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Abstract
In this paper, we consider the Cauchy problem

U = (Um_lux)x, xXeR, t>0, —1<m<],
U(X, O) = uO: X e R

We will prove that:

1) u(x, t, m) = u(x, t, mg)| = O uniformly on [—I, I] x [z, T] asm — m, for any
gvenl >0,0<t<Tand-1<m, my <1,

2) [z lu(x, t, m) —u(x, t, 1) dx < 2((1— m)/m)|[UollL1(g)-

1. Introduction

We consider the Cauchy problem

U = (U™ tuy)y, X eR,t >0,
u(x, 0) =uo, X € R.

(1.1) {

Where, -1 <m<1 and
1.2) Uo >0, O<luollLiw < +oo.

In recent years there has been a considerable interest ieqtiegion in (1.1), such
as [4], [13] and [15], and so on. The equation encompassedifferent ranges ofm
a variety of qualitative properties with wide scope of apglions. For example, the
equation is degenerate parabolicras- 1, so (1.1) only has weak solutions (see [3]) in
this case. Ifm =1, the equation is uniformly parabolic and therefore (h&3 a unique
global smooth solutionu(x, t, 1) = (1/(2y/71)) [ Uo(€)e~*9/@ dg. If m < 1, then
u™* blows up asu — 0. It is usually referred to as the singular diffusion equrmti
and has been proposed in plasma physics and in the heat timmdincsolid hydrogen
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(see [12]). In this case, the problem (1.1) with conditiorR{lalso has a unique global
smooth solutionu(x, t, m) (called maximal solution) for any giverl <m < 1 (see
[6], [12]) such that

(1.3) u(x, t, m) € C*(Q) N C([0, +o0); L*(R)),
(1.4) mi_l(u’“*l)xx > ﬁ for (x,t) € Q,
(L.5) ﬁ <u < ﬁ for (x,t) e Q,
and

(1.6) u(x, t, m) < c(m, ug) - t V&,

where, the constarg(m) depends orm and ||ug|l 1), Q =R x (0, +00).

Although the equation of (1.1) arises in many applicatiosmsg have been studied
by many authors, there are only a few results concerning pipeo&imating character
on the nonlinearities of the equations. In 1981, Belinan @rahdall (see [16]) studied
the similar problem for degenerate parabolic equations,th®ir results are not written
in terms of explicit estimates. And then, B. Cockburn and Gip&berg (see [2])
extended the result of [16] for degenerate parabolic eguatin 1999 and obtained an
explicit estimate inLP(RN) for any givent. Recently, in 2006 and 2007, the author
(see [9], [10]) discussed the problem (1.1) for> 1, and obtain a explicit constant
C* = O(T?) such that

.
/ / lu(x, t, m) — u(x, t, m)|>dx dt < C*|[m —mg|, m, mg > 1.
0 JR

As to the case ofm < 1, the author (see [11]) considered the singular diffusimblem

Ue = (U™ Tuy)y, O<x<1,t>0,
1

(—um> =0, t>0,
m x 1x=0,1

Ult=0 = Ug(X), 0<x<1,

and proved that there exists a unique global soluti¢x t, m) such that

oo pl
/ / lu(x, t, m) — u(x, t, mo)|* dx dt < C*|m — mg|,
0 0

where, O0<m, mp <1 andC* is a explicit constant. To the knowledge of the author,
there are no other correlative results on such problem.
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Sincem < 1 in this work, by a solution of the Cauchy problem (1.1) @n we
mean a functioru(x, t, m) belongs to (1.3) and satisfies the equation of (1.1) and

fu(-,t, m)—uo(-)ll:w — 0, as t— 0.
Our main results of the work read

Theorem. Let u(x,t, m) be the solutions of1.1) and (1.2) for —1 <m, mg < 1.
If mg € (—1, 1), then for any given -0andO0 <7 < T,

.7 mILrp1 lu(x, t, m) —u(x, t, mg)| =0, uniformly on [—I,I] x [z, T].

If mg =1, then

1-m

(1.8) / [u(x,t,m) —u(x, t, 1)jdx < 2 lluollLyr), forall t >0.
R

2. Preliminary lemmas

Lemma 1. Let u(x,t, m) be the solution of(1.1), then

2.1) U™ D20, t, m))y] < ‘/ﬁ, for me (-1, 1).

