
Konno, K.
Osaka J. Math.
45 (2008), 789–805

MINIMAL PENCILS ON SMOOTH SURFACES IN P3

KAZUHIRO KONNO

(Received May 21, 2007, revised August 16, 2007)

Abstract
Pencils of curves of minimal genus and slope are determined for smooth surfaces

of degree at least seven in the projective 3-space.

Introduction

One of the most important approaches in the study of projective varieties is to
find rational functions with an extremal property which reflects well the geometry of
the variety. In the theory of curves, the minimum value amongdegrees of pencils on
a smooth projective curve is called thegonality and plays a very important rôle. It
is not greater than (g + 3)=2 for a curve of genusg by the Brill-Noether theory. For
a smooth plane curve of degreen � 3, Namba [12, Theorem 2.3.1] showed that the
gonality depends only onn and is in fact given byn � 1. Furthermore, every pencil
of minimal degreen� 1 is obtained as the linear projection from a point on it.

The present article is a trial to extend the notion of “gonality” to surfaces. To
be more precise, letS be a smooth projective algebraic surface and consider a non-
constant rational function8 on it, regarded as a dominant rational map toP1. Then,
in a canonical way, we can transform it to a relatively minimal fibration f : X ! B,
where X is a smooth surface birationally equivalent toS and B a smooth curve with
a particular morphism� : B ! P1 such that the original8 can be identified, in the
birational sense, with the composite� Æ f . It allows us to regard various numerical
invariants of f as those of8. For example, if a general fibre off is of genusg, we
say that8 is of genusg. When g � 2 and f is not a fibre bundle, the slope off
is a well-defined positive rational number [15]. Then the slope of8 is defined as that
of f . Furthermore, we can consider their minimums when8 moves in the rational
function field of S. The birational invariants thus obtained are our candidates for the
“gonality”. It should be noticed that a rational function ofthe smallest genus does not
necessarily give us a fibration with the smallest slope, and vice versa.

In this paper, we shall study how those invariants behave forsmooth surfaces in
P3, expecting a result similar to Namba’s theorem for plane curves referred above. One
should notice, however, that the smallest genus for rational functions may vary even if
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we fix the degree of surfaces, unlike the case of plane curves.A result along such a
line is already found in [3]. Recall that the smallest possible value for genera of non-
hyperelliptic curves is 3 and that a generic quintic surfacedoes not contain a line by
a classical theorem of Max Noether. What we showed in [3, Proposition 2.5] is that
a quintic surface has a pencil of curves of genus 3 if and only if it contains a line.
Thus for a generic quintic surface the smallest genus is strictly bigger than 3. One of
our main results, Theorem 2.1, is exactly an extension of this fact and states that the
same phenomena happens also whenn � 6. Furthermore, we observe in Theorem 3.1
the same is true for the smallest slope of functions. We hope that our results give
sufficient evidence of these invariants being right candidates for the “gonality”.

The organization of the paper is as follows. In§1, we introduce the minimal genus
and slope for surfaces, and discuss how they relate to the geometry of surfaces. It
will show that these two invariants have different flavor in general, though both seem
equally fundamental. The rest is devoted to smooth surfacesof degreen in P3. We
study the minimal genus in§2 and the minimal slope in§3, and show Theorems 2.1
and 3.1. Since a general member of a pencil can be considered as a space curve in
the present case, its degree is an important invariant. We show that it can ben � 1,
n but the next value jumps to 2n � 4 by using Castelnuovo’s bound, though it also
follows from the known result for plane curves if we cut the surface with a general
hyperplane. Using such information on degrees, one can estimate the genus as well as
the slope without much difficulty. The last section,§4, treats some extra pencils which
may be minimal for some quintic and sextic surfaces. As is naturally expected, the
presence of a special pencil gives us a particular description of the defining equation
of the surface itself. See, Propositions 4.1 and 4.4 for the detail.

1. Some invariants

Let S be a smooth projective algebraic surface defined overC. In this section, we
introduce some birational invariants forS detected by rational functions, which seem
to be basic and need further explorations. We use the standard notation. We denote
by KS the canonical bundle (or a canonical divisor) onS. For a sheafF , we put�(F ) = h0(S, F )� h1(S, F ) + h2(S, F ), hi (S, F ) = dim H i (S, F ), and, whenF is in-
vertible, 8F denotes the rational map associated with the complete linear systemjF j.
The irregularity and the geometric genus are respectively defined byq(S) := h1(S, OS)
and pg(S) := h2(S, OS).

A rational function onS is geometrically a dominant rational map fromS to P1.
In other words, it gives us a pencil3 without fixed components but possibly with
base points, and vice versa. Let� : S̃! S be a minimal succession of blowing-ups
which eliminates the base points of3. The fibres of the induced morphism̃S! P1

may well be disconnected. So we transform it by the Stein factorization to a more
acceptable form: there exist a finite (ramified) covering� : B ! P1 and a morphism
f̃ : S̃! B with connected fibres such that the original rational function is essentially
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the composite� Æ f̃ . We denote byg the genus of a general fibre of̃f . We further
take a relatively minimal modelf : X! B of f̃ , which is unique wheng> 0. In this
way, the study of rational functions onS can be reduced to that of relatively minimal
fibrations plus functions on curves (corresponding to� : B! P1).

Numerical invariants off can be regarded as those of3. Here we focus on two
invariants which seem to be most important and basic. The first one may be obvious.
We put g(3) = g and call it thegenusof 3 (or the rational function). Wheng = 0, f
is a P1-bundle and we can regard such a case as known, sinceS is then a ruled surface
whose structure is well understood. Wheng = 1, that is, f is an elliptic surface, we
may apply the beautiful theory due to Kodaira. We may also ignore the case thatf
is a fibre bundle even wheng � 2. Our second invariant is introduced for non-trivial
cases. PutK f = KX � f �KB and

� f := deg f�OX(K f ) = �(OX)� (g� 1)(g(B)� 1).

