f3,6 D (12, 1=12C 1=4C 2=3): The orbit space63= f3,6 is a 2-sphere with three

branch points, whose valencies are 1=12, 1=4 and 2=3. In Fig. 24, the vertexp is the
preimage of the branch point with valency 1=12 by � f3,6, three other vertices are the
preimages of the branch point with valency 1=4, and edges are the preimages of the
arc connecting these branch points. We number the thick edgeby 0, and other edges
by I, II, . . . , XI clockwise aroundp. Let A0 be the loop constructed from two edges 0
and IX connecting atp and the other end point, thenA0 is a loop with a base point
p. This loop is denoted by 0! IX, and we use the same style of notations from here.
Let A1 be the loop I! X, A2 be II! XI, A3 be III ! 0, . . . , and A11 be XI!
VIII. We perturb these loops so that these are intersect onlyat p and we use the same
symbol for these loops got as a result. Letl be the loop in63= f3,6 whose base point
is the branch point with valency 1=12, and which bounds two 2-disks in63= f3,6, one
of which contains the branch point with valency 1=4 and the other of which contains
the branch point with valency 2=3. Then��1

f3,6
(l ) D A0 [ A1 [ A2 [ � � � [ A11. Up to

isotopy fixing p, 6 � 5 � 4 � 3 � 2 � 8 transformsA0 to A1, A1 to A2, : : : , A11 to A0, so we
conclude 6� 5 � 4 � 3 � 2 � 8D f3,6.

f4,5 D (15, 1=15C 1=3 C 3=5): In Fig. 25, the vertexp is the preimage of the
branch point with valency 1=15 by � f4,5, five other vertices are the preimages of the
branch point with valency 1=3, and edges are the preimages of arc connecting these
branch points. We number the thick edge by 0, and other edges by I, II, . . . , XIV
clockwise aroundp. Let A0 be the loop 0! X whose base point isp, A1 be I! XI,
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Fig. 23.

Fig. 24.

A2 be II! XII, . . . , and A14 be XIV! IX. Since 8� 7 � 6 � 5 � 4 � 3 � 2 � 11 transforms
A0 to A1, A1 to A2, � � � , A14 to A0, we conclude 8� 7 � 6 � 5 � 4 � 3 � 2 � 11D f4,5.

f4,8D (12, 1=12C 1=6C 3=4): In the top of Fig. 26, the vertexp is the preimage
of the branch point with valency 1=12 by � f4,8, three other vertices are the preimages
of the branch point with valency 3=4, and edges are the preimages of arc connecting
these branch points. We number the thick edge by 0, and other edges by I, II, . . . , XI
clockwise aroundp. Let A0 be the loop 0! III whose base point isp, A1 be I! VI,
A2 be II! V, . . . , and A11 be XI! II. Since 3� 4 � 5 � 6 � 7 � 8 � 6 � 11 � 14 (these loops
are shown in the bottom of Fig. 26) transformsA0 to A1, A1 to A2, : : : , A11 to A0,
we conclude 3� 4 � 5 � 6 � 7 � 8 � 6 � 11 � 14D f3,8.

(3) reducible:
f4,9 D (6, 1=6 C 1=3 C 2=3 C 5=6): The bottom left hand of Fig. 27 illustrate

the orbit space64= f4,9. In Fig. 27, p1 and p2 is the inverse image of the branch
points with valencies 1=6 and 5=6 respectively byf4,9, the graph is the inverse image
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Fig. 25.

Fig. 26.

of the arc in the bottom left hand of Fig. 27, and the circle is the inverse image of
the circle in the bottom left hand of Fig. 27. From the observation of the action of
1 � 2 � 3 � 4 � 10 � 9�1 � 8�1 � 7�1 � 6�1 � 11�1 (these loops are shown in the bottom right
hand of Fig. 27), we conclude 1� 2 � 3 � 4 � 10 � 9�1 � 8�1 � 7�1 � 6�1 � 11�1 D f4,9.

f4,10D (6, 1=3C1=3C1=3C1=2C1=2): The orbit space64= f4,10 is as shown in the
bottom left hand of Fig. 28. In the top of Fig. 28, the orientedsimple closed curve is the
preimage ofa by f4,10, the other separating simple closed curves is the preimage of b,
and three other simple closed curves are the preimage of the arc connecting two branch
points with valencies 1=2 and 1=2. We number the component of these three curves
drawn with thick line by 0, and other components by I, II following the orientation of
the curve which is a preimage ofa. A product of twists 1�2�12�1 �4�1 �5�1 �6�1 �11�1 �8�9
(these loops are as shown in a figure in genus 4 case of Theorem 3.2) fixes the preimages
of a and b, and transforms 0 to I, I to II, II to 0 with opposite orientation. Therefore,
we conclude 1� 2 � 12�1 � 4�1 � 5�1 � 6�1 � 11�1 � 8 � 9D f4,10.



