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Abstract
In this paper, we consider the Cauchy problem�

ut = (um�1ux)x, x 2 R, t > 0, �1 < m� 1,
u(x, 0) = u0, x 2 R.

We will prove that:
1) ju(x, t , m) � u(x, t , m0)j ! 0 uniformly on [�l , l ] � [� , T ] as m ! m0 for any
given l > 0, 0 < � < T and�1 < m, m0 < 1,
2)

R
R
ju(x, t , m)� u(x, t , 1)j dx � 2((1�m)=m)ku0kL1(R).

1. Introduction

We consider the Cauchy problem

(1.1)

�
ut = (um�1ux)x, x 2 R, t > 0,
u(x, 0) = u0, x 2 R.

Where,�1< m� 1 and

(1.2) u0 � 0, 0< ku0kL1(R) < +1.

In recent years there has been a considerable interest in theequation in (1.1), such
as [4], [13] and [15], and so on. The equation encompasses fordifferent ranges ofm
a variety of qualitative properties with wide scope of applications. For example, the
equation is degenerate parabolic asm> 1, so (1.1) only has weak solutions (see [3]) in
this case. Ifm = 1, the equation is uniformly parabolic and therefore (1.1)has a unique
global smooth solutionu(x, t , 1) = (1=(2p� t))

R
R

u0(� )e�(x�� )2=(4t) d� . If m < 1, then
um�1 blows up asu ! 0. It is usually referred to as the singular diffusion equation
and has been proposed in plasma physics and in the heat conduction in solid hydrogen
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(see [12]). In this case, the problem (1.1) with condition (1.2) also has a unique global
smooth solutionu(x, t , m) (called maximal solution) for any given�1 < m < 1 (see
[6], [12]) such that

u(x, t , m) 2 C1(Q) \ C([0, +1); L1(R)),(1.3)

1

m� 1
(um�1)xx � �1

(1 + m)t
, for (x, t) 2 Q,(1.4)

�u

(1 + m)t
� ut � u

(1�m)t
, for (x, t) 2 Q,(1.5)

and

(1.6) u(x, t , m) � c(m, u0) � t�1=(1+m),

where, the constantc(m) depends onm and ku0kL1(R), Q = R� (0, +1).
Although the equation of (1.1) arises in many applications,and have been studied

by many authors, there are only a few results concerning the approximating character
on the nonlinearities of the equations. In 1981, Belinan andCrandall (see [16]) studied
the similar problem for degenerate parabolic equations, but their results are not written
in terms of explicit estimates. And then, B. Cockburn and G. Gripenberg (see [2])
extended the result of [16] for degenerate parabolic equations in 1999 and obtained an
explicit estimate inL p(RN) for any given t . Recently, in 2006 and 2007, the author
(see [9], [10]) discussed the problem (1.1) form > 1, and obtain a explicit constant
C� = O(T
 ) such that

Z T

0

Z
R

ju(x, t , m)� u(x, t , m0)j2 dx dt� C�jm�m0j, m, m0 � 1.

As to the case ofm� 1, the author (see [11]) considered the singular diffusion problem

8>>>><
>>>>:

ut = (um�1ux)x, 0< x < 1, t > 0,�
1

m
um

�
x

����
x=0,1

= 0, t � 0,

ujt=0 = u0(x), 0� x � 1,

and proved that there exists a unique global solutionu(x, t , m) such that

Z 1
0

Z 1

0
ju(x, t , m)� u(x, t , m0)j2 dx dt� C�jm�m0j,

where, 0< m, m0 � 1 andC� is a explicit constant. To the knowledge of the author,
there are no other correlative results on such problem.
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Since m � 1 in this work, by a solution of the Cauchy problem (1.1) onQ, we
mean a functionu(x, t , m) belongs to (1.3) and satisfies the equation of (1.1) and

ku( � , t , m)� u0( � )kL1(R) ! 0, as t ! 0.

Our main results of the work read

Theorem. Let u(x, t , m) be the solutions of(1.1) and (1.2) for �1<m, m0 � 1.
If m0 2 (�1, 1), then for any given l> 0 and 0< � < T ,

(1.7) lim
m!m0

ju(x, t , m)� u(x, t , m0)j = 0, uniformly on [�l , l ] � [� , T ].

If m0 = 1, then

(1.8)
Z

R

ju(x, t , m)� u(x, t , 1)j dx � 2
1�m

m
ku0kL1(R), for all t > 0.

2. Preliminary lemmas

Lemma 1. Let u(x, t , m) be the solution of(1.1), then

(2.1) j(u(m�1)=2(x, t , m))xj �
s

1�m

2(1 +m)t
, for m 2 (�1, 1).

