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Abstract
Pencils of curves of minimal genus and slope are determiaedmooth surfaces
of degree at least seven in the projective 3-space.

Introduction

One of the most important approaches in the study of pregctarieties is to
find rational functions with an extremal property which refliewell the geometry of
the variety. In the theory of curves, the minimum value amdegrees of pencils on
a smooth projective curve is called tlgonality and plays a very important réle. It
is not greater thang(+ 3)/2 for a curve of genug by the Brill-Noether theory. For
a smooth plane curve of degree> 3, Namba [12, Theorem 2.3.1] showed that the
gonality depends only on and is in fact given byn — 1. Furthermore, every pencil
of minimal degreen — 1 is obtained as the linear projection from a point on it.

The present article is a trial to extend the notion of “gdmpalto surfaces. To
be more precise, le§ be a smooth projective algebraic surface and consider a non-
constant rational functiom on it, regarded as a dominant rational mapPfo Then,
in a canonical way, we can transform it to a relatively minirffiaration f: X — B,
where X is a smooth surface birationally equivalent $oand B a smooth curve with
a particular morphisnr: B — P! such that the originatb can be identified, in the
birational sense, with the compositeo f. It allows us to regard various numerical
invariants of f as those ofd. For example, if a general fibre df is of genusg, we
say that® is of genusg. Wheng > 2 and f is not a fibre bundle, the slope df
is a well-defined positive rational number [15]. Then thepslof @ is defined as that
of f. Furthermore, we can consider their minimums whkrmoves in the rational
function field of S. The birational invariants thus obtained are our cand&lébe the
“gonality”. It should be noticed that a rational function thfe smallest genus does not
necessarily give us a fibration with the smallest slope, &and versa.

In this paper, we shall study how those invariants behavesifioooth surfaces in
P2, expecting a result similar to Namba’s theorem for planevesireferred above. One
should notice, however, that the smallest genus for ratifumections may vary even if
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we fix the degree of surfaces, unlike the case of plane cureresult along such a
line is already found in [3]. Recall that the smallest poesimlue for genera of non-
hyperelliptic curves is 3 and that a generic quintic surfdoes not contain a line by
a classical theorem of Max Noether. What we showed in [3, Fitipo 2.5] is that
a quintic surface has a pencil of curves of genus 3 if and ohiy ¢ontains a line.
Thus for a generic quintic surface the smallest genus istigtrbigger than 3. One of
our main results, Theorem 2.1, is exactly an extension o flaét and states that the
same phenomena happens also when 6. Furthermore, we observe in Theorem 3.1
the same is true for the smallest slope of functions. We hbpé our results give
sufficient evidence of these invariants being right candisldor the “gonality”.

The organization of the paper is as follows. §h, we introduce the minimal genus
and slope for surfaces, and discuss how they relate to theejep of surfaces. It
will show that these two invariants have different flavor iengral, though both seem
equally fundamental. The rest is devoted to smooth surfatesegreen in P3. We
study the minimal genus i§2 and the minimal slope i§3, and show Theorems 2.1
and 3.1. Since a general member of a pencil can be consideredspace curve in
the present case, its degree is an important invariant. We shat it can ben — 1,

n but the next value jumps ton2— 4 by using Castelnuovo’s bound, though it also
follows from the known result for plane curves if we cut thefaoe with a general
hyperplane. Using such information on degrees, one cama&ithe genus as well as
the slope without much difficulty. The last sectidjd, treats some extra pencils which
may be minimal for some quintic and sextic surfaces. As isunadly expected, the
presence of a special pencil gives us a particular desmnipif the defining equation
of the surface itself. See, Propositions 4.1 and 4.4 for #taid

1. Some invariants

Let S be a smooth projective algebraic surface defined @ein this section, we
introduce some birational invariants f& detected by rational functions, which seem
to be basic and need further explorations. We use the stmdaation. We denote
by Ks the canonical bundle (or a canonical divisor) 8n For a sheafF, we put
x(F) =ho(S, F) — h(S, F) + h3(S, F), hi(S, F) =dimH/(S, F), and, whenF is in-
vertible, ® = denotes the rational map associated with the completerlsystem|F|.
The irregularity and the geometric genus are respectivefindd byq(S) := h(S, Og)
and pg(S) = h*(S, Os).

A rational function onS is geometrically a dominant rational map frogito P,

In other words, it gives us a pencit without fixed components but possibly with
base points, and vice versa. Let S— S be a minimal succession of blowing-ups
which eliminates the base points of. The fibres of the induced morphis&— P!
may well be disconnected. So we transform it by the Steinofazition to a more
acceptable form: there exist a finite (ramified) coveringB — P! and a morphism
f: §— B with connected fibres such that the original rational fumetis essentially
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the compositer o f. We denote byg the genus of a general fibre df. We further
take a relatively minimal modef: X — B of f, which is unique whery > 0. In this
way, the study of rational functions of can be reduced to that of relatively minimal
fibrations plus functions on curves (correspondingrtoB — P1).

