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Abstract
We reveal a relationship between the non-local operatorL with variable order

having n as a Ĺevy-type kernel and the symmetric quadratic form defined by the
kernel n. The relationship is obtained through the carré du champ operator relative
to L.

1. Introduction

There are many pure jump Markov processes onRd for which the infinitesimal
generators are the following form:

(1.1) Lu(x) =
Z

y6= x
(u(y)� u(x)�ru(x) � (y� x)1B(1)(y� x))n(x, y) dy, x 2 Rd,

or

Lu(x) =
Z

h6= 0
(u(x + h)� u(x)� ru(x) � h1B(1)(h))�(x, h) dh, x 2 Rd,(1.10)

for some nonnegative functionn(x, y) on Rd � Rd � D, where D is the diagonal set,
D = f(x, x): x 2 Rdg (or �(x, h) defined onRd� (Rd�0)). Here B(r ) means the open
ball at the origin with radiusr and we denote by1B(1) the indicator function forB(1).

Intuitively, the functionn(x, y) represents the jump rate of the paths of the asso-
ciated process from the pointx to y, while �(x, h) shows the jump sizeh = y� x at
x. So the two expressions are the same if the functions�(x, h) and n(x, y) are the
following:

�(x, h) = n(x, x + h) or n(x, y) = �(x, y� x) (for y = x + h).
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In this note, we shall reveal a relation between the integro-differential operatorL
and the symmetric quadratic formE , where

(1.2) E(u, v) :=
Z Z

Rd�Rd�D
(u(y)� u(x))(v(y)� v(x))n(x, y) dy dx.

Defining the so-called “carré du champ” operator (see [15, 16]) 0( � , � ) as follows:

0(u, v)(x) := L(u � v)(x)� Lu(x) � v(x)� u(x) � Lv(x), x 2 Rd,

(see (2.2) in Section 2), we will show that

E(u, v) =
Z

Rd

0(u, v)(x) dx, u, v 2 C2
0(Rd),

under suitable conditions onn(x, y) (or �(x, h)). If we denote by (A, D(A)) the
L2-generator of the Dirichlet formE , we also investigate a connection between the
two generatorsL and A. Further a connection between the (non-symmetric) bilinear
form generated byL and the symmetric oneE will be also discussed. We will examine
these relations to the case of stable-like processes in the last section.

If L is the self-adjoint operator onL2(X; m) associated to a symmetric Dirichlet
form (�, D[�]), then assuming the existence of some nice “core”C for both L and �,
we see that

�(u, v) = E(u, v)� 1

2

Z
X
L(u � v)(x)m(dx), u, v 2 C,

where (X, F, m) is a � -finite measure space. Carré du champ operators0 play a role
when we study, for example, the logarithmic Sobolev inequalities for the given qua-
dratic forms in the case of infinite dimensional spaces or thediffusion cases (see e.g.,
[2, 1]).

2. Carré du champ operator

We first give a sufficient condition in order that the operatorL mapsC2
0(Rd) into

L p(Rd) for p � 1.

Proposition 1. Set j(x, y) = n(x, y) + n(y, x), x 6= y. Suppose that

(2.1) sup
x2Rd

Z
y6= x

(jy� xj2 ^ 1) j (x, y) dy<1.

ThenL(C2
0(Rd)) � L p(Rd) for any 1� p � 1.

Proof. We denote byM the supremum of the left hand side of (2.1). For any
u 2 C2

0(Rd), take positive numbersr and R so that supp[u] � B(r ) � B(R), R� r � 1.
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The proof for the casep =1 is rather easy, so we only show the case 1� p <1.
Since jxjp is a convex function onR, we see that

kLukp
L p =

Z
Rd

����
Z

y6= x
(u(y)� u(x)� ru(x) � (y� x)1B(1)(y� x))n(x, y) dy

����
p

dx

� 2p�1
Z

Rd

����
Z

0<jy�xj<1
(u(y)� u(x)�ru(x) � (y� x))n(x, y) dy

����
p

dx

+ 2p�1
Z

Rd

����
Z
jy�xj�1

(u(y)� u(x))n(x, y) dy

����
p

dx

=: 2p�1((I) + (II)).

Since supp[u] is contained inB(r ) and R� r � 1, we see that

(I) =
Z

B(R)

����
Z

0<jy�xj<1
(u(y)� u(x)�ru(x) � (y� x))n(x, y) dy

����
p

dx.

