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Abstract
Let G=H be a compact 4-symmetric space of inner type such that the dimension

of the centerZ(H ) of H is at most one. In this paper we shall classify involutions
of G preservingH for the case wheredim Z(H ) = 0, or H is a centralizer of a toral
subgroup ofG.

1. Introduction

It is known that Riemanniank-symmetric spaces is a generalizations of Riemann-
ian symmetric spaces. The definition is as follows:

Let G be a Lie group andH a compact subgroup ofG. A homogeneous space
(G=H , h , i) with G-invariant Riemannian metrich , i is called a Riemannian
k-symmetric spaceif there exists an automorphism� on G such that
1. G�

o � H � G� , whereG� and G�
o is the set of fixed points of� and its identity

component, respectively,
2. � k = Id and� l 6= Id for any l < k,
3. The transformation ofG=H induced by� is an isometry.
We denote by (G=H , h , i, � ) a Riemanniank-symmetric space with an automorphism� . Gray [5] classified Riemannian 3-symmetric spaces (see also Wolf and Gray [15]).
Moreover compact Riemannian 4-symmetric spaces is classified by Jeménez [7]. The
structure of Riemanniank-symmetric spaces is closely related to the study of finite or-
der automorphisms of Lie groups. Such automorphisms of compact simple Lie groups
were classified (cf. Kac [8] and Helgason [6]).

It is known that involutions onk-symmetric spaces are important. For example,
the classifications of affine symmetric spaces by Berger [1] are, in essence, the clas-
sification of involutions on compact symmetric spacesG=H preservingH . Similarly,
such involutions play an important role in the classification of symmetric submanifolds
on compact symmetric spaces (cf. Naitoh [11] and [12]).

On a compact 3-symmetric space (G=H , h , i, � ), an involution� preservingH
satisfies� Æ� = � Æ � or � Æ� = ��1Æ � . The classification of affine 3-symmetric spaces
([15]) was made by classifying involutions� satisfying � Æ � = � Æ � . Moreover, [13]
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and [14] classify half-dimensional, totally real and totally geodesic submanifold (with
respect to the canonical almost complex structures) of compact Riemannian 3-symmetric
spaces (G=H , h , i, � ) by classifying involutions� on G satisfying� Æ � = ��1 Æ � .

In general, there exists an involution� such that� Æ � Æ ��1 6= � or ��1 for
Riemannian 4-symmetric spaces. These automorphisms do notappear in Riemannian
symmetric spaces and 3-symmetric spaces. However, if the dimension of the center of
H is at most one, each involution� preservingH satisfies� Æ � Æ ��1 = � or ��1.

According to [7], a compact simply connected Riemannian 4-symmetric space de-
composes as a productM1 � � � � � Mr , where Mi (1 � i � r ) is compact, irreducible
Riemannian 4-symmetric space. In this paper we treat a compact, irreducible Riemann-
ian 4-symmetric space (G=H , h , i,� ) such that the dimension of the center ofH is at
most one. In particular we classify involutions ofG preservingH for the case where
dim Z(H ) = 0, or dimZ(H ) = 1 and H is a centralizer of a toral subgroup ofG. More
precisely, letg and h be the Lie algebras ofG and H , respectively. Then we first
prove that there exists a maximal abelian subalgebrat of g contained inh such that� (t) = t for any involution � preservingh. Except for the case where dimZ(H ) = 1
and � Æ � Æ ��1 = ��1, we classify involutions ¯� of the root system ofh with respect
to t. Moreover, for each involution ¯� (�̄ 6= Id) of the root system ofh, we prove that
there exists an involution�0 preservingh such that�0jh = �̄ . Then each involution�
can be written as� = �0 Æ Ad(exp

p�1h) or � = Ad(exp
p�1h) for some

p�1h 2 t

since� jt is an involution of the root system ofh, and we obtain all� by considering
conjugations within automorphisms preservingh. For the case where dimZ(H ) = 1 and� Æ � Æ ��1 = ��1, using graded Lie algebras, we classify all� by an argument similar
to that in [13].

According to [14], for 3-symmetric spaces (G=H , h , i, � ) with dim Z(H ) = 0,
each involution� with � Æ � Æ ��1 = ��1 preserving H is obtained from a grade-
reversing Cartan involution of some graded Lie algebra of the third kind. In the case
where (G=H , h , i,� ) is 4-symmetric with dimZ(H ) = 0 and� Æ� Æ��1 = ��1, we can
see that there exists� which is not obtained from a grade-reversing Cartan involution
of any graded Lie algebra of the fourth kind.

The organization of this paper is as follows:
In Section 2, we recall the notions of root systems and gradedLie algebras needed

for the remaining part of this paper. Moreover we recall some results on automorphisms
of orderk (k � 4).

In Section 3, we remark on some relation between involutionsof 4-symmetric space
(G=H , h , i, � ) reservingH and root systems of the Lie algebra ofG.

In Section 4, by using the results in Section 3, we describe the restrictions of
involutions to the root systems for the case where the dimension of the center is zero.

In Section 5–8, we enumerate all involutions� of compact 4-symmetric spaces
such that� (H ) = H and the dimension of the center ofH is zero, orH is a centralizer
of a toral subgroup ofG.

In Section 9, we describe some conjugations between involutions.



INVOLUTIONS OF 4-SYMMETRIC SPACES 645

In Section 10, by making use of the results in Section 5–8 together with conju-
gations in Section 9, we give the classification theorem of the equivalence classes of
involutions.

2. Preliminaries

2.1. Root systems. Let g and t be a compact semisimple Lie algebra and a
maximal abelian subalgebra ofg, respectively. We denote bygC and tC the complexi-
fications ofg and t, respectively. Let�(gC, tC) be the root system ofgC with respect
to tC and�(gC, tC) = f�1,:::,�ng the set of fundamental roots of�(gC, tC) with respect
to a lexicographic order. For� 2 �(gC, tC), put

(2.1) g� := fX 2 gC; [H , X] = �(H )X for any H 2 tCg.
Since the Killing formB of gC is nondegenerate, we can defineH� 2 tC (� 2 �(gC, tC))
by �(H ) = B(H�, H ) for any H 2 tC. As in [6], we take the Weyl basisfE� 2 g�; � 2�(gC, tC)g of gC so that

[E�, E��] = H�,

[E�, E� ] = N�,�E�+� , N�,� 2 R,

N�,� = �N��,�� ,

A� := E� � E��, B� :=
p�1(E� + E��) 2 g.

We denote by�+(gC, tC) the set of positive roots of�(gC, tC) with respect to the order.
Then it follows that

(2.2) g = t +
X

�2�+(gC,tC)

(RA� + RB�), t =
nX

i =1

R
p�1H�i .

For � 2 �(gC, tC), define a Lie subalgebrasu�(2) of g by

(2.3) su�(2) := R
p�1H� + RA� + RB� �= su(2).

We denote byt� the root reflection for� 2 �(gC, tC). Then there exists an extension
of t� to an element of the group Int(g) of inner automorphisms ofg, which is denoted
by the same symbol ast�. Since the root reflection ofsu�(2) for � coincides with the
restriction of t� to R

p�1H� and t� is the identical transformation on the orthogonal
complement ofR

p�1H� in t, the following lemma holds.

Lemma 2.1. There exists an element� 2 Int(su�(2)) (� Int(g)) such that�jt = t�jt.
Define K j 2 tC ( j = 1, : : : , n) by

�i (K j ) = Æi j , i , j = 1, : : : , n,
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and denote the highest rootÆ by

Æ :=
nX

j =1

m j� j , m j 2 Z.

We set

�H := Ad(exp�p�1H ), H 2 tC.

Then from (2.1) we have

(2.4) �H (E�) = e�p�1�(H ) E�, � 2 �(gC, tC).

Assume thatg is simple. Then the following is known.

Lemma 2.2 ([10]). Any inner automorphism of order2 on g is conjugate within
Int(g) to some�K i with mi = 1 or 2.

If h � h0 =
Pn

i =1 ai K i , ai 2 2Z for h, h0 2 tC, we say thath is congruent toh0
modulo 2�(gC, tC) and it is denoted byh� h0 (mod 2�(gC, tC)). It follows from (2.4)
that �h = �h0 if h � h0 (mod 2�(gC, tC)).

REMARK 2.1. According to Lemma 2.2, for any inner automorphism�H of or-
der 2 ong, there exists an inner automorphism� of g such that�(H ) � K i (mi = 1
or 2) (mod 2�(gC, tC)).

We writeh� k if �h is conjugate to�k within the group of inner automorphism ofg.

Lemma 2.3. (An) If g is of type An, then Ki � Kn+1�i .
(Dn) If g is of type Dn, then Ki � Kn�i (1 � i � [n=2]). In particular if n is odd,
then Kn�1 � Kn.
(E6) If g is of type E6, then K1 � K6, K2 � K3 � K5.

Proof. (An): We identify�(gC, hC) with

fei � ej ; 1� i 6= j � n + 1g
(for example, see [6]), wherefe1, : : : , en+1g is an orthonormal basis ofRn+1. From [2]
there exists an elementw of the Weyl groupW(g, t) of g with respect tot such thatw(ej ) = en� j +2 (1� j � n + 1). Set�i = ei � ei +1. Then we have

w(�i ) = w(ei � ei +1) = en�i +2� en�i +1 = ��n�i +1.
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It is easy to see thatw�1(K i ) =�Kn+1�i � Kn+1�i (mod 2�(gC, hC)). Hence�w�1(K i ) =w�1 Æ �K i Æ w = �Kn+1�i .
(Dn):

�(gC, hC) = f�ei � ej ; 1� i 6= j � ng.
Set

�i = ei � ei +1 (1� i � n� 1), �n = en�1 + en.

Since there existsw 2 W(g, t) such thatw(ej ) = en� j +1 (1� j � n), we have

w(�i ) = w(ei � ei +1) = en�i +1� en�i = ��n�i .

Hence we getw�1(K i ) = �Kn�i � Kn�i (mod 2�(gC, hC)). In particular, if n is odd,
then there exists a unique ¯w 2 W(g, t) such thatf�1, : : : , �ng ! f��1, : : : , ��ng. Ifw̄(�i ) = ��i for 1 � i � n, then w̄ = �Id, which is a contradiction (cf, [2]). Thus
we get

w̄(�i ) = ��i (1� i � n� 2), w̄(�n�1) = ��n, w̄(�n) = ��n�1.

Hence we obtain ¯w�1(Kn�1) = �Kn � Kn (mod 2�(gC, hC)).
(E6): There exists a uniquew 2W(g, t) such thatf�1, : : : , �6g ! f��1, : : : ,��6g.

Similarly as in the proof of (Dn), we have

w(�1) = ��6, w(�2) = ��2, w(�3) = ��5, w(�4) = ��4.

Hence we obtainw�1(K1) = �K6 andw(K3) = �K5. On the other hand, it is easy to
see thatt�1+�2+2�3+2�4+�5 Æ t�2+�4+�5(K2) = �K5 + 2K6 � K5 (mod 2�(gC, hC)). Thus we
have K2 � K5.

Let (G=H , h , i, � ) be a compact Riemannian 4-symmetric space such that� is
inner. Then the following holds.

Lemma 2.4 ([7]). � is conjugate withinInt(g) to someAd(exp(�=2)
p�1ha)

where either

h0 = K i , mi = 4,

h1 = K i or K j + Kk, mi = 3, m j = mk = 2,

h2 = K i + K j , mi = 1, m j = 2,

h3 = K i + K j + Kk, mi = m j = mk = 1,

h4 = K i , mi = 1,

h5 = K i , K j + Kk or 2K p + Kq, mi = 2, m j = mk = mp = mq = 1.
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REMARK 2.2. (1) If � is conjugate to�(1=2)h4, then a pair (g, g� ) is symmetric.
Indeed, for� =

Pn
r =1 kr�r 2 �(gC, tC), we have�(h4) = ki and

�(h4) � 0 (mod 4)() �(h4) � 0 (mod 2)() ki = 0

since mi = 1. Therefore it follows thatg�(1=2)Ki = g�Ki . Hence (g, g� ) is a symmetric
pair, because�K i is an involution.