By Arakelov’s theorem [1],K 2
f is a non-negative integer andK 2

f = 0 holds only if f
is isotrivial. It is known that� f is a non-negative integer and� f = 0 holds if only if
f is an algebraic fibre bundle. For these facts, see [5]. We puts(3) := K 2

f =� f and
call it the slope of3, when f is not a fibre bundle. Recall that we have 4� 4=g �
s(3) � 12 by the slope inequality [15] and Noether’s formula. Knownresults show
that the smaller the slope is, the simpler the structure off becomes.

We now put

�g(S) := min3 fg(3)g
where3 runs over the set of all pencils onS without fixed components, and call it the
minimal genusof S. When�g(S) � 2 and S is not birationally equivalent to a fibre
bundle, we put

�s(S) := inf3 fs(3)g
and call it theminimal slopeof S. Obviously, these are birational invariants ofS.

The minimal genus has been used, consciously or not, in the classification of sur-
faces as follows. Surfaces with�g = 0 are exactly ruled surfaces, while those with�g = 1 are non-ruled elliptic surfaces. The class of surfaces with �g � 2 consists of
surfaces of general type and, possibly, some abelian or K3 surfaces. Another remark
is that �g(S) = 2 forces the index ofS to be non-positive, i.e.,K 2

S � 8�(OS), by a
result of Xiao [13] and Ueno.

One can also introduce the minimal gonality (resp. Cliffordindex) of S by means
of the gonality (resp. Clifford index) of a general fibre off . These invariants may
be closely related to the degree of irrationality introduced in [11] and developed for
surfaces in [16].
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REMARK 1.1. (1) Since we start from a rational function, a pencil in the above
discussion strictly corresponds to a linear subspace of projective dimension one in a com-
plete linear system. But a pencil often means an algebraic family of curves parametrized
by an irreducible curve in the literature. The latter usage allows us to say that any gen-
eral member of a pencil without fixed components is irreducible. We adopt harmlessly
this new interpretation in the sequel.
(2) An abelian surface does not have a pencil of genus two. A K3surface with a pencil
of genus two is a double covering ofP2 branched along a sextic. For these facts, see [13,
Théorème 4.5].

How to find pencils of small invariants is another problem. Weclose the section
with a remark on surfaces of general type, which concerns howthe Albanese and the
canonical maps relate to small pencils.

Let S be a surface of general type. Assume thatpg(S) � 2. If the canonical map
of S is not birational onto its image, then it often shows up a particular pencil (e.g.,
[9]). We consider the extremal case that the canonical map iscomposed of a pencil;
we call the pencil the canonical pencil and denote it by3can. It is known [14] that
the base curve of3can is eitherP1 or an elliptic curve.

Proposition 1.2. Let S be a surface of general type whose canonical map is com-
posed of a pencil. If �(OS) � 9, then the canonical pencil is the unique pencil of
minimal genus on S; in particular 2� �g(S) � 7.

Proof. Let3 be a pencil onS different from the canonical pencil. We shall show
that g(3) � pg(S). We move to a birational modelX of S such that the canonical map
and the rational map induced by3 are both morphisms onX. Then KX is numerically
equivalent toaF + Z, where F is a member of the canonical pencil,Z is an effective
divisor anda is an integer witha � pg(S) � 1. If D denotes the irreducible curve
coming from a general member of3, then D2 = 0 and 2g(3) � 2 = KX D = aF D +
DZ � aF D. We haveF D � 2, because3 is not 3can, g(3) � 2 and the base curve
of 3can is of genus at most one. Theng(3) � a + 1� pg(S) as wished.

Assume now that�(OS) � 9. Similarly as in the proof of [4, Proposition 2.1], we
can show thatg(3can) � 7. Since�(OS) � pg(S) + 1, we haveg(3can) < pg(S).

We next assume thatq(S) > 0 and the image of the Albanese map is a curve.
For ruled surfaces, the Albanese pencil is the only pencil ofminimal genus 0 as is
well known. In analogy, one may expect that the Albanese map gives us a pencil of
minimal genus. However, it is not true in general. There exist irregular surfaces of
general type with a pencil whose genus is strictly smaller than that of the Albanese
pencil, as we shall see below. Nevertheless, the Albanese map is so natural that we
have the following at least for surfaces with smallK 2:
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Proposition 1.3. Let S be a minimal, irregular surface of general type with K2S <
4pg(S) whose Albanese image is a curve. Then the Albanese pencil is the unique pen-
cil of minimal slope.

Proof. Letg be the fibre genus of the Albanese pencil�: S! C � Alb(S), where
C is a non-singular projective curve of genusq(S). Then g � 2, becauseS is of gen-
eral type. If K 2

S < 4pg(S), then K 2
S < 4pg(S) + 4(g� 2)(q(S)� 1) which is equivalent

to K 2� < 4��. Hence the Albanese pencil has slope less than 4. Letf : X! B be the
relatively minimal fibration associated with a pencil3 on S. If 3 is not the Albanese
pencil, theng(B) < q(S) and it follows from [15] thats(3) � 4.