Proof. By (1.4),

um�1uxx + (m� 2)um�2(ux)2 � �u

(1 + m)t
.

Sinceu satisfies the equation in (1.1), sout = um�1uxx +(m�1)um�2(ux)2. Using (1.5)
yields

u

(1�m)t
� um�2(ux)2 � �u

(1 + m)t
.

Thus, um�3(ux)2 � 2=((1�m2)t). This yields (2.1).

Lemma 2. If f (x) 2 L1(R) and f0(x) is bounded, then f(x) ! 0 as x!1.

This is a well known conclusion of real analysis.

Lemma 3. Let �, �n 2 L p, p � 1, �n ! � a.e. Then k�n � �kL p ! 0 if and
only if k�nkL p ! k�kL p .
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This result is also a well known of real analysis ([7], p.187).

Lemma 4. Let u(x, t , m) be the solution of(1.1), then

(2.2)
Z

R

u(x, t , m) dx = ku0kL1(R) for all t > 0.

Clearly this lemma means the total mass is conserved. It is a well known result
(see [12]).

REMARK . However, the total mass is not always a constant. In fact, the result is
not true form<�1 if the space dimensionN = 1 (see [8]). WhenN � 2, J.L.Vázquez
proved that the mass can be lost as time grows and neighborhoods of infinity is where
the mass is lost (see [14], p.90–92).

Lemma 5. For the Cauchy problem(1.1) and (1.2), let u(x, t , m) and û(x, t , m)
be two solutions corresponding to initial values u0(x) and û0(x), then

Z
R

ju� ûj(x) dx � Z
R

ju0 � û0j dx.

It is also a well known conclusion (see [12]).
Take a function f (x) 2 C1

0 (R), 0� f (x) � 1 and

f (x) =

�
1, jxj � 1,
0, jxj � 2.

For any positive constantl , set

(2.3) fl (x) = f
�x

l

�
.

Then there is a positive constantC0 such that

(2.4) j f 0l (x)j � C0

l
, and j f 00l (x)j � C0

l 2
.

Now for any givent > 0, we have

(2.5)

����
Z t

0

Z
R

um�1ux f 0l (x) dx d� ����! 0 as l !1.
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To prove (2.5), we can use (1.6). In fact, ifm 6= 0, then there exists a positive
constantC1 such that����

Z t

t0

Z
R

um�1ux f 0l (x) dx d� ���� � 1jmj
Z t

t0

Z
l�jxj�2l

jum f 00l (x)j dx d�
� C1

l 2

Z t

t0

Z
l�jxj�2l

t�m=(1+m) dx d�
! 0.

This is (2.5). If m = 0, then
R t

t0

R
R

um�1ux f 0l (x) dx d� =
R t

t0

R
R

ln u f 00l (x) dx d� . We can
also use (1.6) to obtain (2.5).

3. Proof of Theorem

We now employ two steps to prove our main results.
STEP 1. Proof of (1.7).
For any T > 0, recalling (1.5), (1.6) and (2.1), we deduce that for any 0< � <

1=2, l > 0 and 0< � < T , u and ux and ut are bounded uniformly on (x, t , m) 2
[�2l , 2l ]� [� , T ]� [�1+�, 1��]. Thus, for anym0 2 [�1+�, 1��], Arzela’s theorem
claims that there are subsequenceu(x, t , mk) and a functionū(x, t , m0) 2 C([�l , l ] �
[� , T ]), such that

(3.1) lim
mk!m0

ju(x, t , mk)� ū(x, t , m0)j = 0, uniformly on [�l , l ] � [� , T ].

We next want to prove that the function̄u(x, t , m0) is indeed the solution of problem
(1.1) with (1.2) form = m0, i.e. ū = u(x, t , m0). If it is true, then by the uniqueness,
the total sequenceu(x, t , m) converges tou(x, t , m0) as m ! m0, thus, we can drop
k in (3.1) and therefore, (3.1) is (1.7) namely.

To do this, we first prove that̄u(x, t , m0) satisfies the equation of (1.1) form = m0

in R� (0, T).
Let fl (x) be shown by (2.3). For any 0< t < T , we have

(3.2)
Z

R

u(x, t , mk) fl (x) dx =
Z

R

u0(x) fl (x) dx� I .

Where I =
R t

0

R
R

umk�1(x, � , mk)ux(x, � , mk) f 0l (x) dx d� . Using (2.5) we have

(3.3)
Z

R

ū(x, t , m0) dx = ku0kL1(R) for 0< t < T .