Numerical invariants off can be regarded as those &f Here we focus on two
invariants which seem to be most important and basic. Thedite may be obvious.
We putg(A) =g and call it thegenusof A (or the rational function). Wheg =0, f
is aP!-bundle and we can regard such a case as known, Srise¢hen a ruled surface
whose structure is well understood. Whgr 1, that is, f is an elliptic surface, we
may apply the beautiful theory due to Kodaira. We may alsmligrthe case thaf
is a fibre bundle even wheg > 2. Our second invariant is introduced for non-trivial
cases. PuK; =Ky — f*Kg and

x1 = degf.Ox(K¢) = x(Ox) — (@ — 1)(9(B) — D).

By Arakelov's theorem [1],K? is a non-negative integer ard? = 0 holds only if f
is isotrivial. It is known thaty; is a non-negative integer angs = 0 holds if only if
f is an algebraic fibre bundle. For these facts, see [5]. Wesf) := K%/Xf and
call it the slope ofA, when f is not a fibre bundle. Recall that we have-4/g <
s(A) < 12 by the slope inequality [15] and Noether's formula. Knovasults show
that the smaller the slope is, the simpler the structurd dfecomes.

We now put

1g(S) = min(g(A))

where A runs over the set of all pencils ddwithout fixed components, and call it the
minimal genusof S. When 14(S) > 2 and S is not birationally equivalent to a fibre
bundle, we put

1s(S) = inf{s(A)}

and call it theminimal slopeof S. Obviously, these are birational invariants &f

The minimal genus has been used, consciously or not, in tssification of sur-
faces as follows. Surfaces withy = O are exactly ruled surfaces, while those with
ug =1 are non-ruled elliptic surfaces. The class of surfaceh wj > 2 consists of
surfaces of general type and, possibly, some abelian or Kacas. Another remark
is that ug(S) = 2 forces the index ofS to be non-positive, i.e.K2 < 8x(Os), by a
result of Xiao [13] and Ueno.

One can also introduce the minimal gonality (resp. Cliffandex) of S by means
of the gonality (resp. Clifford index) of a general fibre éf These invariants may
be closely related to the degree of irrationality introdiiége [11] and developed for
surfaces in [16].
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REMARK 1.1. (1) Since we start from a rational function, a penciltie etbove
discussion strictly corresponds to a linear subspace ¢égtiee dimension one in a com-
plete linear system. But a pencil often means an algebraidyfaf curves parametrized
by an irreducible curve in the literature. The latter usadg@ms us to say that any gen-
eral member of a pencil without fixed components is irredecibNe adopt harmlessly
this new interpretation in the sequel.

(2) An abelian surface does not have a pencil of genus two. Algce with a pencil
of genus two is a double covering Bf branched along a sextic. For these facts, see [13,
Théoreme 4.5].

How to find pencils of small invariants is another problem. Wese the section
with a remark on surfaces of general type, which concerns th@vAlbanese and the
canonical maps relate to small pencils.

Let S be a surface of general type. Assume tpg(S) > 2. If the canonical map
of Sis not birational onto its image, then it often shows up aipaldr pencil (e.g.,
[9]). We consider the extremal case that the canonical mamisposed of a pencil;
we call the pencil the canonical pencil and denote it Ay, It is known [14] that
the base curve of\ca, is eitherP! or an elliptic curve.

Proposition 1.2. Let S be a surface of general type whose canonical map is com-
posed of a pencil If x(Os) > 9, then the canonical pencil is the unique pencil of
minimal genus on Sin particular 2 < u4(S) < 7.

Proof. LetA be a pencil onS different from the canonical pencil. We shall show
that g(A) > py(S). We move to a birational modeX of S such that the canonical map
and the rational map induced hy are both morphisms oX. Then Ky is numerically
equivalent toaF + Z, whereF is a member of the canonical penck, is an effective
divisor anda is an integer witha > py(S) — 1. If D denotes the irreducible curve
coming from a general member of, then D2 =0 and 2(A) —2 =KxD =aFD+
DZ > aFD. We haveFD > 2, becauseA is not A, 9(A) > 2 and the base curve
of Acanis of genus at most one. Theg(A) > a+ 1> py(S) as wished.

Assume now thai (Os) > 9. Similarly as in the proof of [4, Proposition 2.1], we
can show thag(Acan) < 7. Sincex(Os) < pg(S) +1, we haveg(Acan) < pg(S). O

We next assume thai(S) > 0 and the image of the Albanese map is a curve.
For ruled surfaces, the Albanese pencil is the only pencimafimal genus 0 as is
well known. In analogy, one may expect that the Albanese niepsgus a pencil of
minimal genus. However, it is not true in general. There tekiggular surfaces of
general type with a pencil whose genus is strictly smallemtithat of the Albanese
pencil, as we shall see below. Nevertheless, the Albanegeisnao natural that we
have the following at least for surfaces with sml:
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Proposition 1.3. Let S be a minimalirregular surface of general type with X<
4py(S) whose Albanese image is a curvehen the Albanese pencil is the unique pen-
cil of minimal slope