If � is conjugate to�(1=2)h5, then a pair (g, g� ) is 3-symmetric. Indeed, for exam-
ple, if h5 = 2K p + Kq, then we have

�(h5) � 0 (mod 4)() �(K p + Kq) � 0 (mod 3)() kp = kq = 0,

for � =
Pn

r =1 kr�r 2 �(gC, tC). Therefore, we obtaing�(1=2)h5 = g�(2=3)(K p+Kq ) , and hence
(g, g� ) is a 3-symmetric pair because�(2=3)(K p+Kq) is of order 3.

(2) Let z be the center ofh. If � = Ad(exp(�=2)
p�1ha) (a = 0, 1, 2, 3), then the

dimension ofz is equal toa ([7]).

2.2. Graded Lie algebras. In this subsection we recall notions and some results
on graded Lie algebras.

Let g� be a noncompact semisimple Lie algebra overR. Let � be a Cartan in-
volution of g� and

(2.5) g� = k + p�, � jk = Idk, � jp� = �Idp�
the Cartan decomposition ofg� corresponding to� . Let a be a maximal abelian sub-
space ofp� and� the set of restricted roots ofg� with respect toa. We denote by� = f�1, : : : , �l g the set of fundamental roots of� with respect to a lexicographic or-
dering of a. We call a collection of subsetsf�0, �1, : : : , �ng of � a partition of �
if �1 6= ;, �n 6= ; and

� = �0 [�1 [ � � � [�n (disjoint union).

Let � and �̄ be fundamental root systems of noncompact semisimple Lie algebrasg�
and ḡ� respectively. Partitionsf�0,�1, : : : ,�mg of � and f�̄0, �̄1, : : : , �̄ng of �̄ are
said to beequivalentif there exists an isomorphism� from Dynkin diagram of� to
that of �̄ such thatm = n and �(�i ) = �̄i (i = 0, 1,: : : , n).

Take a gradation

(2.6)
g� = g��� + � � � + g�0 + � � � + g�� ,
[g�p, g�q] � g�p+q, � (g�p) = g��p, �� � p, q � �,

of �-th kind on g� so thatg�1 6= f0g. We denote byZ the characteristic element of the



INVOLUTIONS OF 4-SYMMETRIC SPACES 649

gradation, i.e.Z is a unique element inp� \ g�0 such that

g�p = fX 2 g�; [Z, X] = pXg, �� � p � �.

Let

g� =
�X

i =�� g�i , ḡ� =
�̄X

i =��̄ ḡ�i
be two graded Lie algebras. These gradations are said to beisomorphic if � = �̄ and
there exists an isomorphism� : g�! ḡ� such that�(g�i ) = ḡ�i (�� � i � �). Then the
following holds.

Theorem 2.1 (Kaneyuki and Asano [9]). Let g� be a noncompact semisimple Lie
algebra overR and� a fundamental root system ofg�. Then there exists a bijection
between the set of equivalent classes of partitions of� and set of isomorphic classes
of gradations ong�.
The bijection in the theorem is constructed as follows: Letf�0, �1, : : : , �ng be a
partition of� . Define h� : �! Z by

h� (�) :=
X
�i2�1

mi + 2
X
� j2�2

m j + � � � + n
X
�k2�n

mk, � =
lX

i =1

mi�i 2 �.

Then there is a uniqueZ in a such that�(Z) = h� (�) for all � 2 �. For a partitionf�0, �1, : : : , �ng we obtain a gradationg� =
P�

i =�� g�i whose characteristic element
equalsZ. This correspondence induces a bijection mentioned in the theorem.

Define hi 2 a (i = 1, 2,: : : , l ) by

� j (hi ) = Æi j .

Let t� be a Cartan subalgebra ofg� such thata � t�. Take compatible orderings ont�
and a. We clarify the relation betweenK i and h j .

Lemma 2.5. Let �i be any root in� .
(1) If there exists a unique� j 2 �(g�

C
, t�

C
) such that� j ja = �i , then hi = K j .

(2) If there exist two fundamental roots� j , �k 2 �(g�
C

, t�
C

) such that� j ja = �kja = �i ,
then hi = K j + Kk.
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Proof. (1): Considering the classification of the Satake diagrams, for �p 2�(g�
C

, t�
C

), p 6= j , it follows that �pja = 0 or �pja = �q for some q (q 6= i ). Thus
we have

�p(hi ) = �pja(hi ) = 0, � j (hi ) = �i (hi ) = 1,

which implieshi = K j .
(2): Similarly as above, for�p 2 �(g�

C
, t�

C
), p 6= j , k, it follows that �pja = 0 or�pja = �q for someq (q 6= i ). Therefore

�p(hi ) = �pja(hi ) = 0, �m(hi ) = �mja(hi ) = �i (hi ) = 1, m = j , k,

which implieshi = K j + Kk.

3. Riemannian 4-symmetric spaces

In this section we use the same notation as in Section 2. Let (G=H , h , i, � ) be
a Riemannian 4-symmetric space with an inner automorphism� of order 4. Letg and
h be the Lie algebras ofG and H , respectively. Note thath coincides with the setg�
of fixed points of� . Choose a subspacem of g so thatg = h + m is an Ad(H )- and� -invariant decomposition. Lett be a maximal abelian subalgebra ofg contained inh,
and z the center ofh.

Suppose thatg is a compact simple Lie algebra. Let Auth(g) be the set of auto-
morphisms ofg preservingh.

Lemma 3.1. Assume� = Ad(exp(�=2)
p�1K i ), mi = 3 or 4, whereÆ =

Pn
j =1m j� j

is the highest root of�(gC, tC) as in Section 2.Then for each� 2 Auth(g), we have� Æ � Æ ��1 = � or ��1.

Proof. Since�(h) = h, we obtaing�̃ = h, where ˜� := � Æ � Æ ��1. In particular,
we have ˜� jt = Idt. Therefore, it follows from Proposition 5.3 of Chapter IX of[6] that
there is

p�1Z 2 t such that

(3.1) �̃ = Ad

�
exp

�
2

p�1Z

�
.

Since � = Ad(exp(�=2)
p�1K i ) with mi = 3 or 4, we obtainE� j 2 hC ( j 6= i ) and

E�i 62 hC. Moreover, sinceg� = g�̃ = h, it follows from (3.1) that

(3.2) �̃ (E� j ) = E� j , �̃ (E�i ) = cE�i ,

for some c 2 C with jcj = 1. Then c4 = 1 and c2 6= 1, because ˜� 4 = Id and �̃ 2 6=
Id. From (3.2), we can see that ifc =

p�1, then ˜� = � , and if c = �p�1, then�̃ = ��1.
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REMARK 3.1. Lemma 3.1 dose not hold in general. If� is conjugate to
Ad(exp(�=2)

p�1(K i + K j )) (mi = m j = 2), then Lemma 3.1 holds. However in other
cases, Lemma 3.1 dose not hold.

REMARK 3.2. If � is an automorphism of order 2 or 3, then by an argument
similar to the proof of Lemma 3.1, it follows that�Æ� Æ��1 = � for any� 2 Auth(g).

Lemma 3.2. Suppose that� = Ad(exp(�=2)
p�1K i ) with mi = 3. Let � be an

involutive automorphism ofg such that� (h) = h. Then
(i) � Æ � = � Æ � if and only if the coefficient of�i in � (Æ) is equal to3.
(ii) � Æ � = ��1 Æ � if and only if the coefficient of�i in � (Æ) is equal to�3.

Proof. It is easy to see thatz = R
p�1K i for somei with mi = 3. Since� (h) = h,

we have� (
p�1K i ) = �p�1K i , and therefore

� Æ � Æ ��1 = Ad

�
exp

�
2
� (
p�1K i )

�
=

�� if � (
p�1K i ) =

p�1K i ,��1 if � (
p�1K i ) = �p�1K i ,

and

� (Æ)(K i ) = Æ(� (K i )) = Æ(�K i ) =

�
3 if � (

p�1K i ) =
p�1K i ,�3 if � (

p�1K i ) = �p�1K i .

This completes the proof of the lemma.

Lemma 3.3. Suppose that� = Ad(exp(�=2)
p�1K i ) with mi = 3 or 4.

(i) Let �1, �2 be involutive automorphisms ofg such that�i (h) = h, (i = 1, 2). If there
exists� 2 Auth(g) such that� Æ �1 Æ ��1 = �2. Then

(3.3) g�1 �= g�2, h \ g�1 �= h \ g�2.

(ii) Put � 0 := � Æ � Æ ��1, � 2 Auth(g). If � Æ � = ��1 Æ � , then � 0 Æ � = ��1 Æ � 0,
respectively.

Proof. (i) is trivial.
(ii) We have

� Æ � = ��1 Æ � () � Æ � Æ � Æ ��1 = � Æ ��1 Æ � Æ ��1

() � 0 Æ � Æ � Æ ��1 = � Æ ��1 Æ ��1 Æ � 0
Hence, it follows from Lemma 3.1 that if� Æ � = ��1 Æ � , then � 0 Æ � = ��1 Æ � 0.
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In the remaining part of this paper, we suppose that� = Ad(exp(�=2)
p�1K i ) for

some�i 2 �(gC, tC) with mi = 3 or 4. If mi = 3, the Dynkin diagram ofh is iso-
morphic to the extended Dynkin diagram of�(gC, tC) except�i and�0, and if mi = 4,
it is isomorphic to that of�(gC, tC) except�i (cf. Theorem 5.15 of Chapter X of [6]).
We denote by�(h) the fundamental root system ofh corresponding to the Dynkin
diagram ofh.

Lemma 3.4. For any involutive automorphism� of g satisfying� (h) = h, there
exists� 2 Int(h) such that� Æ � Æ ��1(�(h)) = �(h).

Proof. Put ˜� := � jh. Then �̃ is an involution ofh = z� hs, wherehs := [h, h]. It
is obvious that ˜� (z) = z and �̃ (hs) = hs. Decomposehs into hs = h1 � � � � � hm where
h1,:::,hm are simple ideals. From the classification of compact 4-symmetric pairs (g,h)
([7]), it follows that (i) hi ≇ h j for any i , j 2 f1, : : : , mg (i 6= j ), or (ii) there exists
only one pair (p, q) such thathp

�= hq.
CASE (i). Since � (hi ) (1 � i � m) is a simple ideal ofhs and hi 6�= h j (i 6= j ),

it follows that �̃ (hi ) = hi (1 � i � m). Therefore we have a direct sum decomposition
hi = ki � pi . Let ai be a maximal abelian subspace ofpi and ti be a maximal abelian
subalgebra ofhi containingai . We take a fundamental root system�i = f�1, : : : , �ni g
for the set of nonzero roots with respect to (hi C, ti C). From Theorem 5.15 of [6], there
exists�i 2 Aut(hi ) such that�i Æ � jhi Æ��1

i is an automorphism of�i of order 1 or 2.
Hence we have

(3.4) � (��1
i (ti )) = ��1

i (ti ), � (��1
i (�i )) = ��1

i (�i ).

Set t̃ := ��1
1 (t1)�� � ����1

m (tm)� z and �̃ := ��1
1 (�1)[� � �[��1

m (�m). Then by (3.4),
we have� ( t̃) = t̃ and � (�̃) = �̃ . Since there exist� 2 Int(h) and w 2 W(h, t) such
that �( t̃) = t andw(�(�̃)) = �(h), we obtain

(w�) Æ � Æ (w�)�1(�(h)) = �(h),

which completes the proof of the lemma for the case (i).
CASE (ii). If � (hi ) = hi for i = 1, : : : , m, then by the same argument as in the

case (i), we can prove the claim. Hence we assume that and� (hp) = hq and � (hi ) = hi

for i 6= p, q. Define isomorphisms�1 : hq ! hp and �2 : hp! hq by

� (X, Y) = (�1(Y), �2(X)), X 2 hp, Y 2 hq.