Thus, for any givent 2 (0, T), there exists a pointx0 2 R such that

ū(x0, t , m0) > 0.
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On the other hand, by (2.1), we have

(u(x, t , mk))(mk�1)=2 � (u(x0, t , mk))(mk�1)=2 +

s
1�mk

2(1 +mk)t
jx � x0j.

It follows from mk < 1 that

u(x, t , mk) �
"

(u(x0, t , mk))(mk�1)=2 +

s
1�mk

2(1 +mk)t
jx � x0j

#2=(mk�1)

,

for x 2 R, 0< t < T .

Letting mk ! m0 yields

ū(x, t , m0) �
"

(ū(x0, t , m0))(m0�1)=2 +

s
1�m0

2(1 +m0)t
jx � x0j

#2=(m0�1)

> 0, for x 2 R, 0< t < T .

Becauseū(x, t , m0) > 0 and ū(x, t , m0) is continuous, so for any (x0, t0) 2 R� (0, T),
there exists a neighborhood of (x0, t0), Y, say, Y � (�l , l )� (� , T), and two positive
constantsd and D, such that

d � ū(x, t , m0) � D, for (x, t) 2 Y.

Hence, there exists another positive constant� , such that

d

2
� u(x, t , mk) � D, for (x, t) 2 Y, jmk �m0j � � .

Becauseu(x, t , mk) is smooth and bounded, and satisfies the equation in (1.1) inY, it
follows from a generalization of Nash’ theorem ([5], p.204)that there exists a neigh-
borhoodY1 � Y of (x0, t0) such thatu(x, t , mk) 2 C�(Ȳ1) for some� 2 (0, 1). Where� and ku(x, t , mk)kC�(Ȳ1) may be estimated independently ofmk. It follows from the
standard linear theory ([1], p.77) that there exists a neighborhoodY2 � Y1 of (x0, t0)
such thatu(x, t , mk) 2 C2+�(Ȳ2) for jmk�m0j � � , with the normku(x, t , mk)kC2+�(Ȳ2)

uniformly bounded with respect tomk. Hence the limit function̄u(x, t , m0) belongs to
C2+�(Ȳ2), and is therefore a classical solution of the equation inY2 for m = m0. Recall-
ing � and l are arbitrary positive constants, so we know thatū(x, t , m0) is a classical
solution of the equation in (1.1) onR� (0, T). Furthermore,ū(x, t , m0) satisfies (1.4),
(1.5), (1.6) and (2.1) onR� (0, T).

In order to proveū(x, t , m0) be the solution of problem (1.1) asm = m0 for 0 <
t < T , we next will show ū(x, t , m0) 2 C([0, T); L1(R)). First, recalling (3.3) and
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ū(x, t , m0) 2 C(R� (0, T)), and using Lemma 3, we know

(3.4) ū(x, t , m0) 2 C((0, T); L1(R)).

So next we need only to show thatū(x, t , m0) satisfies the initial condition in (1.1), i.e.

(3.5) kū(x, t , m0)� u0(x)kL1(R) ! 0 as t ! 0.

To prove (3.5), by the result of Lemma 5 and the translation invariance of the
equation in (1.1), we have

Z
R

ju(x + h, t , mk)� u(x, t , mk)j dx � Z
R

ju0(x + h)� u0(x)j dx,

for every h 2 R. Letting mk ! m0, we know that for any given" > 0, there exists a
positive constanth0, such that

(3.6)
Z

R

jū(x + h, t , m0)� ū(x, t , m0)j dx � ", for t 2 (0, T), jhj < h0.

On the other hand, lettingmk ! m0 in (3.2) yields

(3.7)

Z
R

ū(x, t , m0) fl (x) dx =
Z

R

u0(x) fl (x) dx

� Z t

0

Z
R

ūm0�1(x, t , m0)ūx(x, t , m0) f 0l (x) dx d� .

Using (3.3), we have

(3.8)

Z
jxj�2l

ū(x, t , m0) dx =
Z

R

ū(x, t , m0) dx� Zjxj�2l
ū(x, t , m0) dx

� ku0kL1(R) �
Z

R

ū(x, t , m0) fl (x) dx

= ku0kL1(R) �
Z

R

u0(x) fl (x) dx

+
Z t

0

Z
R

ūm0�1(x, t , m0)ūx(x, t , m0) f 0l (x) dx d�
� Zjxj�l

u0(x) dx

+
Z t

0

Z
R

ūm0�1(x, t , m0)ūx(x, t , m0) f 0l (x) dx d� ,

for 0< t < T .
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Since (1.6) is also valid for̄u(x, t , m0), we can also use (2.5) for̄u(x, t , m0) and to
obtain Z t

0

Z
R

ūm0�1(x, � , m0)ūx(x, � , m0) f 0l (x) dx d� ! 0 as l !1.