A simple example explains the situation. LetE be an elliptic curve and put6 = P1�
E. Let g and h be integers not less than 2 and consider a double coveringS of 6
branched along a smooth curve of bi-degree (2g + 2, 2h� 2). Thenq(S) = 1 and K 2

S =
(4�4=g)pg(S). Furthermore, the Albanese pencil is hyperelliptic of genus g and slope
4� 4=g, while S has a linear pencil of genush and slope 4 induced by the projection6! P1. When g� h, this shows that there is a big difference between the minimal
genus and the minimal slope.

2. Minimal genus

From now on,S is a smooth surface inP3 of degreen � 2. We are going to find
a pencil of minimal genus. At a first glance, the problem seemsalmost trivial, since
the Néron-Severi group is generated by the class of hyperplane-sections whenS is a
generic surface of degree� 4; so the minimal pencil should be a subpencil ofjOS(1)j
at least whenS is generic. The purpose of the section is to justify such a naive feeling
and clarify what “generic” means. Namely, we shall show the following theorem with
several lemmas.

Theorem 2.1. Let S be a smooth surface of degree n� 2 in P3. Then

�g(S) � (n� 2)(n� 3)

2
.

Furthermore, when n� 5, the equality sign holds if and only if S contains a line. If
n � 7, then

�g(S) =

8>><
>>:

(n� 2)(n� 3)

2
if S contains a line,

(n� 1)(n� 2)

2
otherwise

and every pencil of minimal genus can be obtained as the projection from a line; in
the former case the line is on S.
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Let L be the hyperplane bundle onS. Then KS = (n�4)L, L2 = n and h0(S, L) =
4. Let 3 be a pencil onS (without fixed components) andD 2 3 a general member.
We may assume thatD is irreducible. We denote byg the geometric genus ofD and
put d := L D. Let � : S̃! S be a minimal succession of blowing-ups which eliminates
all the base points of3. By the adjunction formula, we have

(2.1) 2pa(D)� 2 = KSD + D2 = (n� 4)d + D2.

If mi denotes the multiplicity of thei -th center of� as a base point of the pencil
induced by3, then D2 =

P
m2

i and

(2.2) 2g� 2 = (n� 4)d +
X

i

mi .

Let us consider the restriction mapH0(S, L)! H0(D, L) and put

r = rankfH0(S, L)! H0(D, L)g.
Since L is very ample,8L mapsD isomorphically onto an irreducible non-degenerate
curve in Pr�1. We in particular haved � r � 1, 2� r � 4.

Lemma 2.2. If r = 2, then L D= 1, D2 = 0, D ' P1 and n= 2.

Proof. Sincer = 2, we haveD ' P1. Then�2 = 2pa(D) � 2 = (n � 4)d + D2.
Sinced > 0 and D2 � 0, we getn � 3. Note that we haveh0(S, L � D) = 2. If we
take D0 2 jL � Dj, then L � D + D0. Sincen = L2 = L D + L D0 > L D = d, we get
(d, D2) = (1, 0) whenn = 2, and (d, D2) = (2, 0) whenn = 3.

We exclude the possibility thatn = 3. Assume thatn = 3. A general member
C 2 jLj is an elliptic curve being a smooth plane curve of degree three. We have either
L D = 1 or L D0 = 1 by L D + L D0 = 3. Then one of the rational maps induced by3,jD0j would mapC onto P1 isomorphically, which is impossible. Therefore,n 6= 3.

When n = 2, we haveS ' P1 � P1 and 3 as above corresponds to one of the
natural projections.

Lemma 2.3. Assume that r= 3. Then maxfn � 1, 2g � d � n and the rational
map induced by3 can be identified with a projection from a line inP3. Furthermore,

g =

8>><
>>:

(n� 2)(n� 3)

2
, if d = n� 1,

(n� 1)(n� 2)

2
, if d = n.
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Proof. Sincer = 3, D is mapped by8L isomorphically onto a non-degenerate
plane curve of degreed. In particular, d � 2 and we havepa(D) = (d � 1)(d � 2)=2.
We get 0� D2 = d2� (n�1)d from (2.1), and it follows thatd � n�1. On the other
hand, we haveH0(S, L � D) 6= 0. Hence there exists an effective divisorZ such that
Z + D 2 jLj. Then n = L2 = L(D + Z) � L D. Therefore, we have eitherd = n � 1
or d = n. Since3 is a subpencil ofjLj, its moduleV is a two dimensional linear
subspace ofH0(S, L). Therefore, the rational map induced by3 can be identified
with the projection with center the linel corresponding to the quotientH0(S, L)=V .
The effective divisorZ above is nothing more than the divisorial part of the inverse
image of l by 8L .

Suppose thatd = n� 1. Then we haveD2 = 0 implying that3 is free from base
points and, therefore,D is smooth withg = pa(D) = (n�2)(n�3)=2. We haveL Z = 1.
Since L is very ample, we conclude thatZ is an irreducible curve mapped isomorphi-
cally onto l , that is, Z ' P1. In other words,S as a hypersurface inP3 containsl .

Suppose thatd = n. Then D2 = n. Furthermore, we haveL Z = 0 which implies
Z = 0. Therefore,l 6� S and the base locus of3 is exactly the intersection 0-cycle
given by l on S. We shall computeg. Let �̃ : W ! P3 be the blowing-up alongl .
Then W has aP2-bundle structure overP1 and we in fact haveW ' P(OP1(1)�O�2

P1 ).