Since� is an involution, it follows that�1 Æ �2 = �2 Æ �1 = Id. Hence we have� (X, Y) =
(�1(Y), ��1

1 (X)).
Put b := hp and define an isomorphism� : hp � hq ! b� b by

�(X, Y) := (X, �1(Y)).
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Then it is easy to see that�Æ� Æ��1(X,Y) = (Y, X). Therefore, considering a symmetric
pair (b � b, 1b) (1b := f(X, X); X 2 bg), we can see that there exist a fundamental
root system ofhp � hq preserved by� jhp�hq . Hence, by an argument similar to (i),

there exists� 2 Int(h) such that� Æ � Æ ��1(�(h)) =�(h). This completes the proof of
the lemma for the case (ii).

In the following sections, we shall classify the equivalence classes of involutive
automorphisms� within Auth(g) of g such that� (h) = h. From Remark 2.2 and Lem-
ma 3.1 we have the following four type:

dim z = 0, � Æ � = ��1 Æ � ,

dim z = 1, � Æ � = ��1 Æ � .

4. The case where dimz = 0

In the remaining part of this paper we use the same notation asin Section 2 and
Section 3. Let (G=H , h , i, � ) be a Riemannian 4-symmetric space such that� is
inner and dimz = 0. From Lemma 2.4 together with Remark 2.2 we may suppose that

� = Ad

�
exp

�
2

p�1K i

�
for somei with the propertymi = 4.

According to Section 3 and Jiménez [7], 4-symmetric pairs (g, h) satisfying the condi-
tion dimz = 0 are given by

(4.1)
(e7, so(6)� so(6)� su(2)), (e8, su(8)� su(2)),

(e8, so(10)� so(6)), (f4, so(6)� so(3)).

Let � be an involution ofg preservingh. By Lemma 3.4, we may assume� (t) = t and� (�(h)) =�(h). If � jt = Idt, then there exists
p�1H 2 t such that� = Ad(exp�p�1H )

and � Æ � = � Æ � .
Now, we assume� jt 6= Idt. Suppose thatg is of type e8. From Section 3, the

Dynkin diagram ofh coincides with the extended Dynkin diagram ofe8 except� as
follows:
(4.2)

We denote
P8

i =1 ki�i by

�
k2

k8 k7 k6 k5 k4 k3 k1

�
.
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In the above case (i), since� jt 6= Idt and � (�(h)) = �(h), the possibility of� jt is as
follows:

� (�1) = �1, � (�2) = �0, � (�4) = �8, � (�5) = �7, � (�6) = �6.

Then we get

�2 = � (�0) = �4� (�3)� 3� (�2)� � 0
6 5 4 3 2 0 2

�
,

and hence

� (�3) =

�
2

0 1 2 3 4 3 1

� 2 �(gC, tC).

By a similar argument as above, we obtain the following proposition.

Proposition 4.1. Suppose thatdim z = 0. Let � be an involution ofg such that� (h) = h and � (�(h)) = �(h). Then all the possibilities of� jt such that� jt 6= Idt are
given byTable 1.

For Type IV in Table 1, it is easy to see� (K3) = �4K2 + 3K3 � �K3 (mod 4).
Hence we have� Æ � = ��1 Æ � . Similarly, for Type I we get� Æ � = � Æ � and for the
other types, we have� Æ � = ��1 Æ � .

Finally, in order to compute the dimension ofg� , we prove the following Lemma.

Lemma 4.1. Let t+ be the(+1)-eigenspace of� jt. Then

dim g� = dim t+ + #�+(gC, tC) + 2#f� 2 �+(gC, tC); � (E�) = E�g
� #f� 2 �+(gC, tC); � (�) = �g.

Table 1. The possibilities of� jt such that� jt 6= Id (� = �(1=2)H )).

Type g H � jt
I e7 K4 �1 7! �6, �2 7! �2, �3 7! �5, �4 7! �4, �7 7! �0

II e7 K4
�1 7! �1, �2 7! �2, �3 7! �0, �5 7! �7, �6 7! �6�4 7! �1 + �2 + 2�3 + 3�4 + 2�5 + �6

III e7 K4
�1 7! �6, �2 7! �2, �3 7! �7, �5 7! �0�4 7! �1 + �2 + 2�3 + 3�4 + 2�5 + �6

IV e8 K3
�1 7! �1, �2 7! �0, �4 7! �8, �5 7! �7, �6 7! �6�3 7! �1 + 2�2 + 3�3 + 4�4 + 3�5 + 2�6 + �7

V e8 K6
�1 7! �1, �2 7! �5, �3 7! �3, �4 7! �4, �7 7! �0, �8 7! �8�6 7! �1 + �2 + 2�3 + 3�4 + 3�5 + 3�6 + 2�7 + �8

VI f4 K3
�1 7! �1, �2 7! �0, �4 7! �4�3 7! �1 + 2�2 + 3�3 + �4
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Proof. If � (�) = �, (� 6= ��), we can put� (E�) = cE� for somec. Since� is
involutive and� (H�) = H� , it is easy to see thatE� +cE� and E�� +c�1E�� are (+1)-
eigenvectors of� . If � (�) = �, we get� (E�) = E� or � (E�) = �E�. Furthermore, if� (�) = ��, we can put� (E�) = cE�� for some c. Then we have� (E� � cE��) =�(E� � cE��). Therefore we obtain

dim g� = dim t+ + #f� 2 �+(gC, tC); � (�) 6= ��g
+ 2#f� 2 �+(gC, tC); � (E�) = E�g + #f� 2 �+(gC, tC); � (�) = ��g

= dim t+ + #�+(gC, tC) + 2#f� 2 �+(gC, tC); � (E�) = E�g
� #f� 2 �+(gC, tC); � (�) = �g.

5. The case where dimz = 0 and � Æ � = ��1 Æ �
We consider the cases of Type II, III, IV, V and VI in Table 1. First we construct� by using graded Lie algebras. Letg� be a normal real form of a complex simple Lie

algebragC. Let t� be a Cartan subalgebra ofg�. Then we have a Cartan decomposition
g� = k + p� with

(5.1) k :=
X

�2�+(g�
C

,t�
C

)

RA�, p� := t� +
X

�2�+(g�
C

,t�
C

)

R
p�1B�.

We take a gradationg� =
P4

p=�4g
�
p of the fourth kind ong� corresponding to a partition

� = �0 [�1, �1 = f�i g, mi = 4.

Then the characteristic element of the gradation coincideswith K i .
Let � � be the Cartan involution defined by (2.5). Put� := Ad(exp(�=2)

p�1K i ).
Then � is an automorphism of order 4 on the compact dualg := k +

p�1p� of g�.
Since� �(K i ) = �K i , it is obvious that

(5.2) � � Æ � Æ (� �)�1 = ��1.

By Lemma 3.4 and Proposition 4.1,� � is conjugate within Int(h) to an involutive auto-
morphism�� of Type II, III, IV, V or VI in Table 1, that is, there exists� 2 Int(h)
such that�� jt = (� Æ � � Æ ��1)jt. Note that dimz = 0 by Theorem 5.15 of Chapter X
of [6], and it follows from (5.1) that

(5.3) h \ k =
X

�2�+(g�
C

,t�
C

)�(Ki )�0 (mod 4)

RA�.

Now we prove the following Lemma.
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Lemma 5.1. Let � be in Int(h). Then� Æ � � Æ ��1 is conjugate withinInt(h) to� Æ � � Æ ��1 Æ � .

Proof. Put� := �(�1=4)K i . Then we have� Æ � � Æ ��1 = � � Æ ��1 Æ ��1 = � � Æ � .
Since� 2 Int(h), it follows that

� Æ � � Æ ��1 Æ � = � Æ � � Æ � Æ ��1 = � Æ � Æ � � Æ ��1 Æ ��1 = � Æ � Æ � � Æ ��1 Æ ��1,

and hence� Æ � � Æ ��1 is conjugate within Int(h) to � Æ � � Æ ��1 Æ � .

In the remaining part of this section, we shall determine allinvolutions for each
type. Furthermore for each involution� , we shall determineh \ g� and g� .

Let ��1 , ��2 , ��3 , ��4 be the involutive automorphisms which conjugate within Int(h)
to the Cartan involutions� � with respect to Type IV, V, III, VI, respectively. We de-
note by� any involution of each types.

Type IV: Now, we investigate involutions of Type IV in Table 1. Since g� is
a normal real form and of typee8, the pair (g�, k) is given by (e8(8), so(16)). Note
that dimk = 120. Set� = Ad(exp(�=2)

p�1K3). From (5.1) and (5.3), considering the
number of roots� 2 �+(g�

C
, t�

C
) such that�(K3) = 0 or 4 (for example see Freudenthal

and Vries [3]), we get dim(h\ k) = 29. Then it follows from (5.2) and Proposition 4.1
that ��1 is of Type IV in Table 1.

Let t� be the (�1)-eigenspaces of��1 jt, respectively. Since�i (��1 (K j )) =��1 (�i )(K j ), we have

t+ = spanf2K1 � K2, 2K1� K3, 2K1 + K6, 4K1 � K5� K7, 4K1 + K4 + K8g,
t� = spanf2K2 � K3, 2K2� K4 + K8, K2� K5 + K7g.

For �h�(h� 2 t�), we have��1 Æ �h� Æ ��1 = ���1 (h�) = ��h� . Thus we get

(5.4) (�h� )�1 Æ ��1 Æ �h� = ��1 Æ �2h� .

Then usingh� := t(K3 � K4 + K8) 2 t�, we may assume��1 (E�4) = E�8. Indeed, if��1 (E�4) = b4E�8 (b4 2 C, jb4j = 1), then it follows from (5.4) that

(�h� )�1 Æ ��1 Æ �h� (E�4) = b4e�2t�p�1E�8,

Taking t so thatb4 = e2t�p�1, we may assume��1 (E�4) = E�8. Similarly, usingh� =
t(2K2 � K3) or h� = 2(K2 � K5 + K7) � (2K2 � K3), we may assume��1 (E�2) = E�0

and ��1 (E�5) = E�7.
On the other hand, for any involution� of Type IV, the number of the subsetsf�, �g such that� 2 �+(gC, tC), � (�) = �, � 6= �� and �(K3) � 0 (mod 4) is 12.

Since dimt+ = 5, by an argument similar to the proof of Lemma 4.1 we obtain

dim(h \ g� ) � 5 + (12� 2) = 29.
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Because dim(h \ g��1 ) = dim(h \ k) = 29, we obtain

(5.5)
��1 (E�1) = �E�1, ��1 (E�2) = E�0, ��1 (E�3) = c1E�1,

��1 (E�4) = E�8, ��1 (E�5) = E�7, ��1 (E�6) = �E�6,

where�1 = �1 + 2�2 + 3�3 + 4�4 + 3�5 + 2�6 +�7 (see Table 1) andc1 2 C with jc1j = 1
(cf. Corollary 5.2 of Chapter IX of [6]).

REMARK 5.1. Except for conjugations within Auth(g), we can determine the con-
stantc1 uniquely. Indeed, from the proof of Theorem 5.1 of Chapter IXof [6], there
exists� 2 Aut(g) such that

(5.6)

�(E�1) = E�1, �(E�2) = E�0, �(E�3) = E�1, �(E�4) = E�8,

�(E�5) = E�7, �(E�6) = E�6, �(E�7) = E�5, �(E�8) = E�4,

�(E�0) = �0E�2, �(E�1) = ��1 E�3,

where�0 = �1 and��1 = �1. Note that�0 and ��1 are uniquely determined sinceE��i

(1� i � 8) generategC. Since ((��1 )�1 Æ�)jt = Idt, it follows from Proposition 5.3 of
Chapter IX of [6] that there exists

p�1H 2 t such that (��1 )�1 Æ� = �H , and therefore� = ��1 Æ �H . Put H =
P8

i =1 ai K i , ai 2 R. Then from (2.4), we have

E�1 = �(E�1) = ��1 Æ �H (E�1) = e�p�1�1(H )��1 (E�1) = �e�p�1�1(H ) E�1.