Then by making use of Taylor’s expansion foru,

(I) � C
Z

B(R)

�Z
0<jy�xj<1

jy� xj2n(x, y) dy

�p

dx � C Mp Vol(B(R)) <1.

As for (II), divide the integral in (II) into two parts:

(II) � �Z
B(R)

+
Z

B(R)c

�����
Z
jy�xj�1

(u(y)� u(x))n(x, y) dy

����
p

dx =: (II-1) + (II-2).

It is easy to see that

(II-1) � (2kuk1M)p Vol(B(R)) <1.

Finally we need to see the finiteness of (II-2). Thanks to the inequality

ju(y)j � kuk11B(r )(y) for y 2 Rd,

we see

(II-2) � (kuk1)pM p�1
Z

Rd

Z
Rd

1B(R)c(x) � 1B(1)c(y� x) � 1B(r )(y)n(x, y) dy dx.

Using the Fubini theorem and then, changing the variablesx$ y, the right hand side
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of the inequality is estimated by

(kuk1)pM p�1
Z

B(r )

Z
jy�xj�1

n(y, x) dy dx

� (kuk1)pM p�1
Z

B(r )

Z
jy�xj�1

j (y, x) dy dx

� (kuk1M)p Vol(B(r )) <1.

REMARK 1. (i) If we want to showLu 2 L1(Rd) for u 2 C2
0(Rd), then it is

enough for us to assume that

sup
x2Rd

Z
y6= x

(jy� xj2 ^ 1)n(x, y) dy<1.

But this can not guarantee the integrability ofLu in general.
(ii) We can make a bit weaker assumption in order to see thatL(C2

0(Rd)) is included
in L p(Rd) for 1� p <1 as follows:

x 7! Z
y6= x

(jx � yj2 ^ 1)n(x, y) dy 2 L p
loc(R

d)

and for all R, r with 0< r < R,

x 7! Z
B(r )

1jx�yj>1(y)n(x, y) dy 2 L p(Rd n B(R)).

DEFINITION (“carré du champ” operator). Assume the condition in Proposition 1.
Then we define a carré du champ operator0 relative toL from C2

0(Rd) � C2
0(Rd) into

L1(Rd) as follows: foru, v 2 C2
0(Rd)

(2.2) 0(u, v)(x) := L(u � v)(x)� u(x) � Lv(x)� Lu(x) � v(x), x 2 Rd.

Theorem 1. Assume(2.1) in Proposition 1holds. Then for any u, v 2 C2
0(Rd),

we have

(2.3) 0(u, v)(x) =
Z

y6= x
(u(y)� u(x))(v(y)� v(x))n(x, y) dy, x 2 Rd.

This means that the formE defined by(1.2) is written as

E(u, v) =
Z

Rd

0(u, v)(x) dx, u, v 2 C2
0(Rd).

Moreover, (E , C2
0(Rd)) is then a closable symmetric Markovian form on L2(Rd).
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Proof. Once we show (2.3), the closability and the Markov property for (E , C2
0(Rd))

are easily seen as in the Example 1.2.4 in [6] (see also [19, 20]) under the condition. So
we show (2.3). Foru, v 2 C2

0(Rd),

0(u, v)(x) = L(u � v)(x)� u(x) � Lv(x)� Lu(x) � v(x)

=
Z

y6= x
(u(y)v(y)� u(x)v(x)�r(u(x) � v(x)) � (y�x)1B(1)(y�x))n(x, y) dy

� v(x)
Z

y6= x
(u(y)� u(x)�ru(x) � (y�x)1B(1)(y�x))n(x, y) dy

� u(x)
Z

y6= x
(v(y)� v(x)� rv(x) � (y�x)1B(1)(y�x))n(x, y) dy.

Note thatr(u(x) � v(x)) = v(x)ru(x) + u(x)rv(x) for x 2 Rd. Therefore, dividing each
integral in the above into two parts respectively, one is on the setf0 < jy � xj < 1g
and the other is onfjy� xj � 1g, and summing up the integrands respective parts, then
we easily see

0(u, v)(x) =
Z

y6= x
(u(y)� u(x))(v(y)� v(x))n(x, y) dy.

From now on, we always assume (2.1). LetF be the closure ofC2
0(Rd) with

respect to the norm
p
E1( � , � ), where

E1(u, v) = E(u, v) +
Z

Rd

u(x)v(x) dx, u, v 2 C2
0(Rd).