Hence, by (3.8), for any given" > 0, there existsl0 > 0 such that

(3.9)
Z
jxj�l

ū(x, t , m0) dx � ", for l � l0, t 2 (0, T).

It follows from (3.6) and (3.9) and [17] (p.31, Theorem 2.21)that fū( � , t , m0)g0<t6T is
a pre-compact family inL1(R). Thus for any sequencetn ! 0, we have a subsequenceftnkg and a functionu�0 2 L1(R), such that

kū( � , tnk , m0)� u�0( � )kL1(R) ! 0 as tnk ! 0.

Hence for any�(x) 2 C1
0 (R), we have

(3.10) lim
tnk!0

Z
R

(ū(x, tnk , m0)� u�0(x))�(x) dx = 0.

On the other hand, lettingt = tnk in (3.7), we have

(3.11) lim
tnk!0

Z
R

ū(x, tnk , m0) fl dx =
Z

R

u0 fl dx.

Clearly, (3.11) is also true forfl = �(x) 2 C1
0 (R). Thus,

(3.12) lim
tn!0

Z
R

ū(x, tn, m0)�(x) dx =
Z

R

u0�(x) dx, for � 2 C1
0 (R).

Combining (3.10) and (3.12) yields
R

R
(u0�u�0)� dx = 0 for all � 2 C1

0 (R). Therefore,

u�0 = u0,

and

lim
tnk!0

kū( � , tnk , m0)� u0( � )kL1(R) = 0.

It is easy to see that this is true for any subsequencetn ! 0. Therefore we obtain (3.5).
Combining (3.4) and (3.5) yields

ū(x, t , m0) 2 C([0, T); L1(R)).
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Now we know the function̄u(x, t , m0) is indeed the solution of problem (1.1) for
m = m0 on QT for any T > 0. By the uniqueness,

ū = u(x, t , m0), for (x, t) 2 QT .

Thus (1.7) holds form, m0 2 [�1 + �, 1� �]. Finally, the arbitresses of� 2 (0, 1=2)
yields that (1.7) holds for allm, m0 2 (�1, 1).

STEP 2. Proof of (1.8).
To prove (1.8), we notice that

(u(x, t , m)� u(x, t , 1))t =

�
1

m
um(x, t , m)� u(x, t , 1)

�
xx

=
1

m
(um(x, t , m)� u(x, t , 1))xx +

1�m

m
u(x, t , 1)xx.

Let w = um(x, t , m)� u(x, t , 1) and set

(3.13) p(s) =

8><
>:

1, s� 1,

e(�1=s2)e�1=(1�s)2

, 0< s< 1,
0, s� 0.

Then p(s) 2 C1(R) and p0(s) � 0. Let

p"(w) = p
�w"

�
.

Thus,Z
R

(u(x, t , m)� u(x, t , 1))t p"(w) dx = � 1

m

Z
R

(um(x, t , m)� u(x, t , 1))2x p0"(w) dx

+
1�m

m

Z
R

u(x, t , 1)xx p"(w) dx

� 1�m

m

Z
R

u(x, t , 1)t p"(w) dx.

For any givent > 0, let

R1 = fx 2 R, um(x, t , m) � u(x, t , 1)g, R2 = R� R1.

Letting "! 0, using Lemma 3.1 in [12] yields

d

dt

Z
R1

(um(x, t , m)� u(x, t , 1)) dx � 1�m

m

d

dt

Z
R1

u(x, t , 1) dx.
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Thus for any 0� � < t , we haveZ
R1

(u(x, t , m)� u(x, t , 1)) dx� 1�m

m

Z
R1

u(x, t , 1) dx

� Z
R1

(u(x, � , m)� u(x, � , 1)) dx� 1�m

m

Z
R1

u(x, � , 1) dx.

Similarly, Z
R2

(u(x, t , 1)� u(x, t , m)) dx� m� 1

m

Z
R2

u(x, t , 1) dx

� Z
R2

(u(x, � , 1)� u(x, � , m)) dx� m� 1

m

Z
R2

u(x, � , 1) dx.

Combining the two inequalities givesZ
R

ju(x, t , 1)� u(x, t , m)j dx � Z
R

ju(x, � , 1)� u(x, � , m)j dx

+
1�m

m

�Z
R1

u(x, t , 1) dx +
Z

R2

u(x, � , 1) dx

�
.

Letting �!0 and recallingu(x, t , m), u(x, t , 1)2C([0,1); L1(R)) and
R

R
u(x, t , 1)dx=ku0kL1(R) for any t > 0, we have

Z
R

ju(x, t , 1)� u(x, t , m)j dx � 2
1�m

m
ku0kL1(R).

This is (1.8).
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