Proof. Letg be the fibre genus of the Albanese pencilS — C C Alb(S), where
C is a non-singular projective curve of gengéS). Theng > 2, becauses is of gen-
eral type. 1fK2 < 4py(S), then K2 < 4py(S) +4(g — 2)(@(S) — 1) which is equivalent
to K2 < 4x,. Hence the Albanese pencil has slope less than 4.fL.eX — B be the
relatively minimal fibration associated with a pengilon S. If A is not the Albanese
pencil, theng(B) < q(S) and it follows from [15] thats(A) > 4. 0

A simple example explains the situation. LEtbe an elliptic curve and puE =P x

E. Let g and h be integers not less than 2 and consider a double coveSinf X
branched along a smooth curve of bi-degreg €2, 2h — 2). Thenq(S) =1 andK2=
(4—4/9)py(S). Furthermore, the Albanese pencil is hyperelliptic of ggg and slope
4—4/g, while S has a linear pencil of genus and slope 4 induced by the projection
¥ — PL. Wheng > h, this shows that there is a big difference between the minima
genus and the minimal slope.

2. Minimal genus

From now on,S is a smooth surface if#*® of degreen > 2. We are going to find
a pencil of minimal genus. At a first glance, the problem seainsost trivial, since
the Néron-Severi group is generated by the class of hypspactions whers is a
generic surface of degree 4; so the minimal pencil should be a subpencil|&¥s(1)]
at least wherfS is generic. The purpose of the section is to justify such aentgeling
and clarify what “generic” means. Namely, we shall show tbkoWing theorem with
several lemmas.

Theorem 2.1. Let S be a smooth surface of degree-r2 in P3. Then

no(9 2 172023

Furthermore when n> 5, the equality sign holds if and only if S contains a ling
n> 7, then

0=20=3) ¢ 5 contains a ling
CES s
w otherwise

and every pencil of minimal genus can be obtained as the groje from a line in
the former case the line is on. S
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Let L be the hyperplane bundle & ThenKs=(n—4)L, L2=n andh®(S L) =
4. Let A be a pencil onS (without fixed components) an® € A a general member.
We may assume thdD is irreducible. We denote by the geometric genus dd and
putd:=LD. Leto: S— Sbe a minimal succession of blowing-ups which eliminates
all the base points ofA. By the adjunction formula, we have

(2.1) 2pa(D) — 2 =KgD + D? = (n — 4)d + D2

If m; denotes the multiplicity of the-th center ofoc as a base point of the pencil
induced byA, thenD2 =3 m? and

(2.2) y-2=n-4d+) m.

Let us consider the restriction map®(S, L) — HO(D, L) and put
r =rankH(S, L) - HY(D, L)}.

SincelL is very ample,®_ mapsD isomorphically onto an irreducible non-degenerate
curve inP"'~1. We in particular haved >r —1, 2<r < 4.

Lemma 2.2. Ifr =2, then LD=1, D2=0, D ~ P! and n=2.

Proof. Sincer = 2, we haveD ~ P!. Then —2 = 2p,(D) — 2 = (n — 4)d + D2,
Sinced > 0 and D2 > 0, we getn < 3. Note that we havé®(S, L — D) = 2. If we
take D' € [L — D|, thenL ~ D+ D’. Sincen=L?=LD+LD’ > LD =d, we get
(d, D?) =(1, 0) whenn =2, and ¢, D?) = (2, 0) whenn = 3.

We exclude the possibility that = 3. Assume thah = 3. A general member
C € |L| is an elliptic curve being a smooth plane curve of degreesthie have either
LD=1orLD'=1byLD+LD’=3. Then one of the rational maps induced Ay
|D’| would mapC onto P* isomorphically, which is impossible. Therefore,7 3. [J

Whenn = 2, we haveS ~ P! x P! and A as above corresponds to one of the
natural projections.

Lemma 2.3. Assume that =3. Thenmaxn — 1, 2 <d < n and the rational
map induced byA can be identified with a projection from a line . Furthermore

—(”_2)2(”_3), it d=n-1,
g:
w, if d=n.

2
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Proof. Sincer = 3, D is mapped by®, isomorphically onto a non-degenerate
plane curve of degred. In particular,d > 2 and we havep,(D) = (d — 1)(d — 2)/2.
We get 0< D?=d? — (n—1)d from (2.1), and it follows thatl > n— 1. On the other
hand, we haveH°(S, L — D) # 0. Hence there exists an effective divisbrsuch that
Z+DelLl. Thenn=L2=L(D+Z) > LD. Therefore, we have eithat =n — 1
or d =n. SinceA is a subpencil ofiL|, its moduleV is a two dimensional linear
subspace oH(S, L). Therefore, the rational map induced by can be identified
with the projection with center the link corresponding to the quotier®(S, L)/V.
The effective divisorZ above is nothing more than the divisorial part of the inverse
image ofl by @,.

Suppose thatl =n — 1. Then we haveD? = 0 implying that A is free from base
points and, thereforeD is smooth withg = p,(D) = (h—2)(h—3)/2. We haveLZ = 1.
SincelL is very ample, we conclude tha is an irreducible curve mapped isomorphi-
cally ontol, that is, Z ~ PL. In other words,S as a hypersurface if#® containsl.

