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Abstract
We reveal a relationship between the non-local operatowith variable order
having n as a levy-type kernel and the symmetric quadratic form defined Hey t
kerneln. The relationship is obtained through the éadu champ operator relative
to L.

1. Introduction

There are many pure jump Markov processesRShfor which the infinitesimal
generators are the following form:

(1.1) Lu(x) = ) (u(y) — u(x) = Vu(x) - (y = x)1g@(y — x))n(x, y) dy, x € RY,
y#X

or

(1.7) Lu(x) = /h?o(u(x +h) —u(x) — Vu(x) - hlggy(h)v(x, h)dh, xe RY,

for some nonnegative function(x, y) on R x R4 — D, whereD is the diagonal set,

D = {(x, X): x € RY} (or v(x, h) defined onRY x (RY — 0)). HereB(r) means the open

ball at the origin with radius and we denote bylg) the indicator function forB(1).
Intuitively, the functionn(x, y) represents the jump rate of the paths of the asso-

ciated process from the point to y, while v(Xx, h) shows the jump sizé =y — x at

X. So the two expressions are the same if the functiofxs h) and n(x, y) are the

following:

v(X, h)=n(x,x+h) or n(x,y)=v(x,y—x) (for y=x+h).
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In this note, we shall reveal a relation between the intefjfferential operatorl
and the symmetric quadratic for&, where

a2 o= [[ @) u0e) - vne, v dy dx

Defining the so-called “carré du champ” operator (see [1%) I§-, -) as follows:
T(u, v)(X) := LU - v)(X) — Lu(X) - v(X) — u(x) - Lv(x), x € RY,

(see (2.2) in Section 2), we will show that
£(u, v):/ I'(u, v)(x)dx, u,ve C3(RY),
Rd

under suitable conditions on(x, y) (or v(x, h)). If we denote by 4, D(A)) the
L2-generator of the Dirichlet forn€, we also investigate a connection between the
two generatorsC and A. Further a connection between the (non-symmetric) bifinea
form generated by, and the symmetric oné will be also discussed. We will examine
these relations to the case of stable-like processes inasteséction.

If £ is the self-adjoint operator oh?(X; m) associated to a symmetric Dirichlet
form (n, D[n]), then assuming the existence of some nice “catefor both £ and »n,
we see that

n(u, v) = E(u, v) — % [x LU -v)(x)m(dx), u,veC,

where X, §, m) is a o-finite measure space. Carré du champ operdfoday a role
when we study, for example, the logarithmic Sobolev ineitjeal for the given qua-
dratic forms in the case of infinite dimensional spaces ordiffesion cases (see e.g.,

[2, 1]).
2. Carré du champ operator

We first give a sufficient condition in order that the operafomapsCS(Rd) into
LP(RY) for p > 1.

Proposition 1. Set [x, y) =n(x, y) +n(y, X), x 7Zy. Suppose that

(2.1) sup | (y—xIPAD)j(x, y)dy < oc.

xeRd Jy#x
Then £(C3(RY) c LP(RY) for any 1 < p < oo.

Proof. We denote byM the supremum of the left hand side of (2.1). For any
u e C2(RY), take positive numbers and R so that suppf] ¢ B(r) c B(R), R—r > 1.
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The proof for the case = oo is rather easy, so we only show the casg b < cc.

Since |X|P is a convex function oR, we see that
(u(y) — u(x) — vVu(x) - (y — x)1g@y(y — x))n(x, y) dy

/Rd Y#X

P - — . _
<2 \/Rd /(;<|y_x<l(u()’) U(X) Vu(x) (y X))n(x, y) dy

2Pt — ,y)d
2t [ ) - uomte vy
2P () + (1))

p
dx

ILullfs

p
dx

p
dx

Since suppj] is contained inB(r) and R—r > 1, we see that

= fB .

Then by making use of Taylor's expansion for

p
dx.