If D̃ denotes the proper transform ofD by � , then we have an exceptional divisorE
for � such thatD̃ + E 2 j� �Lj. Note thatE 6= 0, sinceD2 = n and D̃2 = 0. SinceE
is exactly the inverse image ofl by 8� �L , we can lift8� �L : S̃! P3 to a morphism8 : S̃! W. Let f : S̃! P1 be the fibration induced by3. Then8 can be identified
with the morphism defined byj� �L + f �dj for a sufficiently ample divisord on P1. The
image of8 is nothing but the proper transform ofS� P3 by �̃ . Then it has at most
isolated singular points arizing from possible vertical components ofE with respect to
f . Since D̃ is a general fibre off , we see that8 mapsD̃ isomorphically onto a plane
curve of degreen = D̃� �L. In particular, we haveg = (n � 1)(n � 2)=2. Recall that8L maps D isomorphically onto an irreducible plane curve of degreen = L D. Hence
pa(D) = (n� 1)(n� 2)=2 = g, which shows thatD is smooth.

A smooth cubic surface has exactly 27 lines. If we choose one of them, then the
projection from it gives a pencil of minimal genus zero.

Lemma 2.4. If r = 4, then d� maxf2n� 4, 3g.
Proof. In this case,D is isomorphic to a non-degenerate space curve of degreed.

In particular,d � 3. If we denote bym the integer part of (d�1)=2, then Castelnuovo’s
bound (e.g., [2]) shows

(2.3) pa(D) � m(m� 1) + m(d � 1� 2m) = m(d �m� 2).
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From this and (2.1), we get

2D2 � d2 � 2(n� 2)d � �0, if d is even,
1, if d is odd.

Since D2 � 0, we getd � 2n� 4.

Note that, whend = 2n� 4, we haveg = pa(D) = (n� 3)2.

Lemma 2.5. If g < (n � 3)2, then r = 3 and d = n � 1, n. If (n � 3)2 � g <
(n� 2)(2n� 7)=2, then d= 2n� 4 and g= (n� 3)2.

Proof. If d � 2n�4, then (2.2) shows 2g�2 = (n�4)L D+
P

mi � 2(n�2)(n�4),
that is, g� (n�3)2. Henced < 2n�4 wheng< (n�3)2, and we get the first assertion
by the above lemmas. Similarly, we getg � (n� 2)(2n� 7)=2 whend � 2n� 3.

Lemma 2.6. Let S� P3 be a smooth surface of degree n� 2. Then�g(S) �
(n� 2)(n� 3)=2 and the equality sign holds for n� 5 if and only if S contains a line.

Proof. The inequality is clear whenn = 2, 3. Whenn � 4, we have 2g � 2 =
(n�4)d +

P
mi � (n�4)d � (n�4)(n�1) by (2.2). Henceg � (n�2)(n�3)=2 with

equality holding only when
P

mi = 0 and eithern = 4 or n � 5, d = n� 1.

Now, the first half of Theorem 2.1 is nothing more than Lemma 2.6. The last half
follows from Lemmas 2.5 and 2.3.

REMARK 2.7. Whenn � 4, the locus of surfaces containing a line is of co-
dimensionn � 3 in the moduli space of surfaces of degreen in P3. If S contains a
line, then the defining equation can be standardized asZ091 = Z190, where the9i ’s
are homogeneous forms of degreen� 1 in (Z0, Z1, Z2, Z3).

3. Minimal slope

In this section, we focus on the minimal slope, another candidate for the “gonal-
ity”, by computing the slope of the corresponding relatively minimal fibration f : S̃!
P1 when n � 5.

We denote by3d an irreducible pencil onS with d = L D for D 2 3d. Let � be
the number of blowing-ups appearing in� : S̃! S and put� =

P
mi . Then

(3.1)

�
6� f = (n� 1)(n� 2)(n� 3) + 3(n� 4)d + 3� + 6,
K 2

f = n(n� 4)2 + 4(n� 4)d + 4�� �,
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since K 2
S = n(n� 4)2, �(OS) = (n� 1)(n� 2)(n� 3)=6 + 1 and 2g� 2 = (n� 4)d +�.

For the convenience of readers, we exhibit the genus and the slope of3d for the first
three possible values ofd detected in the previous section:

g(3n�1) =
(n� 2)(n� 3)

2
, s(3n�1) = 6

n� 4

n� 3
(� = � = 0),

g(3n) =
(n� 1)(n� 2)

2
, s(3n) = 6

n� 3

n� 2
(� = � = n),

g(32n�4) = (n� 3)2, s(32n�4) = 6
(n� 4)(n2 + 4n� 16)

(n� 3)(n2 + 3n� 16)
(� = � = 0).

The following may show that the minimal slope behaves more nicely than the minimal
genus whenn = 6.

Theorem 3.1. Let S be a smooth surface of degree n� 5 in P3. Then

�s(S) � 6
(n� 4)

(n� 3)

and the equality sign holds if and only if S contains a line. If n � 6, then

�s(S) =

8>><
>>:

6
(n� 4)

(n� 3)
if S contains a line,

6
(n� 3)

(n� 2)
otherwise

and every pencil of minimal slope can be obtained as the projection from a line.

Proof. We haves(3n�1) < s(3n). Since a3n always exists, we compares(3d)
with s(3n) for d > n. By (3.1), we have

K 2
f � 6

n� 3

n� 2
� f =

(n + 1)(n� 4)

n� 2
(d � n� 1) +

�
n + 1

n� 2
�� �� +

n2 � 6n� 4

n� 2
.

Recall that we haved � 2n� 4 if d > n.
We first assume thatn � 6. We clearly have� � � � 0. Sinced � 2n � 4, the

right hand side of the above equality is not less than

(n + 1)(n� 4)(n� 5)

n� 2
+

3

n� 2
� +

n2 � 6n� 4

n� 2
.

Therefore, whend > n � 6, we haves(3d) > 6(n� 3)=(n� 2) = s(3n).
We consider quintic surfaces. Whend � 8, it is easy to see that 4 =s(35)< s(3d).