PRESENTATIONS OFPERIODIC MAPS 411

Fig. 27.

f4,11D (6, 1=2C 1=2): The orbit space64= f4,11 is as shown in the bottom right
hand side of Fig. 28. In the top of Fig. 29, the oriented simpleclosed curve is the
preimage ofa by � f4,11, and the six other simple closed curves are the preimage ofb.
We number the component of the preimage ofb drawn with thick line by 0, and other
components by I, II, . . . , V following the orientation of the curve which is a preimage
of a. The product of twists (2�3 �4 �5 �6 �13�7)2 �9�1 (these loops are shown in a figure
of genus 4 surface in Fig. 2) transforms 0 to I, I to II, . . . , V to0. In the bottom of
Fig. 29, the oriented simple closed curve is the preimage ofa by � f4,11, and the three
other simple closed curves are the preimage of the arc connecting branch points on
the orbit space shown in the bottom right hand of Fig. 28. We number the component
of the preimage of the arc connecting branch points drawn with thick line by 0, and
other component by I, II following the orientation of the curve which is a preimage of
a. The product of twists (2�3�4�5�6�13�7)2 �9�1 transforms 0 to I, I to II, II to 0 with
opposite orientation. The simple closed curves without arrows in Fig. 29 are disjoint
each other and these circles and the preimage ofa divide 64 into disks. Therefore, we
conclude (2� 3 � 4 � 5 � 6 � 13 � 7)2 � 9�1 D f4,11.

f4,12D (5, 1=5C2=5C3=5C4=5): The bottom left hand of Fig. 30 illustrate the orbit
space64= f4,12. In Fig. 30, p1 and p2 is the inverse images of the branch points with
valencies 1=5 and 4=5 respectively by� f4,12, the graph is the inverse image of the arc in
the bottom left hand of Fig. 30, and the circle is the inverse image of the circle in the
bottom left hand of Fig. 30. From the observation of the action of 2�3 �4 �12�3 �4 �10�3 �
8�1 �7�1 �6�1 �13�1 �7�1 �6�1 �11�1 �7�1 (these loops are as shown in the bottom right hand
of Fig. 30), we conclude 2�3�4�12�3�4�10�3�8�1 �7�1 �6�1 �13�1 �7�1 �6�1 �11�1 �7�1D f4,9.
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Fig. 28.

Fig. 29.
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Fig. 30.
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6.2. Tables of powers of periodic maps in Proposition 3.1. We can get the
following table by using very simple program, for example, implemented for GAP.
(1) Genus 1 with multiple points:

f1,1
(

6, 1
6 C 1

3 C 1
2

)

f 2
1,1

(

3, 1
3 C 1

3 C 1
3

)

f 3
1,1

(

2, 1
2 C 1

2 C 1
2 C 1

2

)

f 4
1,1

(

3, 2
3 C 2

3 C 2
3

)

f 5
1,1

(

6, 1
2 C 2

3 C 5
6

)

f 6
1,1 id

f1,2
(

4, 1
4 C 1

4 C 1
2

)

f 2
1,2

(

2, 1
2 C 1

2 C 1
2 C 1

2

)

f 3
1,2

(

4, 1
2 C 3

4 C 3
4

)

f 4
1,2 id

(2) Genus 2:

f2,1
(

10, 1
10 C 2

5 C 1
2

)

f 2
2,1

(

5, 1
5 C 2

5 C 2
5

)

f 3
2,1

(

10, 1
2 C 7

10 C 4
5

)

f 4
2,1

(

5, 1
5 C 1

5 C 3
5

)

f 5
2,1

(

2, 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2

)

f 6
2,1

(

5, 2
5 C 4

5 C 4
5

)

f 7
2,1

(

10, 1
5 C 3

10 C 1
2

)