/ (u(y) — u(x) = Vu(x) - (y = x))n(x, y) dy
O<|y—x|<1

p
(1) §C/ (/ ly — x|2n(x, y)dy) dx < CMP Vol(B(R)) < oo.
B(R) \Jo<|y—x|<1

As for (Il), divide the integral in (Il) into two parts:

= (/B(R) +/B(R)c)

It is easy to see that

i dx =: (II-1) + (1l-2).

/ (u(y) - uCON(x, y) dy
y—x|=1

(II-1) = (2llulloM)P VOI(B(R)) < oo.

Finally we need to see the finiteness of (II-2). Thanks to treguality
Uyl < llullolery(y) for yeRY

we see

(12) = )™M [ | Sar09 - aarly =) - oy (9n(x, y) dy dx

Using the Fubini theorem and then, changing the variakles y, the right hand side
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of the inequality is estimated by

(||u||oo)pMp—1// n(y, x) dy dx

B(r) Jly—x|>1

< (Jullo)’M P / iy, x) dy dx
B(r) Jly—x|>1

< (lullcoM)P VOI(B(r)) < oc. 0

REMARK 1. (i) If we want to showlu e L*(RY) for u € C2(RY), then it is
enough for us to assume that

sup (ly = x| A Dn(x, y) dy < oco.
xeRd Jy#x

But this can not guarantee the integrability 66 in general.
(i) We can make a bit weaker assumption in order to see meﬁ(Rd)) is included
in LP(RY) for 1 < p < oo as follows:

x> | (x=yPADn(x y)dye LE(R?)
y#X

and for allR,r with 0 <r < R,
X > / Loy 1(y)N(x, y) dy € LPRS \ B(R)).
B(r)

DeFINITION (“carré du champ” operator). Assume the condition in Prdjorsl.
Then we define a carré du champ operdtorelative to £ from CS(]R") X Cg(Rd) into
LY(RY) as follows: foru, v € C2(RY)

(2.2) I'(u, v)(X) 1= L£(U - v)(X) — u(x) - Lv(x) — Lu(x) - v(X), x e R

Theorem 1. Assume(2.1) in Proposition lholds Then for any uv € C3(RY),
we have

(2.3) I'(u, v)(x) = . (u(y) = UG (y) — v()In(x, y) dy, x € R%.
yZX
This means that the forréi defined by(1.2) is written as

E(u,v) = /Rd T'(u, v)(x) dx, u, v e CERY).

Moreover (£, CS(RU')) is then a closable symmetric Markovian form oA(RY).
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Proof. Once we show (2.3), the closability and the Markov prgpfor (£, C2(RY))
are easily seen as in the Example 1.2.4 in [6] (see also [19uRder the condition. So
we show (2.3). Fou, v € CZ(RY),

C'(u, v)(X) = L(u - v)(X) — u(x) - Lv(x) — LU(x) - v(x)

= ) uy)v(y) — u(x)v(x) — V(u(x) - v(x)) - (y=x)1ew(y—x)n(x, y) dy
y#X

—v(x) ) (u(y) — u(x) — Vu(x) - (y=x)1sw(y—x)n(x, y) dy
y#X

—u(x) ) (v(y) — v(X) = Vo(x) - (y=X)1g@)(y—Xx))n(x, y) dy.
y#X

Note thatV(u(x) - v(x)) = v(x)Vu(x) + u(x)Vo(x) for x € RY. Therefore, dividing each
integral in the above into two parts respectively, one is lom $et{0 < |y — x| < 1}

and the other is of|y — x| > 1}, and summing up the integrands respective parts, then
we easily see

T, v)(x) = [ (u(y) = u()(u(y) —v(x))n(x, y) dy. o

Y#X

From now on, we always assume (2.1). LEtbe the closure ofCZ(RY) with
respect to the norm/&.(-, -), where

E1(u, v) = E(u, v) +/ u(x)v(x) dx, u, v e C3RY).
Rd

Then €, F) is a regular symmetric Dirichlet form oh?(RY) and a Hunt process as-
sociated with it is a pure jump Markov process (see [6]). Weotkerby (4, D[.A])
the (L?)-infinitesimal generator corresponding 6, (F). Now we try to find a relation
betweenl and A. In order to do so, we may need to know the exact formAof for
appropriate functionsl. As for this question, if we assume a bit stronger condition o
n(x, y), we can have an exact form ofu for u e Cg(Rd).