Thus we geta1 = �1(H ) � 1 (mod 2). Similarly as above, we obtaina2 � 0, a4 � 0,
a5 � 0, a6 � 1, a7 � 0, a8 � 0 (mod 2). Moreover, since

E�1 = �(E�3) = e�p�1�3(H )��1 (E�3) = c1e�p�1a3 E�1,

we have

(5.7) c1 = e��p�1a3.

Then by (5.5) and (5.6) we have

�0E�2 = �(E�0) = ��1 Æ �H (E�0) = e�4�p�1a3 E�2,

and it follows from (5.7) thatc4
1 = �0.

If �0 = 1, thenc1 = �1 or �p�1. Considering (5.4) forh� = 2K2 � K3 2 t�,
we may assume thatc1 = 1 or

p�1. Moreover, by Lemma 5.1 we may assume that

c1 = 1. If �0 =�1, then by the same argument as above, we may assumec1 = e(�=4)
p�1.

Consequently,c1 is uniquely determined except for conjugations within Auth(g).
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By an argument similar to (5.5), we may assume

(5.8)
� (E�1) = �E�1, � (E�2) = E�0, � (E�3) = c̃1E�1,

� (E�4) = E�8, � (E�5) = E�7, � (E�6) = �E�6,

where c̃1 2 C and jc̃j = 1. Then, by Proposition 5.3 of Chapter IX of [6], there existsp�1h 2 t such that� = ��1 Æ �h. Put

h := h+ + h�,

h+ := k1(2K1� K2) + k2(2K1� K3) + k3(2K1 + K6)

+ k4(4K1� K5� K7) + k5(4K1 + K4 + K8) 2 p�1t+,

h� := k6(2K2 � K3) + k7(2K2 � K4 + K8) + k8(K2� K5 + K7) 2 p�1t�,

wherek1, : : : , k8 2 R. Then since� 2 = Id and ��1 (h) = h+� h�, we have�2h+ = Id and
hence 2h+ � 0 (mod 2�(gC, tC)). Therefore we getk1, : : : , k5 2 Z. Then we have

h � k1K2 + k2K3 + k5K4 + k4K5 + k3K6 + k4K7 + k5K8

+ k6(2K2� K3) + k7(2K2� K4 + K8) + k8(K2� K5 + K7) (mod 2�(gC, tC)).

Considering (5.5) and (5.8) together with (2.4), we obtain

�2(h) � �4(h) � �8(h) � �5(h) � �7(h) � 0 (mod 2),

and therefore

h � (k2 � k6)K3 + k3K6 (mod 2�(gC, tC)).

Furthermore, since� (E�0) = ��1 (E�0) = E�2, it follows that �0(h) � 0 (mod 2), and
therefore 2k6 2 Z. Hence we may assume that� is one of the following:

��1 , ��1 Æ �K j , ��1 Æ �K j Æ � , ��1 Æ �K3+K6, ��1 Æ �K3+K6 Æ � , j = 3, 6.

Indeed,��1 Æ ��k6K3 is conjugate within Int(t) to one of��1 and ��1 Æ � since

��1 Æ ��(1=2)K3 = ��1 Æ ��1 = � Æ (��1 Æ � ) Æ ��1.

Moreover, since�K3 = � 2 and��1 Æ� = ��1Æ��1 , it follows that ��1 Æ�K3 and��1 Æ�K3+K6

are conjugate within Int(t) to ��1 and ��1 Æ �K6, respectively. Consequently,� is con-
jugate within Auth(g) to one of following:

��1 , ��1 Æ �K6, ��1 Æ �K6 Æ � .
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Now we shall compute the dimension ofh \ g� and g� , where � is one of ��1 ,��1 Æ �K6 and ��1 Æ �K6 Æ � . Since��1 Æ �K6(E�6) = E�6 and dim(h \ g��1 ) = 29, we have

dim(h\ g��1 Æ�K6 ) = 36. Therefore we geth\ g��1 �= D4� D1 andh\ g��1 Æ�K6 �= C4� D1.
Put � := � jt. It is easy to see that positive roots� such that�(�) = � are

�+� :=

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

�1, �6, �5 + �6 + �7, �4 + �5 + �6 + �7 + �8, �1 + �2 + 2�3 + 2�4 + �5,

�1 + �2 + 2�3 + 2�4 + �5 + �6, �1 + �2 + 2�3 + 2�4 + 2�5 + �6 + �7,

�1 + �2 + 2�3 + 2�4 + 2�5 + 2�6 + �7,

�1 + �2 + 2�3 + 3�4 + 2�5 + �6 + �7 + �8,

�1 + �2 + 2�3 + 3�4 + 2�5 + 2�6 + �7 + �8,

�1 + �2 + 2�3 + 3�4 + 3�5 + 2�6 + 2�7 + �8,

�1 + �2 + 2�3 + 3�4 + 3�5 + 3�6 + 2�7 + �8,

2�1 + 2�2 + 4�3 + 5�4 + 4�5 + 3�6 + 2�7 + �8

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

.

We consider the case of��1 Æ �K6. Put 
 := �1 + �2 + 2�3 + 2�4 + �5. Take a Weyl
basis so that��1 (E
 ) = E
 (cf. see Gilkey and Seitz [4]). Then it is easy to see that��1 (E�) = E� for any� 2�+� nf�1,�6,�5+�6+�7,�4+�5+�7, 2�1+2�2+4�3+5�4+4�5+
3�6 + 2�7 +�8g and therefore��1 Æ �K6(E�) = E� for any � 2 �+� n f�1g. It follows from

Lemma 4.1 that dimg��1 Æ�K6 = 136. By using the classification of symmetric spaces, we
get g��1 Æ�K6 �= E7� A1.

Similarly as above we can obtainh \ g� and g� for � = ��1 Æ �K6 Æ � .
By an argument similar to above, we can obtain all involutions � of Type V and VI,

and determineh \ g� and g� , which are listed in Table 2.
Now we investigate involutions of Type II and III in Table 1. Since g� is a normal

real form and of typee7, the pair (g�, k) is given by (e7(7), su(8)). It is easy to see that
dim(h \ k) = 13. On the other hand, for an involution� of g, we can see that

dim t+ =

�
4 if � is of Type II,
5 if � is of Type III,

and if � is of Type II (resp. Type III), the number of the subsetsf�, �g such that� 2 �+(gC, tC), � (�) = �, � 6= �� and �(K4) � 0 (mod 4) is 6 (resp. 4). Hence we
obtain �

dim(h \ g� ) � 16 if � is of Type II,
dim(h \ g� ) � 13 if � is of Type III.

Therefore the Cartan involution� � of g� = e7(7) is conjugate within Int(h) to an involu-
tion ��3 of Type III. By an argument similar to Type IV, we can obtain all involutions� of Type III, which are listed in Table 2.
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Table 2. dimz = 0, � Æ � = ��1 Æ � , � = �(1=2)H , k = g� .
(g, h, H ) � k h\ k��1 D8 D4 � D1

(e8, su(8)� su(2), K3) ��1 Æ �K6 E7 � A1 C4 � D1��1 Æ �K6 Æ �(1=2)K3 D8 C4 � D1��2 D8 B2 � B2 � B1 � B1��2 Æ �K1+K4 D8 B2 � B2 � B1 � B1��2 Æ �K1+K4 Æ �(1=2)K6 D8 B2 � B2 � B1 � B1��2 Æ �K1+K8 E7 � A1 B3 � B2 � B1��2 Æ �K1+K8 Æ �(1=2)K6 D8 B3 � B2 � B1��2 Æ �K4+K8 E7 � A1 B3 � B2 � B1��2 Æ �K4+K8 Æ �(1=2)K6 D8 B3 � B2 � B1

(e8, so(10)� so(6), K6) ��2 Æ �K3 D8 B2 � B2 � B1 � B1��2 Æ �K3 Æ �(1=2)K6 D8 B2 � B2 � B1 � B1��2 Æ �K1+K3+K4 E7 � A1 D2 � B1 � B1��2 Æ �K1+K3+K4 Æ �(1=2)K6 E7 � A1 D2 � B1 � B1��2 Æ �K1+K3+K8 D8 B3 � B2 � B1��2 Æ �K1+K3+K8 Æ �(1=2)K6 E7 � A1 B3 � B2 � B1��2 Æ �K3+K4+K8 E7 � A1 B3 � B2 � B1��2 Æ �K3+K4+K8 Æ �(1=2)K6 D8 B3 � B2 � B1��3 A7 B1 � B1 � B1 � B1 � B1 � R��3 Æ �K1+K2 D6 � A1 B2 � B1 � B1 � A1��3 Æ �K1+K2 Æ �(1=2)K4 D6 � A1 B2 � B1 � B1 � A1��3 Æ �K1+K6 E6 � R B2 � B2 � R

(e7, so(6)� so(6)� su(2), K4) ��3 Æ �K1+K6 Æ �(1=2)K4 A7 B2 � B2 � R��3 Æ �K2+K6 D6 � A1 B2 � B1 � B1 � A1��3 Æ �K2+K6 Æ �(1=2)K4 D6 � A1 B2 � B1 � B1 � A1��3 Æ ' D6 � A1 D3 � D1��3 Æ ' Æ �(1=2)K4 A7 D3 � D1��4 C3 � A1 B1 � B1 � D1

(f4, so(6)� so(3), K3) ��4 Æ �K1+K4 B4 B2 � B1��4 Æ �K1+K4 Æ �(1=2)K3 C3 � A1 B2 � B1

��1 : E�1 7! �E�1, E�2 7! E�0, E�3 7! c1E�1, E�4 7! E�8, E�5 7! E�7, E�6 7! �E�6,
(�1 = �1 + 2�2 + 3�3 + 4�4 + 3�5 + 2�6 + �7)��2 : E�1 7! �E�1, E�2 7! E�5, E�3 7! �E�3, E�4 7! �E�4, E�6 7! c2E�2, E�7 7! E�0,
E�8 7! �E�8, (�2 = �1 + �2 + 2�3 + 3�4 + 3�5 + 3�6 + 2�7 + �8)��3 : E�1 7! �E�1, E�2 7! �E�2, E�3 7! E�0, E�4 7! c3E�3, E�5 7! E�7, E�6 7! �E�6,
(�3 = �1 + �2 + 2�3 + 3�4 + 2�5 + �6)��4 : E�1 7! �E�1, E�2 7! E�0, E�3 7! c4E�4, E�4 7! �E�4, (�4 = �1 + 2�2 + 3�3 + �4)
whereci (i = 1, 2, 3, 4) is some complex number withjci j = 1.
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Finally we consider the Type II. Put�3 := �1 + �2 + 2�3 + 3�4 + 2�5 + �6. Let ��3
be as above. Then, since dim(h \ g��3 ) = dim(h \ k) = 13, it follows that

(5.9)
��3 (E�1) = �E�1, ��3 (E�2) = �E�2, ��3 (E�3) = E�0,

��3 (E�4) = c3E�3, ��3 (E�5) = E�7, ��3 (E�6) = �E�6,

for somec3 2 C with jc3j = 1. On the other hand, from Theorem 5.1 of Chapter IX
of [6], There exists an automorphism' on g such that

'(E�1) = E�6, '(E�2) = E�2, '(E�3) = E�5, '(E�4) = E�4,

'(E�5) = E�3, '(E�6) = E�1, '(E�7) = E�0, '(E�0) = �E�7,

where� = �1. If � = �1, then we have�'2(E�i ) = E�i (1� i � 6),'2(E�7) = �E�7.