When d = 7, noting that� must be a positive odd integer by (2.2), we gets(37) � 4
with equality holding only if� = � = 1. If we denote by37,1 such a pencil withd = 7
and� = � = 1, then we haves(34) < s(36) < s(37,1) = s(35).
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4. Some special pencils

We have found so far a satisfactory answer whenn � 7 with both invariants. But
we need a further study whenn = 5, 6. The purpose of the section is to clarify the
pencils which satisfy the following:
• n = 5. (a) g = 4, L D = 6, D2 = 0, (b) g = 5, L D = 7, D2 = 1.
• n = 6. (a) g = 9, L D = 8, D2 = 0, (b) g = 10, L D = 9, D2 = 0.
The list exhausts the possible unknown pencils for the smallest genus whenn = 6, and
for the smallest slope whenn = 5.

Proposition 4.1. Let S be a smooth surface of degree n� 4 in P3 and k an
integer satisfying2� k � n� k. Assume that S has an irreducible pencil3 satisfying
L D = k(n� k), D2 = 0 and H0(S, L � D) = 0 for D 2 3. If a general member D2 3
is projectively normal as a space curve, then the equation of S is of the form

(4.1) 8091 = 8190,

where the8i ’s and 9 j ’s are homogeneous forms of respective degrees k and n� k
in four variables Z0, Z1, Z2, Z3. Furthermore, 3 is induced by the rational function80=81 on P3.

Proof. By the assumption,D is a smooth irreducible curve which is projectively
normal in P3. Since KS = (n� 4)L and D2 = 0, we have!D ' OD((n� 4)L) by the
adjunction formula. SinceD is projectively normal, it follows from G. Gherardelli’s
theorem (see [2, p.147]) thatD � P3 is a complete intersection of two surfaces. Let
a,b be their respective degrees (a� b). Then we haveb = n�a by !D 'OD(a+b�4).
Since degD = ab = a(n � a), we getk(n � k) = a(n � a). It follows from k � n� k
and a � n� a that a = k. Therefore,D is a complete intersection of type (k, n� k).
Then one can computeh0(D, mL), m 2 Z, by using the exact sequence of sheaves

0! OP3(�n)! OP3(�k)�OP3(�n + k)! OP3 ! OD ! 0

obtained by the Koszul resolution of the ideal sheaf ofD. If we put Ni := h0(P3, OP3(i ))
for i 2 Z, we in particular have

h0(D, kL) = Nk � 1, h0(D, (n� k)L) = Nn�k � Nn�2k � 1

when k < n� k, and h0(D, kL) = Nk � 2 whenn = 2k.
We consider the multiplication map m: H0(S, D)
 H0(S, mL)! H0(S, mL+ D)

for m 2 N. Since S and D are both projectively normal inP3, the restriction maps
H0(P3, OP3(m)) ! H0(S, mL) and H0(P3, OP3(m)) ! H0(D, mL) are both surjec-
tive. Then H0(S, mL) ! H0(D, mL) is also surjective. SinceH1(S, mL) = 0, the
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cohomology long exact sequence for

0! OS(mL� D)! OS(mL)! OD(mL)! 0

shows thatH1(S, mL� D) = 0. SincejDj is a free pencil, we have an exact sequence

0! OS(mL� D)! H0(S, D)
OS(mL)! OS(mL + D)! 0.

From this andh1(S, mL�D) = 0, we see that m is surjective. Furthermore,h0(S, mL+
D) = h0(S, mL) + h0(D, mL).

We regardS as a subvariety ofW = P3� P1 by the embedding (8L , f ): S! W,
where as alwaysf : S! P1 denotes the fibration defined by3. Let Hi be the pull-
back to W of the hyperplane bundle onPi (i = 1, 3). Then H0(W, aH3 + bH1) '
H0(P3, OP3(a))
 H0(P1, OP1(b)).

We shall show thatS is a complete intersection of two hypersurfaces inW. Con-
sider the commutative diagram:

H0(S, D)
 H0(S, mL) ! m
H0(S, mL + D)

H0(W, H1)
 H0(W, mH3)

!
!' H0(W, mH3 + H1)

!

Since m and the left vertical map are surjective, we see thatH0(W, mH3 + H1)!
H0(S, mL+ D) is also surjective. Assume first thatn = 2k. Then we haveh0(W, kH3 +
H1) � h0(S, kL + D) = 2Nk � (Nk + Nk � 2) = 2. This implies that there are two in-
dependent hypersurfacesG, G0 2 jkH3 + H1j throughS. We next assume thatk < n�k.
Then we haveh0(W, kH3 + H1)�h0(S, kL + D) = 1. So, we can find the unique hyper-
surfaceG 2 jkH3+H1j throughS. We haveh0(W, (n�k)H3+H1)�h0(S, (n�k)L +D) =
2Nn�k � (Nn�k + Nn�k � Nn�2k � 1) = Nn�2k + 1. Sinceh0(W, (n� k)H3 + H1 � G) =
h0(W, (n�2k)H3) = Nn�2k, we see that there exists a hypersurfaceG0 2 j(n�k)H3+ H1j
through S but not G. In both cases, it is not so hard to see thatS is obtained as the
complete intersectionG \ G0 scheme theoretically.