Theorem 2 (c.f. Theorem 2.2 and Proposition 2.5 in [17])Assume(2.1). Sup-
pose further that there exists a functionel*(RY — RY) so that

2.4 lim su
( ) eNO XERE‘)

/ hj(x, x +h) dh — b(x)| = 0.
e<|h|<1
Then G(RY) c D[A] and for ue C2(RY), Au is given by

Au(x) = /h?o(u(x +h) — u(x) — Vu(x) - hlgy(h))j(x, x + h) dh+ b(x) - Vu(x)
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By taking care of the appearance of the functlnsimilar arguments of the proofs of
Theorem 2.2 and Proposition 2.5 of [17] give us the theorern.w® omit it. Note
that for a jump raten(x, y), j(X, ¥) =n(x, y) + n(y, xX), X #Zy. Since @, D[A]) is a
self-adjoint operator orL2(RY), it is symmetric. But£ is not in general. So, if we
want to know a relation betweef and A, we may also need to know an exact form
of the adjoint operator’* of £. We now try to find the form of the adjoint operator
£* if possible. To this end, first sed(h) = hlgg)(h), h € RY. For anyu, v e CZ(RY)
andx, y € RY with x #y, noting the equality:

u(x)((y) — v(x) = Vu(x) - Oy — x)) — v(y)(u(x) — u(y) — Vu(y) - ©(x - y))
= u(y)u(y) — ux)v(x) = V(u - v)(x)0(y — x) + (L(x)Vu(x) — u(y)Vu(y)) - ©(y — x),

we then obtain
/ /| 0O ~ 16 ~ V() - €0y — X, y)cx dy
X—y|>e
_ / / VY)(UGO) — U(y) — Vu(y) - O(X — y)n(x, y) dx dy
(2.5) xyl=e
= / /l () ~ UGG V- 1) - Oy (. ) dx dy
X—y|>&
+ / / (LEIVUX) — UuY)Vo(y)) - Oy — X)n(x, y) dx dy
IX—y|>e
We also note that, by the condition (2.4),
/ /| (000~ X)- U6 ~u)TH) - Oy ~ )G, ) dx dy
X—y|>€
://l  0OVUG -6y ~j(x, y) dx dy
X—y|>¢
—>/v(x)b(x)Vu(x)dx as ¢]0.
SetD =Db(x) - V and define an operataf by

Lu(y) = /h ¢O(U(X) —u(y) — Vu(y) - ©(x — y))n(x, y)dx, yeR"

From the above calculus, we have the following equality
(u, £v) — (Lu, v) = (1, £(u - v)) + (v, Du).

Summarizing the discussion above, we have the followingréra:
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Theorem 3. Assume(2.1) and (2.4). Then we have
(u, £v) = (v, Lu) + (v, Du) + (1, L(u-v)), for u, v e CZ(RY).

Moreover noticing that £(u, v) = —(u, Av) = [T(u, v)dx, u € F, v € D[A] and
T'(u, v)(X) = L(u - v)(X) — Lu(X) - v(X) — u(x) - Lv(X), x € RY, u, v e C3(RY), we
alternatively have that for « Cg(]Rd),

Au(X) = Lu(x) + £u(x) + Du(x), x € RY,

REMARK 2. (i) Denote byL* the (formal) adjoint operator of on L2(RY). If
we are able to justify £*1(x) =: k(x)", then the adjoint operato£* has the following
form: for x € RY,

L£u(x) = Lu(x) + Du(x) + u(x) - k(x)

= ) (u(y) — u(x) — Vu(x) - ©(y=x))n(y, x) dy + Du(x) + u(x) - k(x).
y#X

(i) Carré du champ operators are known as the operatorstdkat out “the higher
order terms”. For example, consider the so-calgerator of non-divergence form

Lu(x) = Z aj(x)%%(x), x € RY,
i S

for some positive functiora = (a;(x)) satisfying uniformly elliptic condition. In this
case, the carré du champ operafois given by

- 02 0 0V d
T'(u, v)(x) = Z;a”(x)a)(i (X)ax,- (x), xeR

This gives us aroperator of divergence forndivided by 2).
Finally, we define a bilinear form relative to the operatir
n(u, v) := —(u, Lv), u,ve CERY).