Thus the inner automorphism'2 has the form�K7. Hence we have

(5.10) g'2
= t +

X
�2�+(gC,tC)�(K7)=0

(RA� + RB�).

Put 
 := �2 +�3 + 2�4 + 2�5 + 2�6 +�7. Then we get'(
 ) = �
 and from the proof of
Theorem 5.1 of Chapter IX of [6], we get

'(E
 ) = �
 E�
 , '(E�
 ) = ��
 E
 (�
 = ��
 = �1).

Therefore we obtain

'(A
 ) = �
 (E�
 � E
 ) = ��
 A
 ,

'(B
 ) =
p�1�
 (E
 + E�
 ) = �
 B
 .

This implies that

A
 or B
 2 g' � g'2
.

This contradicts (5.10). Thus'(E�0) = E�7, that is,

(5.11)
'(E�1) = E�6, '(E�2) = E�2, '(E�3) = E�5, '(E�4) = E�4,

'(E�5) = E�3, '(E�6) = E�1, '(E�7) = E�0, '(E�0) = E�7.

Then ��3 Æ ' maps

�1 7! �6, �2 7! �2, �3 7! �7, �5 7! �0, �4 7! �3,
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and it is easy to see

(5.12)

��3 Æ '(E�1) = ' Æ ��3 (E�1) = �E�6, ��3 Æ '(E�2) = ' Æ ��3 (E�2) = �E�2,

��3 Æ '(E�3) = ' Æ ��3 (E�3) = E�7, ��3 Æ '(E�5) = ' Æ ��3 (E�5) = E�0,

��3 Æ '(E�4) = c3E�3, ' Æ ��3 (E�4) = c3'(E�3).

Therefore (��3 Æ ')2 = Id if and only if '(E�3) = E�3. Since dimg�3 = 1, we have
g�3 = CX�3, where

X�3 := [[[[[[[[[ E�2, E�4], E�3], E�5], E�4], E�1], E�6], E�3], E�5], E�4].

Because [E�3, E�5] = [ E�1, E�6] = 0, we get'(X�3) = X�3 and therefore'jg�3
= Id. Thus��3 Æ ' is an involutive automorphism ofe7. From (5.12), we obtain

(5.13)
��3 Æ '(E�1) = �E�6, ��3 Æ '(E�2) = �E�2, ��3 Æ '(E�3) = E�7,

��3 Æ '(E�5) = E�0, ��3 Æ '(E�4) = c3E�3.

Hence we can construct an involution of Type II. By an argument similar to Type IV,
we can give all involutions of Type II.

Consequently we obtain the following proposition.

Proposition 5.1. Suppose thatdim z = 0. Let � be an involution ofg such that� Æ � = ��1 Æ � . Then � is conjugate withinAuth(g) to one of automorphisms listed
in Table 2.

6. The case where dimz = 1, � Æ � = ��1 Æ �
In this section we investigate involutions� of g such that dimz = 1 and � Æ � =��1 Æ � . First, we construct such involutions by using graded Lie algebras. Letg� be

a noncompact simple Lie algebra overR such thatgC is simple. Letg� = k + p� and �
be the Cartan involution as in (2.5), anda be a maximal abelian subspace ofp�. Let
t� be a Cartan subalgebra ofg� such thata � t�. We take compatible orderings ona
and t�.

Take a gradationg� =
P3

p=�3g�p of the third kind ong� corresponding to a partition

� = �0 [�1, �1 = f�i g, ni = 3.

Put � := Ad(exp(�=2)
p�1hi ). It is obvious that� 2 Int(g) (g = k +

p�1p�), � 4 = Id
and � Æ� = ��1Æ � . Considering the classification of the Satake diagram, there exists a
unique� j 2 �(g�

C
, t�

C
) such that� j ja = �i with m j = 3, and it follows from Lemma 2.5

that hi = K j . Therefore, by Remark 2.2 we have dimz = 1.
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Generally, let (G=H , h , i, � ) be a compact Riemannian 4-symmetric space such
that G is simple and� is inner. As before, lett be a maximal abelian subalgebra of
g contained inh. We suppose that� = �(1=2)K i for some�i 2 �(gC, tC) with mi = 3.
Then z = R

p�1K i . From [7], a pair (g, h) is one of the following:

(e6, su(3)� su(3)� su(2)� R), (e7, su(2)� su(6)� R), (e7, su(5)� su(3)� R),

(e8, su(8)� R), (e8, su(2)� e6� R), (f4, su(2)� su(3)� R), (g2, su(2)� R).

REMARK 6.1. Each 4-symmetric pair described in the above is neithersymmet-
ric nor 3-symmetric. Indeed, except for (g2, su(2)� R), it follows from the classifi-
cations of compactk-symmetric spaces (k = 2, 3) that each 4-symmetric pair described
in the above is notk-symmetric (k = 2, 3). Now, for (g2, su(2)� R), we prove that
it is not isomorphic to ak-symmetric pair (k = 2, 3). First, we note that� = �(1=2)K1

with m1 = 3. From the classification of compact symmetric spaces, it is obvious that
the pair (g2, su(2)� R) is not symmetric. Let (g2, �) be a 3-symmetric pair. Then�
is conjugate to�(2=3)K2 and

g2
�(2=3)K2 = su�1(2)� R

p�1K2
�= su(2)� R.

If there exists� 2 Aut(g) such that�(g2
� ) = �(g2

�(1=2)K1 ) = g2
�(2=3)K2 , then we have�(su�2(2)) = su�1(2). Therefore it follows that there existsk 2 C with jcj = 1 such that

�(E�2) = cE��1, �(E��2) = c�1E��1,

which implies that�(H�2) =�H�1. However, this is a contradiction becausej�1j 6= j�2j.
Consequently, the 4-symmetric pair (g2, � ) is not k-symmetric (k = 2, 3).

Now we assume that� = �(1=2)K i for some�i 2 �(gC, tC) with mi = 3. Let �
be an involution ofg such that� Æ � = ��1 Æ � . Then it is easy to see that� (h) = h

and � (z) = z. Thus we have� (
p�1K i ) = �p�1K i . If � (

p�1K i ) =
p�1K i , then� Æ � = � Æ � . Hence we get� (

p�1K i ) = �p�1K i . Let g = k + p be the canonical
decomposition ofg corresponding to� . Then we have

p�1K i 2 p. Put

�+
m := f� 2 �+(gC, tC); A�, B� 2 mg, �+

h := f� 2 �+(gC, tC); A�, B� 2 hg.
Lemma 6.1.

�+
h =

8<
:� =

nX
j =1

k j� j 2 �+(gC, tC); ki = 0

9=
;.

Proof. Sincemi = 3 and E� = � (E�) = e(�p�1=2)�(K i ) E� for any � 2 �+
h, we have�(K i ) =

Pn
j =1 k j� j (K i ) = ki = 0.
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We define a subset�+
s (s = 1, 2, 3) of�+

m as follows:

�+
s :=

8<
:� =

mX
j =1

2 �+; ki = s

9=
;.

Then we have an orthogonal decompositionm = m1�m2�m3, where

ms =
X
�2�+

s

(RA� + RB�).

Lemma 6.2.

� (ms) = ms, s = 1, 2, 3.

Proof. Since

� (E�) = e(�p�1=2)�(K i ) E� =

8<
:
p�1E�, � 2 �+

1,�E�, � 2 �+
2,�p�1E�, � 2 �+
3,

it follows that

� (X) = �X () X 2 m2.

Hence if X 2 m2, then

� (� (X)) = � Æ ��1(X) = �� (X).

Thus we obtain� (m2) = m2.
Next for � 2 �+

1 (resp.�+
3), we get� (�) 2 ��+

1 (resp.��+
3). Indeed, since

[K i , � (E�)] = � [� (K i ), E�] = �� [K i , E�] = ��(K i )� (E�),

and � (E�) 2 g� (�), we get � (�)(K i ) = ��(K i ) = �1 (resp.�3). This completes the
proof of the lemma.

Put

h� := fX 2 h; � (X) = �Xg, m�
s := fX 2 ms; � (X) = �Xg.

Since� (h) = h and � (m) = m, we can write

g = (h+ + h�)� 3X
s=1

(m+
s + m�

s ),

k = h+ �m+
1 �m+

2 �m+
3, p = h� �m�

1 �m�
2 �m�

3 .
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Put g� := k +
p�1p. Then we haveZ := K i 2 p�1p. We shall prove the following

lemma.

Lemma 6.3. The eigenvalues ofad(Z) : g�! g� are 0,�1,�2 and �3.

Proof. First we note thath+ +
p�1h� is the 0-eigenspace of ad(Z).

It is easy to see that

(6.1)

8<
:
� 2 �+

1 ) � (A�) = B�, � (B�) = �A�,� 2 �+
2 ) � (A�) = �A�, � (B�) = �B�,� 2 �+
3 ) � (A�) = �B�, � (B�) = A�,

and

(6.2) � 2jm1 = �Idm1, � 2jm3 = �Idm3.

If X 2 m+
1, then by (6.2), we have

� (� (X)) = ��1(� (X)) = � 3(X) = �� (X).

Thus we have� (m+
1) � m�

1 . Similarly, we get� (m�
1 ) � m+

1. Therefore it follows that

(6.3) � (m+
1) = m�

1 , � (m�
1 ) = m+

1.

Similarly, we obtain

(6.4) � (m+
3) = m�

3 , � (m�
3 ) = m+

3.

By a straightforward computation we have

(6.5) [
p�1H , A�] = �(H )B�, [

p�1H , B�] = ��(H )A�.

Put X1 =
P�2�+

1
(a�A� + b�B�) 2 m1. Then by (6.1), we have� (X1) =

P�2�+
1
(a�B� �

b�A�). Using (6.5), it is easy to see that

[
p�1Z, X1] = � (X1).

Similarly, we get

[
p�1Z, X3] = �3� (X3), [

p�1Z, [
p�1Z, X2]] = �4X2,

for X j 2 m j ( j = 2, 3). Therefore it follows from (6.2) that

(6.6)
[Z, X1 �p�1� (X1)] = �(X1 �p�1� (X1)),

[Z, X3 �p�1� (X3)] = �3(X3 �p�1� (X3)).
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Note thatXs�p�1� (Xs) 2 g� for Xs 2 m+
s (s = 1, 3) from (6.3) and (6.4). Moreover,

Y2 := [
p�1Z, X2] 6= 0 andY2 2 m�

2 for X2 2 m�
2 , and

(6.7)

�
Z, X2 � 1

2

p�1Y2

�
= �2

�
X2� 1

2

p�1Y2

�
.

Consequently, from (6.6) and (6.7) the lemma is proved.

Now, we are in a position to prove the following proposition which classifies in-
volutions preservingh for this case.

Proposition 6.1. (1) Let g� =
P3

p=�3 g�p be a graded simple Lie algebra of the
third kind with a grade-reversing Cartan involution� , which is corresponding to a
partition f�0, �1g of � = f�1, : : : , �l g such that�1 = f�i g with ni = 3. Put � =
Ad(exp(�=2)

p�1hi ). Then� is an automorphism of order4 on the compact dualg
of g� such thatdim z = 1 and � Æ � = ��1 Æ � .
(2) Let � = Ad(exp(�=2)

p�1K i ) for some�i 2 �(gC, tC) with mi = 3. Then for each
involution � of g satisfying� Æ� = ��1Æ � , there exists� 2 Aut(g) such that� Æ� Æ ��1

and � Æ � Æ��1 are obtained from a graded Lie algebra by the method described in (1).