f 8
2,1

(

5, 3
5 C 3

5 C 4
5

)

f 9
2,1

(

10, 1
2 C 3

5 C 9
10

)

f 10
2,1 id

f2,2
(

8, 1
8 C 3

8 C 1
2

)

f 2
2,2

(

4, 1
4 C 1

2 C 1
2 C 3

4

)

f 3
2,2

(

8, 1
8 C 3

8 C 1
2

)

f 4
2,2

(

2, 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2

)

f 5
2,2

(

8, 1
2 C 5

8 C 7
8

)

f 6
2,2

(

4, 1
4 C 1

2 C 1
2 C 3

4

)

f 7
2,2

(

8, 1
2 C 5

8 C 7
8

)

f 8
2,2 id

f2,3
(

6, 1
6 C 1

6 C 2
3

)

f 2
2,3

(

3, 1
3 C 1

3 C 2
3 C 2

3

)

f 3
2,3

(

2, 1
2 C 1

2

)

f 4
2,3

(

3, 1
3 C 1

3 C 2
3 C 2

3

)

f 5
2,3

(

6, 1
3 C 5

6 C 5
6

)

f 6
2,3 id

f2,4
(

6, 1
3 C 1

2 C 1
2 C 2

3

)

f 2
2,4

(

3, 1
3 C 1

3 C 2
3 C 2

3

)

f 3
2,4

(

2, 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2

)

f 4
2,4

(

3, 1
3 C 1

3 C 2
3 C 2

3

)

f 5
2,4

(

6, 1
3 C 1

2 C 1
2 C 2

3

)

f 6
2,4 id
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(3) Genus 3:

f3,1
(

14, 1
14 C 3

7 C 1
2

)

f 2
3,1

(

7, 1
7 C 3

7 C 3
7

)

f 3
3,1

(

14, 1
7 C 5

14 C 1
2

)

f 4
3,1

(

7, 4
7 C 5

7 C 5
7

)

f 5
3,1

(

14, 3
14 C 2

7 C 1
2

)

f 6
3,1

(

7, 1
7 C 1

7 C 5
7

)

f 7
3,1

(

2, 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2

)

f 8
3,1

(

7, 2
7 C 6

7 C 6
7

)

f 9
3,1

(

14, 1
2 C 5

7 C 11
14

)

f 10
3,1

(

7, 2
7 C 2

7 C 3
7

)

f 11
3,1

(

14, 1
2 C 9

14 C 6
7

)

f 12
3,1

(

7, 4
7 C 4

7 C 6
7

)

f 13
3,1

(

14, 1
2 C 4

7 C 13
14

)

f 14
3,1 id

f3,2
(

12, 1
12 C 5

12 C 1
2

)

f 2
3,2

(

6, 1
6 C 5

6 C 1
2 C 1

2

)

f 3
3,2

(

4, 1
4 C 1

4 C 1
2 C 1

2 C 1
2

)

f 4
3,2

(

3, 1
2 C 2

3

)

f 5
3,2

(

12, 1
12 C 5

12 C 1
2

)

f 6
3,2

(

2, 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2

)

f 7
3,2

(

12, 1
2 C 7

12 C 11
12

)

f 8
3,2

(

3, 1
3 C 2

3

)

f 9
3,2

(

4, 1
2 C 1

2 C 1
2 C 3

4 C 3
4

)

f 10
3,2

(

6, 1
6 C 1

2 C 1
2 C 5

6

)

f 11
3,2

(

12, 1
2 C 7

12 C 11
12

)

f 12
3,2 id

f3,3
(

8, 1
8 C 1

8 C 3
4

)

f 2
3,3

(

4, 1
4 C 1

4 C 3
4 C 3

4

)

f 3
3,3

(

8, 1
4 C 3

8 C 3
8

)

f 4
3,3

(

2, 1
2 C 1

2 C 1
2 C 1

2

)

f 5
3,3

(

8, 5
8 C 5

8 C 3
4

)

f 6
3,3

(

4, 1
4 C 1

4 C 3
4 C 3

4

)

f 7
3,3

(

8, 1
4 C 7

8 C 7
8

)

f 8
3,3 id
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f3,4
(

4, 1
2 C 1

2

)

f 2
3,4

(

2, 1
2 C 1

2 C 1
2 C 1

2

)