Proof. By (1.4),

—u
U™ Uy, + (M = 2)U™2(u,)? > .

Sinceu satisfies the equation in (1.1), s©9=u™1u,,+(m—1)u™?(u,)?. Using (1.5)
yields

u
1-mt

—u

m-2 2
um o (uy)® > armt

Thus, U™ 3(uy)? < 2/((1 — m?)t). This yields (2.1). O]
Lemma 2. If f(x) e LYR) and f'(x) is bounded then f(x) — 0 as x— oo.
This is a well known conclusion of real analysis.

Lemma 3. Let¢, ¢, € LP, p>1, ¢y —> ¢ ae Then|¢, — ¢ll.» — O if and
only if [[gnllLe — ll@llLe.
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This result is also a well known of real analysis ([7], p.187)

Lemma 4. Let u(x, t, m) be the solution of(1.1), then
(2.2) / u(x, t, mydx = [[uoll.yw) for all t > 0.
R

Clearly this lemma means the total mass is conserved. It i®la kmown result
(see [12)]).

REMARK. However, the total mass is not always a constant. In faet réisult is
not true form < —1 if the space dimensioN =1 (see [8]). WherN > 2, J.L.Vazquez
proved that the mass can be lost as time grows and neighlashafainfinity is where
the mass is lost (see [14], p.90-92).

Lemma 5. For the Cauchy problenfl.1) and (1.2), let u(x, t, m) and G(x, t, m)
be two solutions corresponding to initial valueg(x) and Og(x), then

/|u—0|(x)dx5/ |up — Qo dx.
R R

It is also a well known conclusion (see [12]).
Take a functionf (x) € C§°(R), 0< f(x) <1 and

_ 1, IxI =1,
)= {o, IX| > 2.

For any positive constant set
X
(2.3) fi(x) = f(l—).
Then there is a positive consta@f such that
, C ” C
(24) 1001 < =2, and /(0 < 3.

Now for any givent > 0, we have

t
(2.5) Vf u™tu, f/(x)dx dr| - 0 as | — oo,
0JR
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To prove (2.5), we can use (1.6). In fact, rif # 0, then there exists a positive

constantC,; such that
1 t m "
< — [u™f"(x)| dx dr
|m| to JI<|x|<2

t
//u”"luX f/(x) dx dr
to JR
t
< &// t~™ @M gx dr
12 Ji, i<ix<2
— 0.

This is (2.5). Ifm=0, then [ f; u™ u, f/(x) dx dr = [; [ Inuf’(x) dx dr. We can
also use (1.6) to obtain (2.5).

3. Proof of Theorem

We now employ two steps to prove our main results.

Step 1. Proof of (1.7).

For any T > 0, recalling (1.5), (1.6) and (2.1), we deduce that for any § <
1/2, 1 >0 and O< t < T, u anduy and u; are bounded uniformly onx(t, m) e
[—2, 2] x[r,T] x[-1+n,1—n]. Thus, for anymg € [—1+n, 1—n], Arzela’s theorem
claims that there are subsequengg, t, m¢) and a functionu(x, t, mg) € C([—I, I] x
[z, T]), such that

(3.1) mlinpn lu(x, t, mg) — u(x, t, mpg)| =0, uniformly on [, 1] x [z, T].
k— Mo

We next want to prove that the functiar(x, t, mg) is indeed the solution of problem
(1.1) with (1.2) form =my, i.e.u =u(x, t, mp). If it is true, then by the uniqueness,
the total sequenca(x, t, m) converges tau(x, t, mp) asm — mg, thus, we can drop
k in (3.1) and therefore, (3.1) is (1.7) namely.

To do this, we first prove thai(x, t, mp) satisfies the equation of (1.1) fon=mg
in R x (0, T).

Let fi(x) be shown by (2.3). For any @t < T, we have

3.2) / u(x, t, my) fi(x) dx :/ uo(X) fi(x)dx —1I.

R R
Where | = fé[R umL(x, 7, mux(x, T, my) f/(x) dx dr. Using (2.5) we have
(33) / J(X, t, mo) dx = ||U0|||_1(R) for 0<t<T.