Then (E , F ) is a regular symmetric Dirichlet form onL2(Rd) and a Hunt process as-
sociated with it is a pure jump Markov process (see [6]). We denote by (A, D[A])
the (L2)-infinitesimal generator corresponding to (E , F ). Now we try to find a relation
betweenL andA. In order to do so, we may need to know the exact form ofAu for
appropriate functionsu. As for this question, if we assume a bit stronger condition on
n(x, y), we can have an exact form ofAu for u 2 C2

0(Rd).

Theorem 2 (c.f. Theorem 2.2 and Proposition 2.5 in [17]).Assume(2.1). Sup-
pose further that there exists a function b2 L1(Rd ! Rd) so that

(2.4) lim"&0
sup
x2Rd

����
Z
"<jhj<1

hj(x, x + h) dh� b(x)

���� = 0.

Then C2
0(Rd) � D[A] and for u2 C2

0(Rd), Au is given by

Au(x) =
Z

h6= 0
(u(x + h)� u(x)� ru(x) � h1B(1)(h)) j (x, x + h) dh + b(x) � ru(x)
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By taking care of the appearance of the functionb, similar arguments of the proofs of
Theorem 2.2 and Proposition 2.5 of [17] give us the theorem. So we omit it. Note
that for a jump raten(x, y), j (x, y) = n(x, y) + n(y, x), x 6= y. Since (A, D[A]) is a
self-adjoint operator onL2(Rd), it is symmetric. ButL is not in general. So, if we
want to know a relation betweenL andA, we may also need to know an exact form
of the adjoint operatorL� of L. We now try to find the form of the adjoint operator
L� if possible. To this end, first set2(h) = h1B(1)(h), h 2 Rd. For anyu, v 2 C2

0(Rd)
and x, y 2 Rd with x 6= y, noting the equality:

u(x)(v(y)� v(x)�rv(x) �2(y� x))� v(y)(u(x)� u(y)� ru(y) �2(x � y))

= u(y)v(y)� u(x)v(x)� r(u � v)(x)2(y� x) + (v(x)ru(x)� u(y)rv(y)) �2(y� x),

we then obtain

(2.5)

Z Z
jx�yj>" u(x)(v(y)� v(x)� rv(x) �2(y� x))n(x, y) dx dy

� Z Zjx�yj>" v(y)(u(x)� u(y)� ru(y) �2(x � y))n(x, y) dx dy

=
Z Z

jx�yj>"(u(y)v(y)� u(x)v(x)�r(u � v)(x) �2(y� x))n(x, y) dx dy

+
Z Z

jx�yj>"(v(x)ru(x)� u(y)rv(y)) �2(y� x)n(x, y) dx dy.

We also note that, by the condition (2.4),Z Z
jx�yj>"(v(x)(y� x) � ru(x)� u(y)rv(y) �2(y� x))n(x, y) dx dy

=
Z Z

jx�yj>" v(x)ru(x) �2(y� x) j (x, y) dx dy

! Z v(x)b(x)ru(x) dx as " # 0.

SetD = b(x) � r and define an operator̃L by

L̃u(y) =
Z

h6= 0
(u(x)� u(y)�ru(y) �2(x � y))n(x, y) dx, y 2 Rd.

From the above calculus, we have the following equality

(u, Lv)� (L̃u, v) = (1, L(u � v)) + (v, Du).

Summarizing the discussion above, we have the following theorem:
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Theorem 3. Assume(2.1) and (2.4). Then we have

(u, Lv) = (v, L̃u) + (v, Du) + (1, L(u � v)), for u, v 2 C2
0(Rd).

Moreover, noticing that E(u, v) = �(u, Av) =
R 0(u, v) dx, u 2 F , v 2 D[A] and0(u, v)(x) = L(u � v)(x) � Lu(x) � v(x) � u(x) � Lv(x), x 2 Rd, u, v 2 C2

0(Rd), we
alternatively have that for u2 C2

0(Rd),

Au(x) = Lu(x) + L̃u(x) + Du(x), x 2 Rd.

REMARK 2. (i) Denote byL� the (formal) adjoint operator ofL on L2(Rd). If
we are able to justify “L�1(x) =: k(x)”, then the adjoint operatorL� has the following
form: for x 2 Rd,

L�u(x) = L̃u(x) + Du(x) + u(x) � k(x)

=
Z

y6= x
(u(y)� u(x)�ru(x) �2(y�x))n(y, x) dy + Du(x) + u(x) � k(x).