Suppose that =n. Then D? = n. Furthermore, we havé Z = 0 which implies
Z = 0. Therefore,| ¢ S and the base locus ok is exactly the intersection 0-cycle
given byl on S. We shall computey. Let 6: W — P° be the blowing-up along.
ThenW has aP?-bundle structure oveP! and we in fact havaV =~ P(Op: (1) ® OZ7).

If D denotes the proper transform Bf by o, then we have an exceptional divisBr
for o such thatD + E € |o*L|. Note thatE # 0, sinceD? = n and D2=0. SinceE
is exactly the inverse image ofby ®,-_, we can lift ®,.. : S — P2 to a morphism
®: S— W. Let f: S— P! be the fibration induced byr. Then® can be identified
with the morphism defined by *L + f*0| for a sufficiently ample divisob on P1. The
image of ® is nothing but the proper transform &c P2 by 5. Then it has at most
isolated smgular points arizing from possible vertlcalmmnents ofE with respect to
f. SinceD is a general fibre off, we see thatb mapsD isomorphically onto a plane
curve of degreen = Do*L. In particular, we haveg = (n — 1)(n — 2)/2. Recall that
@, mapsD isomorphically onto an irreducible plane curve of degnee LD. Hence
pa(D) = (n — 1)(n — 2)/2 =g, which shows thaD is smooth. O

A smooth cubic surface has exactly 27 lines. If we choose drtbem, then the
projection from it gives a pencil of minimal genus zero.

Lemma 2.4. If r =4, then d> max{2n — 4, 3}.
Proof. In this caseD is isomorphic to a non-degenerate space curve of defjree
In particular,d > 3. If we denote bym the integer part ofd —1)/2, then Castelnuovo’s

bound (e.g., [2]) shows

(2.3) Pa(D) <=m(m—-1)+m({d —1—2m) =m(d — m— 2).
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From this and (2.1), we get

2 2 _ _]0, if dis even,
2b"=d"—2( -2y {1, if d is odd.

Since D2 > 0, we getd > 2n — 4. O
Note that, whend = 2n — 4, we haveg = pa(D) = (n — 3)>.

Lemma 25. Ifg<(n—3% thenr=3andd=n—-1,n. If (n—32% <g<
(n—2)(2n —7)/2, then d=2n—4 and g= (n — 3)%.

Proof. Ifd > 2n—4, then (2.2) shows@-2=n—-4)LD+> m; > 2(n—2)(n—4),
that is, g > (n—3)°. Henced < 2n—4 wheng < (n—3)?, and we get the first assertion
by the above lemmas. Similarly, we ggt> (n — 2)(2n — 7)/2 whend > 2n — 3. [

Lemma 2.6. Let Sc P® be a smooth surface of degree>n2. Then ug(S) >
(n—2)(n—3)/2 and the equality sign holds for » 5 if and only if S contains a line

Proof. The inequality is clear when = 2, 3. Whenn > 4, we have § — 2 =
(n—4)d+>Y" m >(n—4)d > (n—4)(n—1) by (2.2). Hencgy > (n— 2)(n — 3)/2 with
equality holding only wherd_ m; =0 and eithem=4 orn>5,d=n-1. ]

Now, the first half of Theorem 2.1 is nothing more than Lemnt Zhe last half
follows from Lemmas 2.5 and 2.3.

REMARK 2.7. Whenn > 4, the locus of surfaces containing a line is of co-
dimensionn — 3 in the moduli space of surfaces of degmeén P3. If S contains a
line, then the defining equation can be standardize@@®, = Z;V,, where theWw;’s
are homogeneous forms of degnee- 1 in (Zg, Z1, Z2, Z3).

3. Minimal slope

In this section, we focus on the minimal slope, another aatdi for the “gonal-
ity”, by computing the slope of the corresponding relavelinimal fibration f: § —
P! whenn > 5.

We denote byAq4 an irreducible pencil ors with d = LD for D € Aq4. Let v be
the number of blowing-ups appearing én S— S and putu = > m;. Then
(3.1) {GXf =(n—1M—-2)(n—3)+3n —4)d +3u+6,

' Kz =n(n—4)2+4(n—4)d+4u —v,
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sinceKZ=n(n— 4%, x(Os)=(n—1)(Nn-2)(n—3)/6+1 and Z—2=(n—4)d + .
For the convenience of readers, we exhibit the genus andldpe sf A4 for the first
three possible values af detected in the previous section:

0(An-1) = %Z(n—S)’ S(An_1) = 6:—:2 (u=v=0),
or =" 0D sy =60 2 u=v=n),

(n — 4)(n? + 4n — 16)

— 2 =
9(Azn-4) = (N —3)*, S(Azn-4) = G(n —3)(n2+3n— 16)

(n=v=0).