Proof. We have proved (1) in the above.
Now we prove (2). For each� = Ad(exp(�=2)

p�1K i ) and � with � Æ� = ��1Æ � ,
it follows from Lemma 6.3 that there exists a graded Lie algebra g� =

P3
p=�3 g�p with

the characteristic elementZ := K i such that� is the Cartan involution. As above, let
g� = k + p� be the Cartan decomposition ofg� corresponding to� and leta be a max-
imal abelian subspace ofp� such thatZ 2 a. Moreover, lett� be a Cartan subalgebra
of g� containing a equipped with a compatible ordering. By Lemma 6.3, we have�(Z) = 0,�1,�2 or �3 for any� 2 � :=�(g�, a). If � is a reduced root system, then
from Lemma 2.4 together with Lemma 2.4 of [15] there existsw 2 W(g�, a) such that

1

4
w(Z) =

1

4
h + T .

Here T is an element ina satisfying �(T) 2 Z for any � 2 �, and h is one of the
following:

hp, hq1 + hq2, 2hr1 + hr2, hs1 + hs2 + hs3,

with np = 1, 2, 3 or 4, (nq1, nq2) = (1, 1), (1, 2) or (2, 2),nr1 = nr2 = 1 andns1 = ns2 =
ns3 = 1. If � is a nonreduced root system, then�0 := f� 2�; 2� 62�g is a reduced root
system of typeBl with the fundamental root system� . Applying Lemma 2.4 together
with Lemma 2.4 of [15] to�0, we can see that there existsw 2 W(g�, a) such that
(1=4)w(Z) = (1=4)h + T with �(T) 2 Z for any � 2 �0 and h is one of

ha, hb + hc, na = nb = nc = 2.



INVOLUTIONS OF 4-SYMMETRIC SPACES 667

Hence we may assume that there exists� 2 Int(k) such that

� Æ � Æ ��1 = Ad

�
exp

�
2

p�1h

�
.

Note that� Æ � Æ ��1 = � because� 2 Int(k).
Next, we shall prove thath = hp for some�p 2 � with np = 3. In the case where

h = hp with np = 1, there exists a unique�i p 2 �(gC, tC) such thatmi p = 1 and�i p ja =�p. Therefore by Lemma 2.5 together with Remark 2.2 we havehp = K i p and (g, h) is
a symmetric pair, which also contradicts Remark 6.1. Similarly, if h = hp, hq1 + hq2,
2hr1 + hr2 or ha with np = na = 2 and nq1 = nq2 = nr1 = nr2 = 1, then a pair (g, h) is
3-symmetric, which contradicts Remark 6.1.

In the case whereh = hs1 + hs2 + hs3 with ns1 = ns2 = ns3 = 1, there exist unique�i1,�i2,�i3 2�(gC, tC) such that�ik ja = �sk (k = 1,2,3). Then we haveh = K i1 +K i2 +K i3

and hence dimz = 3, which is a contradiction.
In the case whereh = hq1 + hq2, then we obtain

h = K i1 + K i2 or K i1 + K j1 + K j2.

Here�ik ja = �qk , mi1 = 1, mi2 = 2, or �i1ja = �q1, � jk ja = �qk , mik = 1 (k = 1, 2). There-
fore by Remark 2.2 we have dimz 6= 1.

In the case whereh = hp with np = 4, then we have

h = K i p with mi p = 4,(i)

or

h = K i1 + K i2 with �ik ja = �p, mik = 2 (k = 1, 2).(ii)

For the case (i), it follow from Remark 2.2 that dimz = 0. For the case (ii), it is easy
to see that the centerz(g�(1=2)h) of g�(1=2)h coincides with

(6.8) z(g�(1=2)h) = R
p�1(K i1 � K i2).

Note that if � = Ad(exp(�=2)
p�1K i ) with mi = 3, then the centerz of h coincides

with R
p�1K i as mentioned before. It is easy to see thath is the centralizer ofz in

g. However, g�(1=2)h is not the centralizer ofz(g�(1=2)h). Indeed, let� =
P

j k j� j be a
root satisfyingki1 = ki2 = 1. Since�(h) = 2 and�(K i1 � K i2) = 0, we obtain

[
p�1(K i1 � K i2), A�] = 0, �(1=2)h(A�) = �A�,

which implies thatA� belongs to the centralizer ofz(g�(1=2)h) and A� 62 g�(1=2)h . Hence�
is not conjugate to�(1=2)h.
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Finally, consider the case whereh = h j + hk with n j = nk = 2. In this case, we
have h = K i j + K ik with mi j = mik = 2, or h = K j1 + K j2 + K ik with m j1 = m j2 = 1,
mik = 2. By the same argument as (i) above, the first case is impossible. Moreover, if
h = K j1 + K j2 + K ik , then the center ofg�(1=2)h coincides with

R
p�1(2K j1 � K ik) + R

p�1(K j2 � K ik),

since g�(1=2)h is generated byt and fA�, B�; �(h) � 0 (mod 4)g. However, this is a
contradiction.

Consequently we obtainh = hp with np = 3 which completes the proof of (2) of
the proposition.

7. The case where dimz = 0 and � Æ � = � Æ �
In this section we consider the case where dimz = 0 and � Æ � = � Æ � . In this

case, it follows from Proposition 4.1 that� jt = Idt or � is of Type I in Table 1.
First we consider the Type I in Table 1. From Section 5 there exists an auto-

morphism' satisfying (5.11). We note that' is an involution of Type I in Table 1.
Let t� be the (�1)-eigenspaces of'. Then we have

t+ = spanfK1 + K6� 2K7, K2� K7, K3 + K5� 3K7, K4� 2K7g,
t� = spanf�K1 + K6, �K3 + K5, K7g.

For any involution� of Type I, it follows from Proposition 5.3 of Chapter IX of [6]
that there exists

p�1h 2 t such that� = ' Æ �h. We put h = h+ + h�, h� 2 p�1t�.
Then since� 2 = Id, we can write

(7.1)
h+ = k1(K1 + K6� 2K7) + k2(K2 + K7) + k3(K3 + K5� 3K7) + k4(K4� 2K7),

ki 2 Z.

As in the case of Type IV in Section 5, we may assume� (E�1) = E�6, � (E�3) = E�5

and � (E�7) = E�0. Indeed, for example, if� (E�1) = b1E�6 for someb1 2 C with jb1j =
1, then usingh� = k(�K1+K6) with e2�p�1k = b1, we have (�h� )�1Æ� Æ�h� (E�1) = E�6.

Using (7.1), by an argument similar to the case of Type IV in Section 5 we can
prove that� is conjugate within Int(h) to one of the following involutions:

', ' Æ �K2, ' Æ �K4, ' Æ �K2 Æ �K4.

Note thatsu�2(2) � h \ g' , and hencet�2 2 Int(h \ g'). Therefore we have' Æ t�2 =
t�2 Æ'. Moreover, sincet�2(K2) = �K2 + K4, it follows that ' Æ �K2 is conjugate within
Int(h) to ' Æ �K2 Æ �K4.
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Put � := � jt. It is easy to see that the set�+� of positive roots� satisfying�(�) = �
coincides with

�+� =

8>>>>><
>>>>>:

�2, �4, �2 + �4, �3 + �4 + �5, �2 + �3 + �4 + �5, �2 + �3 + 2�4 + �5,

�1 + �3 + �4 + �5 + �6, �1 + �2 + �3 + �4 + �5 + �6,

�1 + �2 + �3 + 2�4 + �5 + �6, �1 + �2 + 2�3 + 2�4 + 2�5 + �6,

�1 + �2 + 2�3 + 3�4 + 2�5 + �6, Æ

9>>>>>=
>>>>>;

.

Using (5.11), we can check that'(E�) = E� for any � 2 �+� . For example

'([E�5, [E�3, E�4]]) = [ E�3, [E�5, E�4]] = [ E�5, [E�3, E�4]],

and thus'(E�3+�4+�5) = E�3+�4+�5. Hence it follows from Lemma 4.1 that dimg' = 79.
By using the classification of symmetric spaces, we getg' �= E6� R.

The number of subsetsf�, �g such that� 2 �+(gC, tC), � (�) = �, � 6= �� and�(K4) � 0 (mod 4) is 6. Furthermore� 2 �+(gC, tC) such that� (�) = � and�(K4) � 0
(mod 4) is only�2. Since dimt+ = 4, we get

dim(h \ g') = 4 + ((6 + 1)� 2) = 18.

Therefore we geth \ g' �= D8� C1.
Similarly as above we can compute dim(h \ g� ) and dimg� for the other types.
Next we consider the case� jt = Id. First we suppose thatg is of type e8 and� = Ad(exp(�=2)

p�1K3). Then by (4.2) (i), we have

h �= A7� A1.

Furthermore a maximal abelian subalgebrat is decomposed intot = (A7\ t)� (A1\ t).
Hence we can write

� = �T1 Æ �T2,
p�1T1 2 A7 \ t,

p�1T2 2 A1 \ t.

We definevi 2 p�1(A7 \ t), i 2 3 := f0, 2, 4, 5, 6, 7, 8g and v1 2 p�1(A1 \ t) by�i (v j ) = Æi j . Since (�T1jA7)
2 = IdA7 and (�T2jA1)

2 = IdA1, it follows from Lemma 2.2 and
Remark 2.1 that there exist�1 2 Int(A7) and�2 2 Int(A1) such that

(7.2) �1(T1) � �0 mod 2�A7,vi mod 2�A7 (i 2 3),
�2(T2) � �0 mod 2�A1,v1 mod 2�A1,

where�Al denotes the fundamental root system of TypeAl . Therefore considering
Lemma 2.3 we may assume

(7.3) T1 =

�
2m0v0 + 2m2v2 + 2m3v3 + � � � + 2m8v8,vi + 2m0v0 + 2m2v2 + 2m3v3 + � � � + 2m8v8,

T2 =

�
2m1v1,v1 + 2m1v1,



670 H. KURIHARA AND K. TOJO

where i = 2, 4, 5, 6 andm0, m1, m2, m4, : : : , m8 2 Z. Consequently� is conjugate within
Int(h) to one of the following automorphisms:

(7.4)

8<
:

Ad(exp�p�1(2m0v0 + 2m1v1 + 2m2v2 + 2m4v4 + � � � + 2m8v8)),
Ad(exp�p�1(vi + 2m0v0 + 2m1v1 + 2m2v2 + 2m4v4 + � � � + 2m8v8)),
Ad(exp�p�1(v1 + v j + 2m0v0 + 2m1v1 + 2m2v2 + 2m4v4 + � � � + 2m8v8)),

where i = 1, 2, 4, 5, 6, j = 2, 4, 5, 6 andm0, m1, m2, m4, : : : , m8 2 Z.
Now we computev j . Put v1 =

P8
i =1 ai K i , ai 2 R. Since A1 \ t = R

p�1H�1 and

A1 \ t = fp�1H 2 t; � j (H ) = 0, j = 0, 2, 4, 5, 6, 7, 8g,
we havea1 = 1, a2 = a4 = � � � = a8 = 0 anda1 + 2a3 = 0. Hence we obtainv1 = K1 �
(1=2)K3.

Moreover, sinceA7 \ t = fp�1H 2 t; �1(H ) = 0g, we can putvi =
P8

k=2 bi
kKk,

bi
k 2 R, i 2 3. Then computing simultaneous equations�i (v j ) = Æi j , i , j 2 3, we

obtain

(7.5)
v0 = �1

4
K3, v1 = K1� 1

2
K3, v2 = K2� 3

4
K3, v4 = K4� 3

2
K3,

v5 = K5� 5

4
K3, v6 = K6� K3, v7 = K7� 3

4
K3, v8 = K8� 1

2
K3.

Thus (7.4) implies that� is conjugate within Int(h) to one of the following:

(7.6) �mK3, �vi +mK3, �v1+v j +mK3,

wherem = �((1=2)m0 + m1 + (3=2)m2 + 3m4 + (5=2)m5 + (3=2)m7 + m8). From (7.5) if
i , j = 2, 5, then� 2 6= Id. Thereforei = 1, 4, 6 andj = 4, 6. Hence� is conjugate within
Int(h) to some�h whereh is one of the following:

K i , K3 + K j , K1 + Kk, K1 + K3 + Kk,

wherei = 1, 3, 4, 6, j = 1, 4, 6 andk = 4, 6. If h = K1, theng�K1 �= D8 (cf. Theorem 5.15
of Chapter X of [6]). Furthermore

h \ g�K1 = t� X
�2�+(gC,tC)�(K3)�0 mod 4�(K1)�0 mod 2

(RA� + RB�) � h (�= su(8)� su(2)).