R

Thus, for any givert € (0, T), there exists a poinkg € R such that

u(xo, t, mg) > 0.
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On the other hand, by (2.1), we have

1—mg
u(x, t, m))M /2 < (u(xg, t, m)) M D24 [~ X 1x — xol.
(u( k) < (u(%o k) 2(1+mk)t| ol

It follows from my¢ < 1 that

1 2/(mg—1)
- — Mg

uX,t, > quty (mk l)/2+ _ X — ,
(x, t, M) = [( (Xo, t, My)) 20+ k)t' Xol

for xeR, 0<t<T.

Letting my — mg yields

1 2/(mo—1)
UX,t, No) > u 't’m (mO*l)/2+ Mo X X
( o) = |:( Go o) 201 +m0)»[| — Xo

>0, for xeR, 0<t<T.
Becausau(x, t, mg) > 0 andu(x, t, mg) is continuous, so for anyxg, to) € R x (0, T),
there exists a neighborhood ofy(tp), Y, say,Y c (I, I) x (z, T), and two positive
constantd and D, such that

d <u(x,t,mg) <D, for (x,t)eV.

Hence, there exists another positive constansuch that

Nl

<u(x,t,mg) <D, for (x,t) €Y, [mg—mgo| <6.

Becauseu(x, t, my) is smooth and bounded, and satisfies the equation in (1.Y) iih
follows from a generalization of Nash’ theorem ([5], p.2a4Aat there exists a neigh-
borhoodY; C Y of (Xo, tp) such thatu(x, t, my) € C"‘(\?l) for somex € (0, 1). Where
o and |lu(x, t, my)llc«cy,) may be estimated independently wf. It follows from the
standard linear theory ([1], p.77) that there exists a reghoodY, C Y; of (Xo, to)
such thatu(x, t, m¢) € C2(Y>) for |m —mo| < 6, with the normlju(x, t, mi)llcz«(v,
uniformly bounded with respect . Hence the limit functioru(x, t, mg) belongs to
C2+°‘(\72), and is therefore a classical solution of the equatioifior m=my. Recall-
ing T and| are arbitrary positive constants, so we know thét, t, mg) is a classical
solution of the equation in (1.1) oR x (0, T). Furthermoreu(x, t, mp) satisfies (1.4),
(1.5), (1.6) and (2.1) ofR x (O, T).

In order to proveu(x, t, mg) be the solution of problem (1.1) am =mg for 0 <
t < T, we next will showu(x,t, mg) € C([0, T); LY(R)). First, recalling (3.3) and
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u(x, t, mg) € C(R x (0, T)), and using Lemma 3, we know
(3.4 u(x, t, mg) € C((0, T); LX(R)).
So next we need only to show thagx, t, mp) satisfies the initial condition in (1.1), i.e.
(3.5) lu(x, t, mg) — uo(X) L2y = 0 as t— 0.

To prove (3.5), by the result of Lemma 5 and the translatioraiance of the
equation in (1.1), we have

/ [u(x +h, t, mg) —u(x, t, mg) dx < f [Ug(X + h) — ug(X)] dx,
R R

for everyh € R. Letting my — mp, we know that for any giver > 0, there exists a
positive constanhg, such that

(3.6) / [u(x +h, t, mg) — u(x, t, mg)|dx < e, for te (0, T), |h| < ho.
R
On the other hand, lettingy — mg in (3.2) yields

/J(x,t,mo)ﬁ(x)dx:/ Up(x) fi(x) dx
(3.7) R s
—// amo=(x, t, mo)ux(x, t, mp) f/(x) dx dr.
0Jr

Using (3.3), we have

/ J(x,t,mo)dx:/ J(x,t,mo)dx—/ u(x, t, mg) dx
X|=2l R x| <2
< lluoll Lyr) —/ u(x, t, mo) fi(x) dx
R
= ol i) — / Uo(x) (%) dx
R

(3.8) +/t/ umo—t(x, t, mo)ux(x, t, mo) f/(x) dx dr
0JR

< /x|>. Uo(x) dx

t
+// ™ 1(x, t, Mo)Tix(X, t, Mo) f/(x) dx dr,
0JR

for O0<t<T.
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Since (1.6) is also valid fou(x, t, mg), we can also use (2.5) far(x, t, mg) and to
obtain

t
// T L(x, 7, mo)ix(x, 7, Mo) f/(x) dx dr — 0 as | — oo.
0 JR

Hence, by (3.8), for any given > 0, there existdy > 0 such that
(3.9 / uix,t, mg)dx <eg, for | >1p, te(0,T).
Ix|=1

It follows from (3.6) and (3.9) and [17] (p.31, Theorem 2.203t {u(-, t, mg)}o<t<T IS
a pre-compact family irL*(R). Thus for any sequendg — 0, we have a subsequence
{t.} and a functionu} € L(R), such that

u(-, ta, Mo) —uUg(-)llLiwy = 0 as t,, — 0.