The following may show that the minimal slope behaves mocelgithan the minimal
genus whem = 6.
Theorem 3.1. Let S be a smooth surface of degree- 15 in P3. Then

(n-4)
(n-3)

MS(S) >6

and the equality sign holds if and only if S contains a lillen > 6, then

(n—4) if S contains a ling
_)] (h=3)
/J“S(S) - (n _ 3)
therwi
6(n—2) otherwise

and every pencil of minimal slope can be obtained as the gtioje from a line

Proof. We haves(A,_1) < s(An). Since aA, always exists, we compargAy)
with s(Ay) for d > n. By (3.1), we have

n—3 (n+1)(n—4)
K2 -6 =
Fm o 2Kt n—2

+1 ) n? —6n—4
Zu—u + .

(d—n—1)+<n L

n_

Recall that we havel > 2n — 4 if d > n.
We first assume that > 6. We clearly haveu > v > 0. Sinced > 2n — 4, the
right hand side of the above equality is not less than

(n+1)(n—4)(n -5) 3 n? —6n — 4
+ v+ .
n-—2 n-—2 n-—2

Therefore, wherd > n > 6, we haves(Aq4) > 6(n — 3)/(n — 2) =s(Ap).

We consider quintic surfaces. Wher> 8, it is easy to see that 4stAs) < S(Ag).
Whend =7, noting thatu must be a positive odd integer by (2.2), we géA;) > 4
with equality holding only ifu =v =1. If we denote byA; ; such a pencil withd =7
and u =v =1, then we haves(A4) < S(Ag) < S(A7,1) = S(As). O
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4. Some special pencils

We have found so far a satisfactory answer winen 7 with both invariants. But
we need a further study whem=5, 6. The purpose of the section is to clarify the
pencils which satisfy the following:

e n=5 (a)g=4,LD=6,D?=0, (b)g=5, LD=7, D?=1.

e n=6. (ag=9,LD=8,D?=0, (b)g=10,LD =9, D?=0.

The list exhausts the possible unknown pencils for the ssiaienus when =6, and
for the smallest slope whem= 5.

Proposition 4.1. Let S be a smooth surface of degree=n4 in P3 and k an
integer satisfying2 < k < n—k. Assume that S has an irreducible penailsatisfying
LD =k(n—k), D?=0and HS,L —D)=0for D € A. If a general member x A
is projectively normal as a space cutviien the equation of S is of the form

(4.1) DYy = P Wy,

where the®;’s and ¥;’s are homogeneous forms of respective degrees k andkn
in four variables 2%, Zy, Z,, Z3. Furthermore A is induced by the rational function
g/ P ON Ps.

Proof. By the assumptionD is a smooth irreducible curve which is projectively
normal inP3. SinceKs = (n—4)L and D? =0, we havewp >~ Op((n — 4)L) by the
adjunction formula. SinceD is projectively normal, it follows from G. Gherardelli’'s
theorem (see [2, p.147]) thd c P? is a complete intersection of two surfaces. Let
a, b be their respective degrees £ b). Then we havéb=n—a by wp >~ Op(a+b—-4).
Since ded =ab=a(n — a), we getk(n — k) =a(n — a). It follows from k < n —k
anda < n —a thata=k. Therefore,D is a complete intersection of typé&,([n — k).
Then one can compute’(D, mL), m € Z, by using the exact sequence of sheaves

0 — Ops(—n) = Ops(—K) ® Ops(—n+k) = Ops - Op — 0

obtained by the Koszul resolution of the ideal sheabDof If we put N; := hO(P3, Ops(i))
for i € Z, we in particular have

ho(D, kL) = Ny —1, h%(D, (N —K)L) = Np—x — Ny — 1

whenk < n —k, andh%D, kL) = Ny — 2 whenn = 2k.

We consider the multiplication mag,,: H%(S, D) ® H%(S, mL) — H%(S, mL+ D)
for me N. Since S and D are both projectively normal ifP?, the restriction maps
HO(P2, Ops(m)) — HO(S, mL) and HO(P3, Ops(m)) — HO(D, mL) are both surjec-
tive. Then H(S, mL) — H®D, mL) is also surjective. Sincédl(S, mL) = 0, the
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cohomology long exact sequence for
0 — Og(mL— D) - Os(mL) - Op(mL) — 0O
shows thatH%(S, mL — D) = 0. Since|D| is a free pencil, we have an exact sequence
0 — Os(mL — D) - H%S, D) ® Os(mL) - Os(mL+ D) — 0.

From this anch!(S,mL— D) =0, we see that, is surjective. Furthermoreh®(S, mL+
D) = h%(S, mL) + h°(D, mL).

We regardS as a subvariety oW = P2 x P! by the embeddingd,, f): S— W,
where as always : S — P! denotes the fibration defined by. Let H; be the pull-
back to W of the hyperplane bundle oR' (i = 1,3). ThenH®W, aHz + bH;) ~
HO(P3, Ops(a)) ® HO(P, Opi(b)).