Let (Z0 : Z1 : Z2 : Z3) and (t0 : t1) be systems of homogeneous coordinates onP3

and P1, respectively. The equation ofG 2 jkH3 + H1j can be written as80t1 = 81t0,
where the8i ’s are homogeneous forms of degreek in the Zi ’s. Similarly, the equation
of G0 2 j(n� k)H3 + H1j is of the form90t1 = 91t0, where the9 j ’s are homogeneous
forms of degreen � k in the Zi ’s. Hence S is defined inW by the simultaneous
equation: 80t1 = 81t0, 90t1 = 91t0. Then, by eliminatingt0, t1, we obtain8091 =8190 which is the equation ofS in P3.

Unfortunately, the above proposition assumes the projective normality of D. We
give a numerical sufficient condition forD to be projectively normal, though it seems
rather crude.
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Lemma 4.2. Let S be a smooth surface of degree n� 4 in P3 and k an integer
satisfying2 � k � n� k. Assume that S has an irreducible pencil3 satisfying L D=
k(n � k), D2 = 0 and H0(S, L � D) = 0 for D 2 3. If either n > k2 or (n, k) =
(4, 2), (6, 3), then any general member of3 is projectively normal.

Proof. The assertion is clear when (n, k) = (4, 2), since thenD is an elliptic curve
of degree 4 inP3. So we assume thatn � 5. Assume that (n, k) = (6, 3). ThenD is
a curve of genus 10 andOD(L) is a half-canonical bundle withh0(D, L) = 4 which is
very ample. It is an easy exercise to see then thatD does not lie on a quadric surface
and is a complete intersection of two cubics.

Let C and Æ be general hyperplane sections ofS and D, respectively. ThenC is
a smooth plane curve of degreen. Note thatÆ moves in3jC = g1

k(n�k) and is a set
of non-degenerate points in uniform position being a general hyperplane-section of an
irreducible non-degenerate curve. Since degÆ = k(n � k) � g(C) = (n � 1)(n � 2)=2
holds whenn � 5, 3jC is induced by a pencil of plane curves of degree� n � 3,
that is, it is given as the restriction of a rational functionon P2 of the form P=P0,
where P and P0 are homogeneous forms in three variables without common factors
and degP = degP0 � n� 3 (see, e.g., [12]). Letk0 be the minimum degree such that3jC is induced by a pencil of plane curves of degreek0. Thenk0 � n� 3. As in [12,
p.82], we havek(n� k) = deg3jC � k0n� k2

0, that is,

(4.2) (k0 � k)(n� k� k0) � 0.

Observe that the restriction mapH0(P2, OP2(a))! H0(C, aL) is an isomorphism
for a < n. We shall show thath0(C, kL� Æ) 6= 0 by using an argument in [6]. Assume
not. Thenk < k0 and the multiplication mapV 
 H0(C, kL) ! H0(C, kL + Æ) is
injective by the free-pencil-trick, whereV denotes the module of3jC. It follows that
h0(C, kL +Æ) � 2h0(C, kL) = (k+1)(k+2). By the duality theorem, we haveh0(C, kL +Æ) = h1(C, (n�3�k)L�Æ). Then, by the Riemann-Roch theorem,h0(C, (n�3�k)L�Æ) = h0(C, kL+Æ)+(n�3�k)n�k(n�k)�n(n�3)=2� (n�2k�1)(n�2k�2)=2+1> 0
for 2k � n. This implies thatV 
 H0(C, (n� 3� k)L)! H0(C, (n� 3� k)L + Æ) is
not injective, which is sufficient to see that3jC is induced by a pencil of plane curves
of degreen � 3� k or less. Hencek < k0 � n � 3� k. It is, however, impossible
by (4.2). Therefore,H0(C, kL � Æ) 6= 0 andk � k0.

For the degree reason, we must havek(n � k) � k0n. If n > k2, then k0 � k �
k2=n > k�1 and we getk0 = k. In particular, we have shown that the smallest degree
of plane curves on whichÆ lies is exactlyk. Since Æ is in uniform position, such a
curve of degreek must be irreducible. Recall that the bound due to Harris [8] states
that the geometric genus of an irreducible non-degenerate space curve of degreed >
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k(k� 1) is not greater than

�k(d) =
d2

2k
+

d(k� 4)

2
+ 1� �

2

�
k� � � 1 +

�
k

�

provided thatk is the smallest degree of plane curves on which a general hyperplane
section of the curve lies, where� is the integer satisfying� + d � 0 (modk) and 0�� � k� 1. SinceD achieves the bound, we see thatD is projectively normal (and, in
fact, it is a complete intersection of type (k, n� k)).

The above covers completely the cased = 2n � 4 and most part ofd = 3n � 9.
In particular, the formerly unknown pencils,n = 5, (a) andn = 6, (a), (b) listed at the
beginning of the section, are now understood. We remark thatwhend = 2n�4 there is
an interesting (possibly singular) elliptic curve onS given by80 = 81 = 0. We do not
know, however, whether a surface as in Proposition 4.1 contains a line or not. Here
we remark the following:

Lemma 4.3. Let S be a surface as inProposition 4.1. If S is generic, then
Pic(S) is a free abelian group generated by L and D. In particular, generic S does
not contain a line.