(ii) Carré du champ operators are known as the operators thattake out “the higher
order terms”. For example, consider the so-calledoperator of non-divergence form:

Lu(x) =
X

i j

ai j (x)
��xi

�u�x j
(x), x 2 Rd,

for some positive functiona = (ai j (x)) satisfying uniformly elliptic condition. In this
case, the carré du champ operator0 is given by

0(u, v)(x) = 2
X

i j

ai j (x)
�u�xi

(x)
�v�x j

(x), x 2 Rd.

This gives us anoperator of divergence form(divided by 2).

Finally, we define a bilinear form relative to the operatorL:

�(u, v) := �(u, Lv), u, v 2 C2
0(Rd).

Under the condition (2.1), this quadratic form (�, C2
0(Rd)) is a densely defined qua-

dratic form onL2(Rd), but is not necessarily symmetric nor positive definite in general.
So we do not know this becomes a (quasi-)regular Dirichlet form ([13]). Imitating the
theory of non-symmetric Dirichlet form, denote by ˜� and �̌ the symmetric part and the
anti-symmetric part of� respectively:

�̃(u, v) =
1

2
(�(u, v) + �(v, u)), �̌(u, v) =

1

2
(�(u, v)� �(v, u)), u, v 2 D[�].
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We now show a connection betweenE(u, v) and �(u, v) for the functionsu, v 2
C2

0(Rd):

Proposition 2. Assume(2.1). Then we have

E(u, v) = 2�̃(u, v) +
Z

Rd

L(u � v)(x) dx, u, v 2 C2
0(Rd).

Proof. This is an easy consequence of Theorem 1. In fact, since for u, v 2 C2
0(Rd),

E(u, v) =
Z

Rd

0(u, v)(x) dx

=
Z

Rd

L(u � v)(x) dx� (u, Lv)� (v, Lu)

= 2�̃(u, v) +
Z

Rd

L(u � v)(x) dx.

Note that, even if (�, C2
0(Rd)) does not produce a (quasi-)regular Dirichlet form,

we can always construct a symmetric Hunt process associatedto E whenevern(x, y)
satisfies the condition (2.1). But the process is not corresponding toL directly. Though
one possibility to construct a process associated withL is to show the (quasi-)regularity
of the quadratic form� ([13]), we do not know, as we said, that the positive definite-
ness of� in general. Now we only give a sufficient condition that the quadratic form
(�, C2

0(Rd)) relative toL becomes a positive definite one:

(2.6)
Z

Rd

L f (x) dx � 0, f � 0, f 2 C2
0(Rd).

Under this condition, we see, from Proposition 2, that

0� E(u, u) = 2�̃(u, u) +
Z

Rd

L(u2)(x) dx � 2�̃(u, u) = 2�(u, u), u 2 C2
0(Rd).

So this implies that the form (�, C2
0(Rd)) is positive definite.

REMARK 3. Assume there exists a strong Markov processM = (Xt , Px) for which
Px solves theL-martingale problem for eachx 2 Rd: for f 2 C2

b(Rd),

Px(X0 = x) = 1, f (Xt )� f (X0)� Z t

0
L f (Xs) ds is a Px-local martingale.

Let fpt g be the transition function ofM . If the Lebesgue measuredx is fpt g-excessive
in the sense that,Z

Rd

pt (x, B) dx � Vol(B) for t > 0 and B 2 B(Rd),
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then the condition (2.6) is satisfied. In fact, for anyf 2 C2
0(Rd) with f � 0, we

see that

0� Z
Rd

pt f (x) dx� Z
Rd

f (x) dx =
Z t

0

Z
Rd

psL f (x) dx ds.

Hence, as takingt ! 0 after dividing byt in the both sides, we have (2.6)

3. Stable-like processes

In this section, we examine the results obtained in the preceding section to the
case of “stable-like” processes. Stable-like processes are defined as variants of sym-
metric stable processes by Bass [3, 4]. For a measurable function � defined onRd, he
introduced the following integro-differential operator:for u 2 C2

0(Rd),

Lu(x) := w(x)
Z

h6= 0
(u(x + h)� u(x)�ru(x) � h1B(1)(h))jhj�d��(x) dh, x 2 Rd,

wherew is a function chonsen so thatLeiux = �juj�(x)eiux. If � is Lipschitz contin-
uous, bounded below by a constant�1 which is greater than 0, and bounded above
by a constant�2 which is less than 2, then he showed that there exist a unique strong
Markov processM = (Xt ,Px) for which Px solves the martingale problem forL at each
point x 2 Rd. After that, many authors have studied this type of operators to construct
stochastic processes by using various techniques including SDE with jumps, pseudo
differential operators or Dirichlet form theory (see e.g. [18, 14, 7, 12, 11, 8, 19, 20]
and also see [5, 10], for related topics and the references).If � satisfies the condi-
tion mentioned above, it is known thatw is a bounded continuous function satisfying�1 � w(x) � �2. Though the Lévy kernel is indeed given byw(x)jx � yj�d��(x) for
the stable-like process, we considern(x, y) = jx� yj�d��(x) as our kernel in the sequel
for simplicity.