We shall show thaS is a complete intersection of two hypersurfacesAn Con-
sider the commutative diagram:

HO(S, D) ® HO(S, mL) —— H(S, mL + D)

HO(W, Hi) ® HO(W, mHs) —— HO(W, mHs + Hy)

Since ¥, and the left vertical map are surjective, we see tH&(W, mH; + H;) —
HO(S,mL+D) is also surjective. Assume first that= 2k. Then we haven®(W, k Hs +
Hy) — hO(S, kL + D) = 2Nx — (Nx + Nx — 2) = 2. This implies that there are two in-
dependent hypersurfac& G’ € [kHz+Hj| throughS. We next assume that< n—Kk.
Then we haveh®(W, kHs;+ H;1) —h9(S, kL+ D) = 1. So, we can find the unique hyper-
surfaceG e |kHs+H;| throughS. We haveh®(W, (n—k)Hs+H;) —h%(S, (n—k)L+D) =
2Nn_x — (ank + Np_k — Np—2k — 1) = Np_x + 1. SincehO(W, (n — k) Hs+ H; — G) =
hOo(W, (n—2k)Hs) = N,_2, We see that there exists a hypersurf@es |(n—k)Hs+ H|
through S but notG. In both cases, it is not so hard to see tRais obtained as the
complete intersectiols N G’ scheme theoretically.

Let (Zo: Z1:Z,: Z3) and o : t;) be systems of homogeneous coordinatesPdn
and P!, respectively. The equation @ e |kHs + H;| can be written asbgt; = ®1ty,
where the®;’s are homogeneous forms of degieén the Z;’s. Similarly, the equation
of G’ € [(n—Kk)Hz + Hy| is of the form Wot; = W1tg, where theW;’s are homogeneous
forms of degreen — k in the Z;’s. HenceS is defined inW by the simultaneous
equation: ®pt; = d1tg, Yoty = Wity. Then, by eliminatingtg, t;, we obtain ®oW¥; =
®, W, which is the equation of in P3. O

Unfortunately, the above proposition assumes the progctormality of D. We
give a numerical sufficient condition fdD to be projectively normal, though it seems
rather crude.
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Lemma 4.2. Let S be a smooth surface of degree-# in P® and k an integer
satisfying2 < k < n— k. Assume that S has an irreducible pensilsatisfying L D=
k(in — k), D?=0and HY(S,L — D) =0 for D € A. If either n> k? or (n, k) =
(4, 2), (6, 3),then any general member of is projectively normal

Proof. The assertion is clear whem k) = (4, 2), since therD is an elliptic curve
of degree 4 inP3. So we assume that > 5. Assume thatr(, k) = (6, 3). ThenD is
a curve of genus 10 an@p(L) is a half-canonical bundle with®(D, L) = 4 which is
very ample. It is an easy exercise to see then fhatoes not lie on a quadric surface
and is a complete intersection of two cubics.

Let C and$ be general hyperplane sections ®fand D, respectively. TherC is
a smooth plane curve of degree Note thaté moves inAlc = gﬁ(nfk) and is a set
of non-degenerate points in uniform position being a gdneyperplane-section of an
irreducible non-degenerate curve. Since 8legk(n — k) < g(C) = (n — 1)(h — 2)/2
holds whenn > 5, A|c is induced by a pencil of plane curves of degreen — 3,
that is, it is given as the restriction of a rational function P? of the form P/P’,
where P and P’ are homogeneous forms in three variables without commotoriac
and degP =degP’ < n— 3 (see, e.g., [12]). Leky be the minimum degree such that
Alc is induced by a pencil of plane curves of degkge Thenky <n—3. As in [12,
p.82], we havek(n — k) = degAlc > kon — k3, that is,

(4.2) ko — K)(n—k —ko) = 0.

Observe that the restriction map®(P?, Opz(a)) — HO(C, al) is an isomorphism
for a < n. We shall show thah®(C, kL —§) # 0 by using an argument in [6]. Assume
not. Thenk < ko and the multiplication mag/ ® HY(C, kL) — HO(C, kL +§) is
injective by the free-pencil-trick, wher€ denotes the module of|c. It follows that
hO(C,kL+8) > 2h°(C, kL) = (k+1)(k+2). By the duality theorem, we hav€(C, kL +
8)=h(C,(n—3—-Kk)L —8). Then, by the Riemann-Roch theoreh?(C, (n—3—Kk)L —

8) =h%(C,kL+8)+(n—3—k)n—k(n—k)—n(n—3)/2> (n—2k—1)(n—2k—2)/2+1>0
for 2k < n. This implies thatV ® H%(C, (n —3 —k)L) — H(C, (n—3—K)L +6) is
not injective, which is sufficient to see thatc is induced by a pencil of plane curves
of degreen — 3 — k or less. Hence&k < kg < n — 3 —k. It is, however, impossible
by (4.2). Therefore H°(C, kL —§8) #0 andk > ko.