Hence for anyp(x) € C3°(R), we have

(3.10) . Iim0 / (U(X, tn,, Mg) — UZ(X))p(x) dx = 0.
Y JR
On the other hand, letting=t, in (3.7), we have

(3.11) lim / u(x, tn,, mo) f dx :/ U fi dx.
R R

tnk%O

Clearly, (3.11) is also true foffj = ¢(x) € C5°(R). Thus,

(3.12) tnIi_r)rg)/]RU(x, th, mo)zp(x)dx:/Ruo(p(x)dx, for ¢ € C3°(R).

Combining (3.10) and (3.12) yieldﬁg(uo— ug)¢ dx =0 for all ¢ € C5°(R). Therefore,
Ug = Uo,
and
tnlirﬂo u -, t, Mo) — Uo( - )llL2ry = O.

It is easy to see that this is true for any subsequépnee 0. Therefore we obtain (3.5).
Combining (3.4) and (3.5) yields

u(x, t, me) € C([0, T); LY(R)).
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Now we know the functioru(x, t, mp) is indeed the solution of problem (1.1) for
m=mg on Qr for any T > 0. By the uniqueness,

u=u(x,t, mg), for (x,t)e Qr.

Thus (1.7) holds fom, mg € [-1 +n, 1 — n]. Finally, the arbitresses af € (0, 1/2)
yields that (1.7) holds for alin, mg € (—1, 1).

STeP 2. Proof of (1.8).

To prove (1.8), we notice that

(u(x, t, m) —u(x, t, 1)) = (%um(x, t, m) —u(x, t, 1))

XX
1-m

u™(x, t, m) —u(x, t, Dy + u(x, t, Lyx.

3lr

Let w =u™(x, t, m) — u(x, t, 1) and set

1, s>1,
(3.13) p(s) = { -V g g1
0, s<0.

Then p(s) € C*(R) and p'(s) > 0. Let
Pe(w) = p(%)-
Thus,
/ 1 m 2
(u(x, t, m) —u(x, t, ) pe(w) dx = —— /(u (x, t, m) —u(x, t, 1)) p.(w) dx
R m Jr
1-m
+ — A; u(x, t, Lxxpe(w) dx
1-—

m
< p /};u(x,t,l)tpg(w)dx.

For any givent > 0, let
Ry={xeR, um(x,t,m) > u(x, t, 1)}, R, =R —R;.

Letting ¢ — 0, using Lemma 3.1 in [12] yields

% Rl(um(x,t,m)—u(x,t,1))dx5 1;}”‘% [ uxt pax
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Thus for any 0< t <t, we have

U, t, m —uex, t, D)dx— ~—™ [ ux t, 1)dx
Ry m Ry

<[ wx, o m) — u(x, 7, )dx— =™ [ ux, 7, 1)dx,
R; m Ry

Similarly,

/ U, t, 1)—u(x, t m)dx— "= [ ugx, t, 1)dx
R, m

Rz

< A;z(u(x, 7, 1)—u(x, r, m)) dx — mT—l /};z u(x, =, 1)dx.

Combining the two inequalities gives

/ u(x, t, 1) —u(x, t, m| dx < / [u(x, r, 1) — u(x, =, m| dx
R R

+ 1;m[/Rl u(x, t, 1)dx+/]RZ uex, r, 1)dx}.

Letting T — 0 and recallingu(x, t, m), u(x, t, 1)e C([0, o0); L(R)) ande u(x, t, 1)dx=
[uollLiwy for anyt > 0, we have

1-m
m

/ u(x, t, 1) —u(x, t, m|dx <2 lUollLxw)-
R

This is (1.8).
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