f 3
3,4

(

4, 1
2 C 1

2

)

f 4
3,4 id

f3,6
(

12, 1
12 C 1

4 C 2
3

)

f 2
3,6

(

6, 1
6 C 1

2 C 2
3 C 2

3

)

f 3
3,6

(

4, 1
4 C 1

4 C 1
4 C 1

4

)

f 4
3,6

(

3, 1
3 C 2

3 C 2
3 C 2

3 C 2
3

)

f 5
3,6

(

12, 1
4 C 1

3 C 5
12

)

f 6
3,6

(

2, 1
2 C 1

2 C 1
2 C 1

2

)

f 7
3,6

(

12, 7
12 C 2

3 C 3
4

)

f 8
3,6

(

3, 2
3 C 1

3 C 1
3 C 1

3 C 1
3

)

f 9
3,6

(

4, 3
4 C 3

4 C 3
4 C 3

4

)

f 10
3,6

(

6, 1
3 C 1

3 C 1
2 C 5

6

)

f 11
3,6

(

12, 1
3 C 3

4 C 11
12

)

f 12
3,6 id

f3,7
(

8, 1
8 C 1

4 C 5
8

)

f 2
3,7

(

4, 1
4 C 1

4 C 1
4 C 1

4

)

f 3
3,7

(

8, 3
8 C 3

4 C 7
8

)

f 4
3,7

(

2, 1
2 C 1

2 C 1
2 C 1

2

)

f 5
3,7

(

8, 1
8 C 1

4 C 5
8

)

f 6
3,7

(

4, 3
4 C 3

4 C 3
4 C 3

4

)

f 7
3,7

(

8, 3
8 C 3

4 C 7
8

)

f 8
3,7 id

f3,8
(

9, 1
9 C 1

3 C 5
9

)

f 2
3,8

(

9, 5
9 C 2

3 C 7
9

)

f 3
3,8

(

3, 1
3 C 1

3 C 1
3 C 1

3 C 2
3

)

f 4
3,8

(

9, 1
3 C 7

9 C 8
9

)

f 5
3,8

(

9, 1
9 C 2

9 C 2
3

)

f 6
3,8

(

3, 1
3 C 2

3 C 2
3 C 2

3 C 2
3

)

f 7
3,8

(

9, 2
9 C 1

3 C 4
9

)

f 8
3,8

(

9, 4
9 C 2

3 C 8
9

)

f 9
3,8 id

f3,9
(

7, 1
7 C 2

7 C 4
7

)

f 2
3,9

(

7, 1
7 C 2

7 C 4
7

)

f 3
3,9

(

7, 3
7 C 5

7 C 6
7

)

f 4
3,9

(

7, 1
7 C 2

7 C 4
7

)

f 5
3,9

(

7, 3
7 C 5

7 C 6
7

)

f 6
3,9

(

7, 3
7 C 5

7 C 6
7

)

f 7
3,9 id
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(4) Genus 4:

f4,1
(

18, 1
18 C 4

9 C 1
2

)

f 2
4,1

(

9, 1
9 C 4

9 C 4
9

)

f 3
4,1

(

6, 1
6 C 1

3 C 1
2 C 1

2 C 1
2

)

f 4
4,1

(

9, 2
9 C 2

9 C 5
9

)

f 5
4,1

(

18, 1
2 C 11

18 C 8
9

)

f 6
4,1

(

3, 1
3 C 1

3 C 1
3

)

f 7
4,1

(

18, 1
2 C 13

18 C 7
9

)

f 8
4,1

(

9, 1
9 C 1

9 C 7
9

)

f 9
4,1

(

2, 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2

)

f 10
4,1

(

9, 2
9 C 8

9 C 8
9

)

f 11
4,1

(

18, 2
9 C 5

18 C 1
2

)

f 12
4,1

(

3, 2
3 C 2

3 C 2
3

)

f 13
4,1

(

18, 1
9 C 7

18 C 1
2

)

f 14
4,1

(

9, 4
9 C 7

9 C 7
9

)

f 15
4,1

(

6, 1
2 C 1

2 C 1
2 C 2

3 C 5
6

)

f 16
4,1

(

9, 5
9 C 5

9 C 8
9

)

f 17
4,1

(

18, 1
2 C 5

9 C 17
18

)