For the degree reason, we must haa — k) < kon. If n > k2, thenky > k —
k?/n > k—1 and we geky =k. In particular, we have shown that the smallest degree
of plane curves on whicld lies is exactlyk. Sinced is in uniform position, such a
curve of degree&k must be irreducible. Recall that the bound due to Harris {8les
that the geometric genus of an irreducible non-degenerseescurve of degred >
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k(k — 1) is not greater than

_d?  dk-4) € €
md)= g+ =gt g(kme—1eg)
provided thatk is the smallest degree of plane curves on which a generalrpigoe
section of the curve lies, whereis the integer satisfying +d = 0 (modk) and 0<
€ <k—1. SinceD achieves the bound, we see thatis projectively normal (and, in
fact, it is a complete intersection of typk, f — k)). O

The above covers completely the cade 2n — 4 and most part ofl = 3n — 9.
In particular, the formerly unknown pencilg,=5, (a) andn =6, (a), (b) listed at the
beginning of the section, are now understood. We remarkvih&ind = 2n—4 there is
an interesting (possibly singular) elliptic curve &given by &y = ®; = 0. We do not
know, however, whether a surface as in Proposition 4.1 awta line or not. Here
we remark the following:

Lemma 4.3. Let S be a surface as iRroposition 4.1. If S is generi¢ then
Pic(S) is a free abelian group generated by L and In particular, generic S does
not contain a line

Proof. As we have seenS is defined inW = P® x P! by a section ofF =
Ow(kHs+Hj)® Ow((n—Kk)Hs+Hj). By a long but standard calculation, we can show
that the natural restriction map P — Pic(S) is an isomorphism along the same line
as in [7, Theorem 2.4] provided th&is generic. Indeed, the outline goes as follows.
Note that H(S, Ns/w) = 0, whereNg,w denotes the normal bundle & in W. Let
U c HY(S, ®g) be the image of the Kodaira-Spencer map with respect to tdmal
family of displacements of in W, that is, the image oH°(S, Ngw) — H(S, Os).
We can show thaH(W, Ql) — HY(S, Q},|s) is an isomorphism. The key point in
[7] is to show that the cup-product map® HO(S, Ks) — (HL(S, QY)/HY(W, Q}))Y
is surjective, in order to see that a line bundle $®xtends to the whole family only
when it is the restriction tdS of a line bundle onW. Using the standard exact se-
quenceH(Qy) ~ HY(Q4ls) > HY(Qg) — H*(Ng),) and the Serre duality, it is re-
duced to showing thaH%(S, Nsyw) ® HO(S, Ks) — HO(S, Ks ® Ngw) is surjective.
Consider the commutative diagram:

HO(S, Nsyw) ® H(S, Ks) ——— > HY(S, Ks ® Ngyw)

| T

HOW, F) ® HO(W, Kw ® A2 F) —— HOY(W, Kw ® \? F ® F).
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Since it can be checked that the multiplication map at théobotand the restriction
map HO(W, Kw ® A* F ® F) — HO(S, Ks® Ngw) are both surjective, we see that
the map in question is surjective.

Suppose thaB is generic and len’ be an irreducible pencil o8 such that D')? =
0 for D' € A’. PutD’ ~ «L — BD with two integerse, 8. By (D)> = 0, we get
a(ne —2k(n —k)B) = 0. We have O0< DD’ =k(n —k)a. Hence ifa =0, thenD’ ~ D
andLD’ =k(n—k). If « > 0, thenna = 2k(n—k)8 and we getL D’ = na —k(n—Kk)8 =
k(n—k)B. In any caselL D’ is a positive multiple ok(n—k). In particular, we cannot
have LD’ =n — 1, sincek > 2 andn > 4. This is sufficient to see the does not
contain a line. O

Recall that, whem > 5, S does not have a pencil of hyperelliptic curves, because
the canonical map is birational onto the image. The follgnireats the case =5, (b).

Proposition 4.4. Suppose that S is a smooth quintic surface with an irredacibl
pencil A satisfying LD=7 and D? =1 for D € A. Then with a suitable system of
homogeneous coordinatéZo : Z; : Z» : Z3) on P3 such that the base point of is
(0:0:0:1),the equation of S is of the form

(Q1,0Q2,1 — Q1,1Q2,0)Zo *+ (Q0,1Q2,0 — Q0,0Q2,1)Z1 + (Qo,0Q1,1 — Q0,1Q1,00Z2 =0

where the Qj’s are quadratic forms Furthermore A is generated by two curves de-
fined respectively by

Qoo Q10 Q20 Qo1 Qi1 Q21
rk( Z0 7. Z, ><2, rk( Z0 Z. Z ><2.

Proof. In this caseD is a non-hyperelliptic curve of genus 5 ahf(D, L) = 4.
@\ |p is identified with the canonical map @ followed by the projection with center
the point onD corresponding to Bs. Since®, |p is an embedding, we see thBt
is tetragonal, because if it were trigonal the projectioruldoproduce a double point.
Then D c P2 is projectively normal (e.g., [10]).

Let o0 : X — S be the blowing-up at the base point af. If E denotes the ex-
ceptional &1)-curve, the canonical bundle of is given by Kx = o*L +[E]. The
relatively minimal fibrationf : X — P! induced byA is a tetragonal fibration of genus
5. We let F denote a general fibre of and identify it with the proper transform of
D byo.