Under the condition (2.1), this quadratic form, CS(R")) is a densely defined qua-
dratic form onL2(RY), but is not necessarily symmetric nor positive definite émeyal.
So we do not know this becomes a (quasi-)regular Dirichlemf@13]). Imitating the
theory of non-symmetric Dirichlet form, denote lgyahdn the symmetric part and the
anti-symmetric part ofy respectively:

i, 0) = 200, 0) + 0w, W), i, ) = (0, 0) — (v, W), U, v € DDl
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We now show a connection betweéifu, v) and n(u, v) for the functionsu, v €
C2(RY):

Proposition 2. Assumeg(2.1). Then we have
E(u, v) = 2i(u, v)+/ L(u-v)(x)dx, u,v e C3RY).
Rd
Proof. This is an easy consequence of Theorem 1. In facte $mw, v € Cg(Rd),
E(u, v) :/ ' (u, v)(x) dx
Rd
= / LU -v)(x)dx — (u, Lv) — (v, Lu)
Rd

= 27(u, v) + /};d L(u - v)(x) dx. O

Note that, even if A, CS(R”)) does not produce a (quasi-)regular Dirichlet form,
we can always construct a symmetric Hunt process assodat€édwhenevern(x, y)
satisfies the condition (2.1). But the process is not cooeding to £ directly. Though
one possibility to construct a process associated Witk to show the (quasi-)regularity
of the quadratic fornm ([13]), we do not know, as we said, that the positive definite-
ness ofn in general. Now we only give a sufficient condition that theadgatic form
(n, CS(R")) relative to £ becomes a positive definite one:

(2.6) /]Rd Lf(x)dx<0, f=>0, feC3RY.
Under this condition, we see, from Proposition 2, that

0 < &(u, u) = 27j(u, u) + /Rd L(u?)(x) dx < 27j(u, u) = 27(u, u), u e C3RY).
So this implies that the formu( Cg(Rd)) is positive definite.

REMARK 3. Assume there exists a strong Markov proddss (X, IPx) for which
P, solves the-martingale problem for each e RY: for f € C2(RY),

t
Py(Xo=x)=1, f(X;)— f(Xo) —/ LT (Xs)ds is aPy-local martingale.
0

Let {p} be the transition function of1. If the Lebesgue measudx is {p;}-excessive
in the sense that,

/ p(x, Bydx <Vol(B) for t>0 and B e B(RY),
RY
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then the condition (2.6) is satisfied. In fact, for afye C3(RY) with f > 0, we
see that

Oz/]Rd ptf(x)dx—/]Rd f(x)dx:/()t/]Rd psL f(x)dx ds

Hence, as taking — O after dividing byt in the both sides, we have (2.6)

3. Stable-like processes

In this section, we examine the results obtained in the pliagesection to the
case of “stable-like” processes. Stable-like processesdafined as variants of sym-
metric stable processes by Bass [3, 4]. For a measurabléidone defined onRY, he
introduced the following integro-differential operatdior u € C3(RY),