f 18
4,1 id

f4,2
(

16, 1
16 C 7

16 C 1
2

)

f 2
4,2

(

8, 1
8 C 1

2 C 1
2 C 7

8

)

f 3
4,2

(

16, 1
2 C 11

16 C 13
16

)

f 4
4,2

(

4, 1
4 C 1

2 C 1
2 C 1

2 C 1
2 C 3

4

)

f 5
4,2

(

16, 1
2 C 11

16 C 13
16

)

f 6
4,2

(

8, 3
8 C 1

2 C 1
2 C 5

8

)

f 7
4,2

(

16, 1
16 C 7

16 C 1
2

)

f 8
4,2

(

2, 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2

)

f 9
4,2

(

16, 1
2 C 9

16 C 15
16

)

f 10
4,2

(

8, 3
8 C 1

2 C 1
2 C 5

8

)

f 11
4,2

(

16, 3
16 C 5

16 C 1
2

)

f 12
4,2

(

4, 1
4 C 1

2 C 1
2 C 1

2 C 1
2 C 3

4

)

f 13
4,2

(

16, 3
16 C 5

16 C 1
2

)

f 14
4,2

(

8, 1
8 C 1

2 C 1
2 C 7

8

)

f 15
4,2

(

16, 1
2 C 9

16 C 15
16

)

f 16
4,2 id

f4,3
(

10, 1
10 C 1

10 C 4
5

)

f 2
4,3

(

5, 1
5 C 1

5 C 4
5 C 4

5

)

f 3
4,3

(

10, 3
5 C 7

10 C 7
10

)

f 4
4,3

(

5, 2
5 C 2

5 C 3
5 C 3

5

)

f 5
4,3

(

2, 1
2 C 1

2

)

f 6
4,3

(

5, 2
5 C 2

5 C 3
5 C 3

5

)

f 7
4,3

(

10, 3
10 C 3

10 C 2
5

)

f 8
4,3

(

5, 1
5 C 1

5 C 4
5 C 4

5

)

f 9
4,3

(

10, 1
5 C 9

10 C 9
10

)

f 10
4,3 id
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f4,4
(

10, 2
5 C 1

2 C 1
2 C 3

5

)

f 2
4,4

(

5, 2
5 C 2

5 C 3
5 C 3

5

)

f 3
4,4

(

10, 1
5 C 1

2 C 1
2 C 4

5

)

f 4
4,4

(

5, 1
5 C 1

5 C 4
5 C 4

5

)

f 5
4,4

(

2, 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2

)

f 6
4,4

(

5, 1
5 C 1

5 C 4
5 C 4

5

)

f 7
4,4

(

10, 1
5 C 1

2 C 1
2 C 4

5

)

f 8
4,4

(

5, 2
5 C 2

5 C 3
5 C 3

5

)

f 9
4,4

(

10, 2
5 C 1

2 C 1
2 C 3

5

)

f 10
4,4 id

f4,5
(

15, 1
15 C 1

3 C 3
5

)

f 2
4,5

(

15, 8
15 C 2

3 C 4
5

)

f 3
4,5

(

5, 1
5 C 3

5 C 3
5 C 3

5

)

f 4
4,5

(

15, 4
15 C 1

3 C 2
5

)

f 5
4,5

(

3, 1
3 C 1

3 C 1
3 C 1

3 C 1
3 C 1

3

)

f 6
4,5

(

5, 3
5 C 4

5 C 4
5 C 4

5

)

f 7
4,5

(

15, 1
3 C 4

5 C 13
15

)

f 8
4,5

(

15, 2
15 C 1

5 C 2
3

)

f 9
4,5

(

5, 1
5 C 1

5 C 1
5 C 2

5

)

f 10
4,5

(

3, 2
3 C 2

3 C 2
3 C 2

3 C 2
3 C 2

3

)

f 11
4,5

(

15, 3
5 C 2

3 C 11
15

)

f 12
4,5

(

5, 2
5 C 2

5 C 2
5 C 4

5

)

f 13
4,5

(

15, 1
5 C 1

3 C 7
15

)

f 14
4,5

(

15, 2
5 C 2

3 C 14
15

)

f 15
4,5 id

f4,6
(

12, 1
12 C 1

3 C 7
12

)

f 2
4,6

(

6, 1
6 C 1

6 C 1
3 C 1

3

)