Let {s, 1,2, S3} be a basis foHO(X,o*L) and lete ¢ HO(X, [E]) define E. Since
lo*L] is free from base point an@e(o*L) >~ O, we can assume thag=s,=5=0
on E but s3|g is a non-zero constant.
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We claim that|Kx +F| is free from base points. Note thKtx +F =o*(L+D). So
if |L+ D| were not free, then every member should pass through thepmiseof A.
On the other hand, sindd(S, L) =0, the restriction mapi°(S, L +D) — HO(D, Kp)
is surjective and we can find an elementtdf(S, L + D) which does not vanish at that
point since|Kp| is free. It follows that we can find an elememte HO(X, Kx + F)
which is a non-zero constant dB. If {ty, t;} denotes a basis foH°(X, F), then the
9 elementsestj, 0<i <3,0< j <1, andy give us a basis foH°(X, Kx + F).
Since SymMHO(X, o*L) — HO(X, 20*L) is isomorphic, the 10 elementss; are
independent. Recall that%(X, 20*L) — HO(F, 20*L) is a surjection between vector
spaces of the same dimension 10. It follows thE¥(X, 20*L — F) =0 forq =0, 1,
which in turn implies that the multiplicatiobl °(X,F)® H%(X,20*L)— H%(X,20*L +F)
is isomorphic. We conside °(X, o*L + Kx + F) which is of dimension 21. Here we
have 20 independent elements of the foess;t.. These together witlssn form a
basis, becausssn is not zero onE. Hencesn, 0<i < 2, can be expressed as linear
combinations of them:

sn =¢eQi o8t — Qi 1)) +assn, (1=0,1,2)

where theQ; ;’s are quadratic forms and tha’s are constants. By restricting the
above relations taE, we haveayg = a3y = a = 0. Therefore, by eliminating; and e,
we get

Qo,0(8)t1 — Qo,a(S)to _ Qu,o(S)ts — Qua(S)to _ Q2,0(8)t2 — Q2,1(S)to
S S1 S '

t1 _ $9Q1,1(S) — $1Qo,1(9) _ $Q2,1(S) — $2Qo,1(9) _ $1Q2,1(S) — $2Q1,1(9)
to  Q1,08) —51Q0,0(8)  $0Q2,0(8) —2Q0,08)  $1Q2,0(S) — $2Q1,0(5)

Now, if we put

E(s) = (Q1,0Q2,1 — Q1,1Q2,0)% *+ (Qo,1Q2,0 — Q0,0Q2,1)S1 + (Q0,0Q1,1 — Qo,1Q1,0%,
then

(0Q1,0 —51Q0,0)(50Q2,1 — $Qo,1) — (S9Q1,1 — $1Q0,1)(S0Q2,0 — $Q0,0) = SHE(S)
(50Q1,0—51Q0,0(51Q2,1 — $Q1,1) — (S9Q1,1 — $1Q0,1)(81Q2,0 — $Q1,0) = SLE(S)
(0Q2,0—%2Q0,0(51Q2,1 — $Q1,1) — (S9Q2,1 — $Q0,1)(51Q2,0 — $Q1,0) = E(S)

and it follows that there exists a non-trivial quintic rétet Z(s) = 0 in thes’s. This
gives us the equation d& in P3, that is, S is defined by&(Zo, Z1, Z5, Z3) =0. [
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REMARK 4.5. LetSandX be as above. We have three relatigns= e(Q; o(S)ti—
Qi.1(S)to). By using (o, t1; o, S1, S2, S35 17, €), we can embed into the total space of
the PL-bundlew: W = P(Ow ® Ow(Hs+H,)) — W =P3 x P! as a complete intersection
of three hypersurfaces ifH + @ *Hs|, where H denotes the tautological line bundle.
Using this expression, we can show as in [7, Theorem 2.4]Rie(X) ~ Pic(W) when
X is generic. This implies that Pi§J is freely generated by. and D for S generic,
since PicK) >~ o* Pic(S) @ Z[E]. Then we can check th& has neither aA4 nor a
Ag as in Lemma 4.3.

Whenn =5, 6, we have Tables 1 and 2, respectively, for pencils wittalk in-
variants, where “codim” means the codimension of the locushe moduli space of
surfaces of respective degree, which can be computed by tistnexplicit expressions
given in Propositions 4.1, 4.4, is (at least) the indicatatlue. In Table 1,A; means
A7 1 in the proof of Theorem 3.1.

Theorem 4.6. If n =5, thenug =3, 4,5, 6and us = 3, 298, 4. If n = 6, then

ug = 6, 9, 10. Furthermore there exists a surface with a pencil attaining each of such
minimal values

Table 1. quintic surfaces

| d [[ 9(Ag) | s(Aq) | gon(Aq) | cliff( Ag) | codim |
4 3 3 3 1 2
5 6 4 4 1 0
6 4 29/8 3 1 4
7 5 4 4 2 4

Table 2. sextic surfaces

d [| 9(Ag) | s(Ag) | gon(Ag) | cliff(Aq) | codim |
5 6 4 4 1 3
6 10 9/2 5 2 0
8 9 | 88/19 4 2 8
o 10 | 245 6 3 10
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