Proof. As we have seen,S is defined in W = P3 � P1 by a section ofF =
OW(kH3 + H1)�OW((n�k)H3 + H1). By a long but standard calculation, we can show
that the natural restriction map Pic(W)! Pic(S) is an isomorphism along the same line
as in [7, Theorem 2.4] provided thatS is generic. Indeed, the outline goes as follows.
Note that H1(S, NS=W) = 0, whereNS=W denotes the normal bundle ofS in W. Let
U � H1(S,2S) be the image of the Kodaira-Spencer map with respect to the maximal
family of displacements ofS in W, that is, the image ofH0(S, NS=W)! H1(S, 2S).
We can show thatH1(W, �1

W)! H1(S, �1
WjS) is an isomorphism. The key point in

[7] is to show that the cup-product mapU 
 H0(S, KS)! (H1(S, �1
S)=H1(W, �1

W))_
is surjective, in order to see that a line bundle onS extends to the whole family only
when it is the restriction toS of a line bundle onW. Using the standard exact se-
quenceH1(�1

W) ' H1(�1
WjS)! H1(�1

S)! H2(N_
S=W) and the Serre duality, it is re-

duced to showing thatH0(S, NS=W) 
 H0(S, KS)! H0(S, KS
 NS=W) is surjective.
Consider the commutative diagram:

H0(S, NS=W)
 H0(S, KS) !H0(S, KS
 NS=W)

H0(W, F )
 H0
�
W, KW 
V2

F
� !

!
H0
�
W, KW 
V2

F 
 F
�
.

!



802 K. KONNO

Since it can be checked that the multiplication map at the bottom and the restriction
map H0

�
W, KW 
V2

F 
 F
�! H0(S, KS
 NS=W) are both surjective, we see that

the map in question is surjective.
Suppose thatS is generic and let30 be an irreducible pencil onS such that (D0)2 =

0 for D0 2 30. Put D0 � �L � �D with two integers�, �. By (D0)2 = 0, we get�(n�� 2k(n� k)�) = 0. We have 0� DD0 = k(n� k)�. Hence if� = 0, thenD0 � D
and L D0 = k(n�k). If � > 0, thenn� = 2k(n�k)� and we getL D0 = n��k(n�k)� =
k(n�k)�. In any case,L D0 is a positive multiple ofk(n�k). In particular, we cannot
have L D0 = n � 1, sincek � 2 and n � 4. This is sufficient to see thatS does not
contain a line.

Recall that, whenn � 5, S does not have a pencil of hyperelliptic curves, because
the canonical map is birational onto the image. The following treats the casen = 5, (b).

Proposition 4.4. Suppose that S is a smooth quintic surface with an irreducible
pencil 3 satisfying L D= 7 and D2 = 1 for D 2 3. Then with a suitable system of
homogeneous coordinates(Z0 : Z1 : Z2 : Z3) on P3 such that the base point of3 is
(0 : 0 : 0 : 1), the equation of S is of the form

(Q1,0Q2,1� Q1,1Q2,0)Z0 + (Q0,1Q2,0� Q0,0Q2,1)Z1 + (Q0,0Q1,1� Q0,1Q1,0)Z2 = 0

where the Qi , j ’s are quadratic forms. Furthermore, 3 is generated by two curves de-
fined respectively by

rk

�
Q0,0 Q1,0 Q2,0

Z0 Z1 Z2

� < 2, rk

�
Q0,1 Q1,1 Q2,1

Z0 Z1 Z2

� < 2.

Proof. In this case,D is a non-hyperelliptic curve of genus 5 andh0(D, L) = 4.8L jD is identified with the canonical map ofD followed by the projection with center
the point onD corresponding to Bs3. Since8L jD is an embedding, we see thatD
is tetragonal, because if it were trigonal the projection would produce a double point.
Then D � P3 is projectively normal (e.g., [10]).

Let � : X ! S be the blowing-up at the base point of3. If E denotes the ex-
ceptional (�1)-curve, the canonical bundle ofX is given by KX = � �L + [E]. The
relatively minimal fibration f : X! P1 induced by3 is a tetragonal fibration of genus
5. We let F denote a general fibre off and identify it with the proper transform of
D by � .

Let fs0,s1,s2,s3g be a basis forH0(X,� �L) and lete2 H0(X, [E]) define E. Sincej� �Lj is free from base point andOE(� �L) ' OE, we can assume thats0 = s1 = s2 = 0
on E but s3jE is a non-zero constant.
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We claim thatjKX + F j is free from base points. Note thatKX + F = � �(L + D). So
if jL + Dj were not free, then every member should pass through the basepoint of 3.
On the other hand, sinceH1(S, L) = 0, the restriction mapH0(S, L + D)! H0(D, KD)
is surjective and we can find an element ofH0(S, L + D) which does not vanish at that
point sincejKDj is free. It follows that we can find an element� 2 H0(X, KX + F)
which is a non-zero constant onE. If ft0, t1g denotes a basis forH0(X, F), then the
9 elementsesi t j , 0� i � 3, 0� j � 1, and� give us a basis forH0(X, KX + F).

Since Sym2H0(X, � �L) ! H0(X, 2� �L) is isomorphic, the 10 elementssi sj are
independent. Recall thatH0(X, 2� �L)! H0(F , 2� �L) is a surjection between vector
spaces of the same dimension 10. It follows thatHq(X, 2� �L � F) = 0 for q = 0, 1,
which in turn implies that the multiplicationH0(X,F)
H0(X,2� �L)!H0(X,2� �L +F)
is isomorphic. We considerH0(X, � �L + KX + F) which is of dimension 21. Here we
have 20 independent elements of the formesi sj tk. These together withs3� form a
basis, becauses3� is not zero onE. Hencesi �, 0� i � 2, can be expressed as linear
combinations of them:

si � = e(Qi ,0(s)t1� Qi ,1(s)t0) + ai s3�, (i = 0, 1, 2)

where theQi , j ’s are quadratic forms and theak’s are constants. By restricting the
above relations toE, we havea0 = a1 = a2 = 0. Therefore, by eliminating� and e,
we get

Q0,0(s)t1� Q0,1(s)t0
s0

=
Q1,0(s)t1� Q1,1(s)t0

s1
=

Q2,0(s)t1� Q2,1(s)t0
s2

.