In this case,�K1jA7 = Id and A
�K1
1
�= R, and hence

h \ k �= A7� R.

Similarly as above, we can get (g� , h \ g� ) for each� = �h.
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Now we consider the reflectiont�1 2 Int(su�1(2))� Int(h). It is easy to check that
t�1 mapsK1 7! �K1 + K3, K1 + K4 7! �K1 + K3 + K4, K1 + K6 7! �K1 + K3 + K6 and
K3 7! K3. Therefore we have�K1 � �K1+K3, �K1+K4 � �K1+K3+K4 and�K1+K6 � �K1+K3+K6,
where we write�H � �H 0 if �H is conjugate to�H 0 within Auth(g).

Next, we consider the case whereg is of type e8 and � = Ad(exp(�=2)
p�1K6).

Then by (4.2) (ii), we haveh �= A3� D5. By a computation similar to the above case,
we obtain

(7.7)
v0 = �1

4
K6, v1 = K1� 1

2
K6, v2 = K2� 3

4
K6, v3 = K3� K6,

v4 = K4� 3

2
K6, v5 = K5� 5

4
K3, v7 = K7� 3

4
K6, v8 = K8� 1

2
K6.

Then, considering Lemma 2.3,� is conjugate within Int(h) to one of the following
automorphisms:

(7.8) �mK6, �va+mK6, �vb+vc+mK6,

wherea = 1, 2, 3, 7, 8,b = 1, 2, 3, c = 7, 8, andm is equal to that of the above case.
Since� 2 = Id, it follows from (7.7) that� is conjugate within Int(h) to some�h where
h is one of the following:

K i , K j + K6, K2 + K7, Kk + K8, Kk + K6 + K8, K2 + K6 + K7,

where i = 1, 3, 6, 8, j = 1, 3, 8 andk = 1, 3. By a computation similar to the above
case, we obtaing� and h \ g� . We put

(7.9)

�1 :=

�
3

1 2 4 5 6 4 2

�
, �2 :=

�
1

0 0 0 1 2 2 1

�
,

�3 :=

�
1

0 0 0 1 2 1 0

�
.

It is easy to check that

t�1 Æ t�8(K6) = �3K6 + 4K7, t�2 Æ t�1(K6) = K6, t�3 Æ t�3(K6) = K6,

and sot�1 Æ t�8, t�2 Æ t�1, t�3 Æ t�3 2 Auth(g). Moreover we have

t�1 Æ t�8(K8) = �K6 + 2K7� K8, t�2 Æ t�1(K1) = �K1 + K6,

t�2 Æ t�1(K1 + K8) = �K1 + K6 + K8, t�3 Æ t�3(K3) = 2K1� K3 + K6,

t�3 Æ t�3(K3 + K8) = 2K1 � K3 + K6 + K8.

Therefore we have

�K6+K8 � �K8, �K1+K6 � �K1, �K3+K6 � �K3, �K1+K6+K8 � �K1+K8, �K3+K6+K8 � �K3+K8.
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For the case whereg = e7 and � = Ad(exp(�=2)
p�1K4), we can check that� is

conjugate within Int(h) to some�h whereh is one of the following:

K i , K j + Kk, K3 + K7, Kl + Km + Kn,

K p + K3 + K7, K1 + K2 + K4 + K6, K2 + K3 + K4 + K7,

where i = 1, 2, 4, 6, j , k = 1, 2, 4, 6 (j < k), l , m, n = 1, 2, 4, 6 (l < m< n) and p = 2, 4.
Using the reflectiont�2 2 Int(h) we have

�K2+K4 � �K2, �K1+K2+K4 � �K1+K2, �K2+K4+K6 � �K2+K6,

�K1+K2+K4+K6 � �K1+K2+K6, �K2+K3+K4+K7 � �K2+K3+K7,

and sincet�5+�6+�7 Æ t�6 2 Int(h), we have

�K6 � �K4+K6.

Furthermore put
1 := �1 + 2�2 + 2�3 + 4�4 + 3�5 + 2�6 +�7. Then t
1 Æ t�1 2 Int(h) gives
the following conjugations:

�K1+K4 � �K1, �K1+K4+K6 � �K1+K6.

Finally we consider an involution' 2 Auth(g) (see (5.11)). Then it is easy to
see that

'(K1) = K6� 2K7, '(K2) = K2� 2K7, '(K3) = K5� 3K7, '(K4) = K4 + 4K7,

'(K5) = K3� 3K7, '(K6) = K1� 2K7, '(K7) = �K7,

and therefore' gives the following conjugations:

�K1 � �K6, �K1+K2 � �K2+K6.

For the case whereg = f4 and � = Ad(exp(�=2)
p�1K3), we can check that� is

conjugate within Int(h) to some�h whereh is one of the following:

K i , K j + Kk, K1 + K3 + K4.

Herei = 1, 3, 4 andj ,k = 1, 3, 4 (j < k). Using the reflectiont�4 2 Int(h) andt�1+�2+2�3+�4

we have

�K3+K4 � �K4, �K1+K3+K4 � �K1+K4, �K1+K3 � �K1.

Consequently we obtain the following proposition.



INVOLUTIONS OF 4-SYMMETRIC SPACES 673

Proposition 7.1. Suppose thatdim z = 0. Let � be an involution ofg such that� Æ � = � Æ � . Then � is conjugate withinAuth(g) to one of automorphisms listed
in Table 3.

Table 3. dimz = 0, � Æ � = � Æ � , � = �(1=2)H and k = g� .
(g, h, H ) h (� = �h) k h \ k

(e8, su(8)� su(2), K3)

K1 D8 A7 � R
K3 E7 � A1 A7 � A1

K4 E7 � A1 A5 � A1 � A1 � R
K6 D8 A3 � A3 � A1 � R
K3 + K4 D8 A5 � A1 � A1 � R
K3 + K6 E7 � A1 A3 � A3 � A1 � R
K1 + K4 E7 � A1 A5 � A1 � R
K1 + K6 D8 A5 � A1 � R

(e8, so(10)� so(6), K6)

K1 D8 D4 � D3 � R
K3 E7 � A1 D3 � D3 � D2

K6 D8 D5 � D3

K8 E7 � A1 D5 � D2 � R
K1 + K8 E7 � A1 D4 � D2 � R2

K2 + K7 E7 � A1 A4 � A2 � R2

K3 + K8 D8 D3 � D2 � D2 � R
K2 + K6 + K7 D8 A4 � A2 � R2

(e7, so(6)� so(6)� su(2), K4)

K1 D6 � A1 D3 � D2 � A1 � R
K2 A7 D3 � D3 � R
K4 D6 � A1 D3 � D3 � A1

K1 + K2 E6 � R D3 � D2 � R2

K1 + K3 D6 � A1 D3 � D2 � A1 � R
K1 + K6 D6 � A1 D2 � D2 � A1 � R2

K3 + K4 D6 � A1 D3 � D3 � A1

K3 + K7 A7 A2 � A2 � A1 � R
K1 + K2 + K6 A7 D2 � D2 � R3

K1 + K3 + K4 D6 � A1 D3 � D2 � A1 � R
K2 + K3 + K7 D6 � A1 A2 � A2 � R3

K3 + K4 + K7 E6 � R A2 � A2 � A1 � R2

(f4, so(6)� so(3), K3)

K1 B3 � A1 D2 � C2 � R
K3 C4 D3 � C2

K4 C4 D3 � R
K1 + K4 B3 � A1 D3 � R

(g, h, H ) � k h \ k

(e7, so(6)� so(6)� su(2), K4)

' E6 � R D8 � C1' Æ �K2 A7 D8 � D1' Æ �K4 A7 D8 � C1' Æ �K2 Æ �K4 A7 D8 � D1

' : E�1 7! E�6, E�2 7! E�2, E�3 7! E�5, E�4 7! E�4, E�7 7! E�0
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8. The case where dimz = 1, � Æ � = � Æ �
Let (G=H , h , i, � ) be a compact Riemannian 4-symmetric space such thatG is

simple and� = Ad(exp(�=2)
p�1K i ) for some�i 2 �(gC, tC) with mi = 3. By Re-

mark 2.2, we have dimz = 1. We shall classify the equivalence classes of involutions� such that� Æ � = � Æ � . According to Section 3 and Jiménez [7], 4-symmetric pairs
(g, h) satisfying the condition dimz = 1 are given by

(8.1)

(e6, su(3)� su(3)� su(2)� R), (e7, su(5)� su(3)� R),

(e7, su(6)� su(2)� R), (e8, su(8)� R), (e8, su(2)� e6� R),

(f4, su(3)� su(2)� R), (g2, su(2)� R).

Suppose thatg is of type e8. From Section 3, the Dynkin diagram ofh is one of
the following:

(i) (ii)

CASE (i): In this case,� = Ad(exp(�=2)
p�1K2). From Lemma 3.2, the possi-

bilities of positive roots whose coefficients of�2 are 3 are as follows:
(8.2)�

3
1 2 3 4 5 3 1

�
,

�
3

1 2 3 4 5 3 2

�
,

�
3

1 2 3 4 5 4 2

�
,

�
3

1 2 3 4 6 4 2

�
,

�
3

1 2 3 5 6 4 2

�
,

�
3

1 2 4 5 6 4 2

�
,

�
3

1 3 4 5 6 4 2

�
,

�
3

2 3 4 5 6 4 2

�
.

Since � (�(h)) = �(h) and Æ + � j 62 �(gC, tC) ( j 6= 2), we have� (Æ) + �k =2 �(gC, tC)
(k 6= 2). Thus it follows from (8.2) that� (Æ) = Æ. If � satisfies

� (�1) = �8, � (�3) = �7, � (�4) = �6, � (�5) = �5,

we get

�
3

2 3 4 5 6 4 2

�
= � (Æ) = 3� (�2) +

�
0

2 4 6 5 4 3 2

�
.

Hence we have

3� (�2) =

�
3

0 �1 �2 0 2 1 0

�
,
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which is a contradiction. Therefore� satisfies� jt = Idt. Hence from Proposition 5.3
of Chapter IX of [6], � has a form�H for a suitable elementH 2 p�1t. From (8.1),
we have

(8.3) h �= A7� R
p�1K2

�= su(8)� R and t = (A7 \ t)� R
p�1K2,

and we can write

� = �H = �T+kK2 = �T Æ �kK2,
p�1T 2 A7 \ t, k 2 R.

Note that�T = � jA7 : A7! A7 and (�T )2 = Id on A7.
We definevi 2 p�1(A7 \ t), i 2 3 := f1, 3, 4, 5, 6, 7, 8g by �i (v j ) = Æi j . From

Lemma 2.3, we may suppose that� is conjugate within Int(h) to one of the following
automorphisms:

(8.4)

�
Ad(exp�p�1(2m1v1 + 2m3v3 + � � � + 2m8v8 + kK2)),
Ad(exp�p�1(vi + 2m1v1 + 2m3v3 + � � � + 2m8v8 + kK2)),

where i = 1, 3, 4, 5 andm1, m3, m4, : : : , m8 2 Z. Put K2 =
P8

i =1 bi H�i . Then we have

Æ j 2 = � j (K2) =
8X

i =1

bi� j (H�i ), for j = 1, 2,: : : , 8,

and therefore

b1 � b3

2
= 0, b2� b4

2
�2(H�2) = 1, �b1

2
+ b3� b4

2
= 0, �b2

2
� b3

2
+ b4 � b5

2
= 0,

�b4

2
+

b5

2
� b6

2
= 0, �b5

2
+ b6 � b7

2
= 0, �b6

2
+ b7 � b8

2
= 0, �b7

2
+ b8 = 0.