Lu(x) = w(x) /h ¢O(u(x +h) — u(x) — Vu(x) - hlggy(h)h| 4@ dh, x e RY,

where w is a function chonsen so thate"* = —|u|*®&Y%, If « is Lipschitz contin-
uous, bounded below by a constant which is greater than 0, and bounded above
by a constantr, which is less than 2, then he showed that there exist a unimoegs
Markov processvl = (X, Py) for which Py solves the martingale problem fdr at each
point x € RY. After that, many authors have studied this type of opesatorconstruct
stochastic processes by using various techniques ingJuBIDE with jumps, pseudo
differential operators or Dirichlet form theory (see e.§8,[ 14, 7, 12, 11, 8, 19, 20]
and also see [5, 10], for related topics and the referencsy satisfies the condi-
tion mentioned above, it is known that is a bounded continuous function satisfying
a1 < w(X) < ap. Though the Lévy kernel is indeed given lby(x)|x — y|=9=*®) for
the stable-like process, we consid€k, y) = |x —y|~9-%®) as our kernel in the sequel
for simplicity.

Then the symmetric stable-like processes ([19]) can be edsstructed by using
the “carré du champ” operatdr(u, v) = L(Uv)(X) — Lu(X)v(x) — u(x)Lv(x):

£(u, v)szd r(u, v)(x)dx://; (U0) = UIEE) = v g g
X7y

|x — y|dret)

In order to justify the results mentioned in the precedingtisa, we give a suffi-
cient condition that the functionr satisfies (2.1) and (2.4):

Proposition 3. Suppose that the functiom satisfies the following conditions
e there exists positive constantsand 8 such that for any xe RY,

O<a<alX)<B <2,
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e there exists positive constants M afidsatisfying(8 — 1) v 0 < § < 1 so that
j@(x) — (V)| < MIx =y, x,yeR

Then the condition$2.1) and (2.4) hold.

Proof. (2.1) is easily calculated. So we show (2.4). Notd thx, y) = |x —
y|797e®) 4+ |x — y|79-«) Then, for anyx € RY, we have

/ [hl-]j(x, x+h) = j(x,x —=h)]dh

O<lh|<1

:/ |h| . ||h|—d—a(x+h) _ |h|—d—a(x—h)| dh
O<|h|<1

:/ |h|17d . ||h|7ot(x+h) _ |h|7(x(xfh)| dh.
O<|h|<1

Thanks for the formulgt=2 —t=?| = |fabt—u logt du|, we see that, for G |h| <1
1
hi

1
M|(x +h) — (x —h)|’ log e h|~*

||h|7ot(x+h) _ |h|7ot(xfh)| < |O[(X + h) _ (X(X _ h)| A |Og . |h|7max{a(x+h),a(xfh)}

IA

1
=22M[hP’~* .log —.
OThi

Thus, sincef —1)v0<§ <1,

/ Ihl - |j(x, x+h) — j(x, x—h)|dh§25M/ |h|i-d+—p Iogidh
O<lh|<1 O<lh|<1 |h|

1
1
< 2’Mcy / u’=flog = du < oo.
0 u
Set

b(X) - / h(|h|—d—a(x+h) _ |h|—d—a(x—h)) dh,
O<lh|<1

then we see thab satisfies (2.4). ]

REMARK 4. In general, it is difficult to write down the adjoint opesatl* as
an exact form (see Remark 2 (ii)). But, as was pointed out imd&tk 3.1 of [9], we
are able to do it when the functiam satisfies the following stronger conditions: There
exists positive constantg, 8, § and M such that, 0< § < 1,

(Bl O<a<a(X)<p<1 and |a(X)—a(y) <M|x—y]°, for x,yeRd
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In fact, under the conditions, the operatfrhas the following form foru € C3(RY):
Lu(x) = f (u(x +h) —u(x)) - lh|79*® dh, xeRY.
h#0

As in the discussion developed after Theorem 2, we see tharfpu, v € CI(RY),

(v(x+h) —v(x))

|h|d+a(x) dh dx

(u,[,v)—/ u(x) o
u(x+h)—u(x))
/]Rd /h TCET N dn
v(u(x)  v(x)u(x)
+A§ﬁ;o(mwmﬂm>_|hwm@>>dhdx

(u(x+ h) — u(x))
TR

This shows that

Lu(x) = dh+u(x) - /h?0(|h|d“<x+h> —|h|=9=*®ydh, x e R

h#0
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