Then

t1
t0

=
s0Q1,1(s)� s1Q0,1(s)

s0Q1,0(s)� s1Q0,0(s)
=

s0Q2,1(s)� s2Q0,1(s)

s0Q2,0(s)� s2Q0,0(s)
=

s1Q2,1(s)� s2Q1,1(s)

s1Q2,0(s)� s2Q1,0(s)
.

Now, if we put

4(s) = (Q1,0Q2,1� Q1,1Q2,0)s0 + (Q0,1Q2,0� Q0,0Q2,1)s1 + (Q0,0Q1,1� Q0,1Q1,0)s2,

then

(s0Q1,0� s1Q0,0)(s0Q2,1� s2Q0,1)� (s0Q1,1� s1Q0,1)(s0Q2,0� s2Q0,0) = s04(s)

(s0Q1,0� s1Q0,0)(s1Q2,1� s2Q1,1)� (s0Q1,1� s1Q0,1)(s1Q2,0� s2Q1,0) = s14(s)

(s0Q2,0� s2Q0,0)(s1Q2,1� s2Q1,1)� (s0Q2,1� s2Q0,1)(s1Q2,0� s2Q1,0) = s24(s)

and it follows that there exists a non-trivial quintic relation 4(s) = 0 in the si ’s. This
gives us the equation ofS in P3, that is, S is defined by4(Z0, Z1, Z2, Z3) = 0.
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REMARK 4.5. LetSandX be as above. We have three relationssi � = e(Qi ,0(s)t1�
Qi ,1(s)t0). By using (t0, t1; s0, s1, s2, s3; �, e), we can embedX into the total space of
the P1-bundle$ : W̃ = P(OW�OW(H3+ H1))!W = P3�P1 as a complete intersection
of three hypersurfaces injH +$ �H3j, where H denotes the tautological line bundle.
Using this expression, we can show as in [7, Theorem 2.4] thatPic(X) ' Pic(W̃) when
X is generic. This implies that Pic(S) is freely generated byL and D for S generic,
since Pic(X) ' � � Pic(S) � Z[E]. Then we can check thatS has neither a34 nor a36 as in Lemma 4.3.

When n = 5, 6, we have Tables 1 and 2, respectively, for pencils with small in-
variants, where “codim” means the codimension of the locus in the moduli space of
surfaces of respective degree, which can be computed by using the explicit expressions
given in Propositions 4.1, 4.4, is (at least) the indicated value. In Table 1,37 means37,1 in the proof of Theorem 3.1.

Theorem 4.6. If n = 5, then �g = 3, 4, 5, 6and �s = 3, 29=8, 4. If n = 6, then�g = 6, 9, 10. Furthermore, there exists a surface with a pencil attaining each of such
minimal values.

Table 1. quintic surfaces

d g(3d) s(3d) gon(3d) cliff(3d) codim

4 3 3 3 1 2
5 6 4 4 1 0
6 4 29/8 3 1 4
7 5 4 4 2 4

Table 2. sextic surfaces

d g(3d) s(3d) gon(3d) cliff(3d) codim

5 6 4 4 1 3
6 10 9/2 5 2 0
8 9 88/19 4 2 8
9 10 24/5 6 3 10



M INIMAL PENCILS 805

References

[1] S. Arakelov: Families of algebraic curves with fixed degeneracies, Math. U.S.S.R. Izv.5 (1971),
1277–1302.

[2] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris: Geometry of Algebraic Curves, I,
Grundlehren der Mathematischen Wissenschaften267, Springer, New York, 1985.

[3] T. Ashikaga and K. Konno:Algebraic surfaces of general type withc2
1 = 3pg�7, Tohoku Math.

J. (2) 42 (1990), 517–536.
[4] A. Beauville: L’application canonique pour les surfaces de type général, Invent. Math.55

(1979), 121–140.
[5] A. Beauville: L’inégalité pg � 2q � 4 pour les surfaces de type général, Bull. Soc. Math.

France110 (1982), 343–346.
[6] M. Coppens and T. Kato:The gonality of smooth curves with plane models, Manuscripta Math.

70 (1990), 5–25.
[7] L. Ein: An analogue of Max Noether’s theorem, Duke Math. J.52 (1985), 689–706.
[8] J. Harris: The genus of space curves, Math. Ann.249 (1980), 191–204.
[9] K. Konno: On the irregularity of special non-canonical surfaces, Publ. Res. Inst. Math. Sci.

30 (1994), 671–688.
[10] K. Konno: Projected canonical curves and the Clifford index, Publ. Res. Inst. Math. Sci.41

(2005), 397–416.
[11] T.T. Moh and W. Heinzer: On the Lüroth semigroup and Weierstrass canonical divisors, J.

Algebra 77 (1982), 62–73.
[12] M. Namba: Families of Meromorphic Functions on Compact Riemann Surfaces, Lecture Notes

in Math. 767, Springer, Berlin, 1979.
[13] G. Xiao: Surfaces Fibrées en Courbes de Genre Deux, Lecture Notes in Math.1137, Springer,

Berlin, 1985.
[14] G. Xiao: L’irrégularité des surfaces de type général dont le systèmecanonique est composé

d’un pinceau, Compositio Math.56 (1985), 251–257.
[15] G. Xiao: Fibered algebraic surfaces with low slope, Math. Ann.276 (1987), 449–466.
[16] H. Yoshihara:Degree of irrationality of an algebraic surface, J. Algebra167 (1994), 634–640.

Department of Mathematics
Graduate School of Science
Osaka University
Toyonaka, Osaka 560–0043
Japan
e-mail: konno@math.sci.osaka-u.ac.jp