f 3
4,6

(

4, 1
4 C 3

4

)

f 4
4,6

(

3, 1
3 C 1

3 C 1
3 C 1

3 C 1
3 C 1

3

)

f 5
4,6

(

12, 5
12 C 2

3 C 11
12

)

f 6
4,6

(

2, 1
2 C 1

2

)

f 7
4,6

(

12, 1
12 C 1

3 C 7
12

)

f 8
4,6

(

3, 2
3 C 2

3 C 2
3 C 2

3 C 2
3 C 2

3

)

f 9
4,6

(

4, 1
4 C 3

4

)

f 10
4,6

(

6, 2
3 C 2

3 C 5
6 C 5

6

)

f 11
4,6

(

12, 5
12 C 2

3 C 11
12

)

f 12
4,6 id

f4,7
(

10, 1
10 C 3

10 C 3
5

)

f 2
4,7

(

5, 1
5 C 3

5 C 3
5 C 3

5

)

f 3
4,7

(

10, 1
10 C 1

5 C 7
10

)

f 4
4,7

(

5, 3
5 C 4

5 C 4
5 C 4

5

)

f 5
4,7

(

2, 1
2 C 1

2

)

f 6
4,7

(

5, 1
5 C 1

5 C 1
5 C 2

5

)

f 7
4,7

(

10, 3
10 C 4

5 C 9
10

)

f 8
4,7

(

5, 2
5 C 2

5 C 2
5 C 4

5

)

f 9
4,7

(

10, 2
5 C 7

10 C 9
10

)

f 10
4,7 id



PRESENTATIONS OFPERIODIC MAPS 419

f4,8
(

12, 1
12 C 1

6 C 3
4

)

f 2
4,8

(

6, 1
6 C 1

6 C 1
6 C 1

2

)

f 3
4,8

(

4, 1
4 C 1

2 C 3
4 C 3

4 C 3
4

)

f 4
4,8

(

3, 1
3 C 1

3 C 1
3

)

f 5
4,8

(

12, 5
12 C 3

4 C 5
6

)

f 6
4,8

(

2, 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2

)

f 7
4,8

(

12, 1
6 C 1

4 C 7
12

)

f 8
4,8

(

3, 2
3 C 2

3 C 2
3

)

f 9
4,8

(

4, 1
4 C 1

4 C 1
4 C 1

2 C 3
4

)

f 10
4,8

(

6, 1
2 C 5

6 C 5
6 C 5

6

)

f 11
4,8

(

12, 1
4 C 5

6 C 11
12

)

f 12
4,8 id

f4,9
(

6, 1
6 C 1

3 C 2
3 C 5

6

)

f 2
4,9

(

3, 1
3 C 1

3 C 1
3 C 2

3 C 2
3 C 2

3

)

f 3
4,9

(

2, 1
2 C 1

2

)

f 4
4,9

(

3, 1
3 C 1

3 C 1
3 C 2

3 C 2
3 C 2

3

)

f 5
4,9

(

6, 1
6 C 1

3 C 2
3 C 5

6

)

f 6
4,9 id

f4,10
(

6, 1
3 C 1

3 C 1
3 C 1

2 C 1
2

)

f 2
4,10

(

3, 1
3 C 1

3 C 1
3 C 1

3 C 1
3 C 1

3

)

f 3
4,10

(

2, 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2

)

f 4
4,10

(

3, 2
3 C 2

3 C 2
3 C 2

3 C 2
3 C 2

3

)

f 5
4,10

(

6, 1
2 C 1

2 C 2
3 C 2

3 C 2
3

)

f 6
4,10 id

f4,11
(

6, 1
2 C 1

2

)

f 2
4,11 (3, )

f 3
4,11

(

2, 1
2 C 1

2 C 1
2 C 1

2 C 1
2 C 1

2

)

f 4
4,11 (3, )

f 5
4,11

(

6, 1
2 C 1

2

)

f 6
4,11 id

f4,12
(

5, 1
5 C 2

5 C 3
5 C 4

5

)

f 2
4,12

(

5, 1
5 C 2

5 C 3
5 C 4

5

)

f 3
4,12

(

5, 1
5 C 2

5 C 3
5 C 4

5

)

f 4
4,12

(

5, 1
5 C 2

5 C 3
5 C 4

5

)

f 5
4,12 id
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