Then the symmetric stable-like processes ([19]) can be alsoconstructed by using
the “carré du champ” operator0(u, v) = L(uv)(x)� Lu(x)v(x)� u(x)Lv(x):

E(u, v) =
Z

Rd

0(u, v)(x) dx =
Z Z

x 6= y

(u(x)� u(y))(v(x)� v(y))jx � yjd+�(x)
dx dy.

In order to justify the results mentioned in the preceding section, we give a suffi-
cient condition that the function� satisfies (2.1) and (2.4):

Proposition 3. Suppose that the function� satisfies the following conditions:
• there exists positive constants� and � such that, for any x2 Rd,

0< � � �(x) � � < 2,
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• there exists positive constants M andÆ satisfying(� � 1)_ 0< Æ � 1 so that

j�(x)� �(y)j � Mjx � yjÆ, x, y 2 Rd.

Then the conditions(2.1) and (2.4) hold.

Proof. (2.1) is easily calculated. So we show (2.4). Note that j (x, y) = jx �
yj�d��(x) + jx � yj�d��(y). Then, for anyx 2 Rd, we haveZ

0<jhj<1
jhj � j j (x, x + h)� j (x, x � h)j dh

=
Z

0<jhj<1
jhj � ��jhj�d��(x+h) � jhj�d��(x�h)

�� dh

=
Z

0<jhj<1
jhj1�d � ��jhj��(x+h) � jhj��(x�h)

�� dh.

Thanks for the formulajt�a � t�bj = ��R b
a t�u log t du

��, we see that, for 0< jhj < 1

��jhj��(x+h) � jhj��(x�h)
�� � j�(x + h)� �(x � h)j � log

1jhj � jhj�maxf�(x+h),�(x�h)g
� Mj(x + h)� (x � h)jÆ log

1jhj � jhj��
= 2ÆMjhjÆ�� � log

1jhj .
Thus, since (� � 1)_ 0< Æ � 1,Z

0<jhj<1
jhj � �� j (x, x+h)� j (x, x�h)

�� dh� 2ÆM Z
0<jhj<1

jhj1�d+Æ�� log
1jhj dh

� 2ÆMcd

Z 1

0
uÆ�� log

1

u
du<1.

Set

b(x) =
Z

0<jhj<1
h(jhj�d��(x+h) � jhj�d��(x�h)) dh,

then we see thatb satisfies (2.4).

REMARK 4. In general, it is difficult to write down the adjoint operator L� as
an exact form (see Remark 2 (ii)). But, as was pointed out in Remark 3.1 of [9], we
are able to do it when the function� satisfies the following stronger conditions: There
exists positive constants�, �, Æ and M such that, 0< Æ � 1,

(3.1) 0< � � �(x) � � < 1 and j�(x)� �(y)j � Mjx � yjÆ, for x, y 2 Rd.
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In fact, under the conditions, the operatorL has the following form foru 2 C1
0(Rd):

Lu(x) =
Z

h6= 0
(u(x + h)� u(x)) � jhj�d��(x) dh, x 2 Rd.

As in the discussion developed after Theorem 2, we see that for any u, v 2 C1
0(Rd),

(u, Lv) =
Z

Rd

u(x)
Z

h6= 0

(v(x + h)� v(x))jhjd+�(x)
dh dx

=
Z

Rd

v(x)
Z

h6= 0

�
u(x + h)� u(x)

�
jhjd+�(x+h)

dh

+
Z

Rd

Z
h6= 0

� v(x)u(x)jhjd+�(x+h)
� v(x)u(x)jhjd+�(x)

�
dh dx.

This shows that

L�u(x) =
Z

h6= 0

(u(x + h)� u(x))jhjd+�(x+h)
dh+ u(x) � Z

h6= 0
(jhj�d��(x+h) � jhj�d��(x)) dh, x 2 Rd.
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