Indeed if j = 1, considering the�1 series containing�i , we have�i (H�1) = 0 for i 6=
1, 3 and 2�3(H�1)=�1(H�1) = �1. Thus we get

0 = �1(K2) =
8X

i =1

bi�1(H�i ) = b1�1(H�1) + b3�1(H�3)

= b1�1(H�1) + b3

��1

2
�1(H�1)

�
=

�
b1 � b3

2

��1(H�1).

We can obtain the other equations by a similar computation asabove.
Computing these simultaneous equations we have

(8.5) K2 =
c8

3
(5H�1 + 8H�2 + 10H�3 + 15H�4 + 12H�5 + 9H�6 + 6H�7 + 3H�8).
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Now put v1 = a1K1 + � � � + a8K8, a1, : : : , a8 2 R. Then we geta3 = � � � = a8 = 0 and
a1 = 1, since�i (v1) = Æi 1 for i 2 3. Thus we havev1 = K1 + a2K2. Sincev1 ? K2,
it follows from (8.5) that 0 = (5=3)c8 + (8=3)a2c8 and thereforea2 = �5=8. Hence we
havev1 = K1� (5=8)K2. By a similar computation, we obtain

(8.6)
v1 = K1� 5

8
K2, v3 = �5

4
K2 + K3, v4 = �15

8
K2 + K4, v5 = �3

2
K2 + K5,

v6 = �9

8
K2 + K6, v7 = �3

4
K2 + K7, v8 = �3

8
K2 + K8.

Therefore by (8.4) and (8.6) it follows that� is conjugate within Int(h) to one of the
following:

(8.7) �mK2, �vi +mK2,

wherem =�(1=4)(5m1 + 10m3 + 15m4 + 12m5 + 9m6 + 6m7 + 3m8�2k). Moreover, since� 2 = Id, it follows from (8.6) that� is conjugate within Int(h) to some�h whereh is
one of the following:

K i , K j + K2, i = 1, 2, 3, 4, 5, j = 1, 3, 4, 5.

By a computation similar to Section 7 we can obtain (g�h , h \ g�h) for eachh.

REMARK 8.1. From Lemma 2.3, we can see that�v8jA7 is conjugate within
Int(A7) (� Int(h)) to �v1jA7. Therefore by the above argument,�K8 is conjugate within
Int(h) to �K1 or �K1+K2. However,g�K8 6�= g�K1 , and hence�K8 � �K1+K2.

CASE (ii): In this case,� = Ad(exp(�=2)
p�1K7) and

h �= A1� E6� R
p�1K7

�= su(2)� e6� R,

t = (A1 \ t)� (E6 \ t)� R
p�1K7.

By a computation similar to the case (i), we have� jt = Idt. Hence we can write

� = �T1 Æ �T2 Æ �kK7,

where
p�1T1 2 A1 \ t,

p�1T2 2 E6 \ t, k 2 R. We definev8 2 p�1(A1 \ t) andva 2 p�1(E6 \ t), a 2 3 := f1, 2, 3, 4, 5, 6g by �i (v j ) = Æi j . Then from Lemma 2.3,
we may assume� is conjugate within Int(h) to one of following automorphisms:

(8.8)

8<
:

Ad(exp�p�1(2m1v1 + � � � + 2m6v6 + 2m8v8 + kK7)),
Ad(exp�p�1(va + 2m1v1 + � � � + 2m6v6 + 2m8v8 + kK7)),
Ad(exp�p�1(v8 + vb + 2m1v1 + � � � + 2m6v6 + 2m8v8 + kK7)),
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wherea = 1, 2, 8, b = 1, 2 andm1, : : : , m6, m8 2 Z. Furthermore we obtain

v1 = K1� 2

3
K7, v2 = K2� K7, v3 = K3� 4

3
K7, v4 = K4� 2K7,

v5 = K6� 5

3
K7, v6 = K6� 4

3
K7, v8 = K8� 1

2
K7.

Similarly as in Case (i), we can see that� is conjugate within Int(h) to some�h where
h is one of the following:

K i , K j + K7, Kk + K8, Kk + K7 + K8,

where i = 1, 2, 7, 8, j = 1, 2, 8 andk = 1, 2. It is easy to check that the reflection
t�8 2 Int(h) mapsK7+ K8 7! 2K7�K8, K1+ K7+ K8 7! K1+2K7�K8, K2+ K7+ K8 7!
K2 + 2K7 � K8 and K7 7! K7. Therefore we have�K7+K8 � �K8, �K1+K7+K8 � �K1+K8

and �K2+K7+K8 � �K2+K8.
In the case whereg = e7, the Dynkin diagram ofh is one of the following:

(i) (ii)

CASE (i): In this case,� = Ad(exp(�=2)
p�1K3) and h �= A1� A5�R

p�1K3.
By an argument similar to the above, we can see that� is conjugate within Int(h) to
some�h whereh is one of the following:

K i , K j + K3, Kk + K1, Kk + K1 + K3,

where i = 1, 2, 3, 4, 5, j = 1, 2, 4, 5 andk = 2, 4, 5. Using the reflectiont�1 2 Int(h) we
obtain

�K1+K3 � �K1, �K1+K2+K3 � �K1+K2, �K1+K3+K4 � �K2+K4, �K1+K3+K5 � �K1+K5.

Furthermore, similarly as in Remark 8.1 we get�K2+K3 � �K7.
CASE (ii): In this case,� = Ad(exp(�=2)

p�1K5) and h �= A2� A4�R
p�1K5.

Moreover, � is conjugate within Int(h) to some�h whereh is one of the following:

K i , K j + K5, Kk + K6, Kk + K5 + K6,

wherei = 1, 3, 5, 6, j = 1, 3, 6 andk = 1, 3. Similarly as in Remark 8.1 we get�K5+K6 ��K7, �K1+K5+K6 � �K1+K7 and �K3+K5+K6 � �K3+K7.
If g = f4, then � = Ad(exp(�=2)

p�1K2) and h �= A1 � A2 � R
p�1K2. In this

case,� is conjugate within Int(h) to some�h whereh is one of the following:

K i , K j + Kk, K1 + K2 + K3,



678 H. KURIHARA AND K. TOJO

where i = 1, 2, 3 and j , k = 1, 2, 3 (j 6= k). Using the reflectiont�1 2 Int(h) we have�K1+K2 � �K1 and �K1+K2+K3 � �K1+K3.
If g = g2, then� = Ad(exp(�=2)

p�1K1) and h �= A1�R
p�1K1. In this case,�

is conjugate within Int(h) to some�h whereh is one of

K i , K1 + K2, i = 1, 2.

Using the reflectiont�2 2 Int(h) we have�K1+K2 � �K2.
If g = e6, then� = Ad(exp(�=2)

p�1K4) and h �= A1� A2� A2� R
p�1K4. By

an argument similar to the case whereg = e8, we obtain� jt = Idt or

� (�1) = �6, � (�3) = �5, � (�4) = �4, � (�2) = �2.

If � jt = Idt, then � is conjugate within Int(h) to some�h where h is one of the fol-
lowing:

K i , K j + Kk, Kl + Km + Kn, K1 + K2 + K4 + K5,

where i = 1, 2, 4, 5, j , k = 1, 2, 4, 5 (j < k) and l , m, n = 1, 2, 4, 5 (l < m< n). Using
the reflectiont�2 2 Int(h) we have

�K2+K4 � �K2, �K1+K2+K4 � �K1+K2, �K2+K4+K5 � �K2+K5, �K1+K2+K4+K5 � �K1+K2+K5.

Next suppose thatg = e6 and � satisfies

� (�1) = �6, � (�3) = �5, � (�4) = �4, � (�2) = �2.

Let t� be the (�1)-eigenspaces of� jt, respectively. Then we have

t+ = spanfK1 + K6, K2, K3 + K5, K4g, t� = spanfK1 � K6, K3� K5g
It is known that there exists an involutive automorphism of outer type satisfying

(8.9)  (E�1) = E�6,  (E�2) = E�2,  (E�3) = E�5,  (E�4) = E�4.

Therefore there exists
p�1h+ 2 t+ such that� 2

h+
= Id and � �  Æ �h+ . Then by an

argument similar to that in Section 7, we can see that� is conjugate within Auth(g)
to one of the following involutions:

 ,  Æ �K2,  Æ �K4,  Æ �K2+K4.

Sincesu�2(2)� g and t�2(K2) = �K2 + K4, we obtain Æ t�2 = t�2 Æ  and

 Æ �K2+K4 =  Æ �t�2 (K2) =  Æ t�2 Æ �K2 Æ t�1�2
= t�2( Æ �K2)t

�1�2
.

Thus we obtain Æ �K2 �  Æ �K2+K4. Furthermore by an argument similar to that in
Section 7, we can compute dim(h\g�h) and dimg�h for eachh. Consequently we have
the following proposition.
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Proposition 8.1. Suppose thatdim z = 1 and � = Ad(exp(�=2)
p�1K i ) for some�i 2 �(gC, tC) with mi = 3. Let � be an involution ofg such that� Æ � = � Æ � . Then� is conjugate withinAuth(g) to one of automorphisms listed inTable 4.

Table 4. dimz = 1, � Æ � = � Æ � , � = �(1=2)H and k = g� .
(g, h, H ) h (� = �h) k h \ k

K1 D8 A6 � R2

K2 D8 A7 � R
K3 E7 � A1 A5 � A1 � R2

K4 E7 � A1 A4 � A2 � R2

(e8, su(8)� R, K2) K5 D8 A3 � A3 � R2

K8 E7 � A1 A6 � R2

K2 + K3 E7 � A1 A5 � A1 � R2

K2 + K4 D8 A4 � A2 � R2

K2 + K5 D8 A3 � A3 � R2

(e8, e6 � su(2)� R, K7)

K1 D8 D5 � A1 � R2

K2 D8 A5 � A1 � A1 � R
K7 E7 � A1 E6 � A1 � R
K8 E7 � A1 E6 � R2

K1 + K7 E7 � A1 D5 � A1 � R2

K2 + K7 E7 � A1 A5 � A1 � A1 � R
K1 + K8 E7 � A1 D5 � R3

K2 + K8 D8 A5 � A1 � R2

K1 D6 � A1 A5 � R2

K2 A7 A4 � A1 � R2

K3 D6 � A1 A5 � A1 � R
K4 D6 � A1 A3 � A1 � A1 � R2

K5 A7 A2 � A2 � R2

(e7, su(6)� su(2)� R, K3) K7 E6 � R A4 � A1 � R2

K1 + K2 E6 � R A4 � R3

K1 + K4 D6 � A1 A3 � A1 � R3

K1 + K5 A7 A2 � A2 � R3

K3 + K4 D6 � A1 A3 � A1 � A1 � R2

K3 + K5 E6 � R A2 � A2 � A1 � R2

K1 D6 � A1 A3 � A2 � R2

K3 D6 � A1 A2 � A2 � A1 � R2

K5 A7 A4 � A2 � R
K6 D6 � A1 A4 � A1 � R2

K7 E6 � R A4 � A1 � R2

(e7, su(5)� su(3)� R, K5) K1 + K5 A7 A3 � A2 � R2

K1 + K6 D6 � A1 A3 � A1 � R3

K3 + K5 E6 � R A2 � A2 � A1 � R2

K3 + K6 D6 � A1 A2 � A1 � A1 � R3

K1 + K7 E6 � R A3 � A1 � R3

K3 + K7 A7 A2 � A1 � A1 � R3
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K1 D5 � R A2 � A1 � A1 � R2

K4 A5 � A1 A2 � A2 � A1 � R
K5 A5 � A1 A2 � A1 � A1 � R2

K1 + K2 D5 � R A2 � A1 � R3

K1 + K4 A5 � A1 A2 � A1 � A1 � R2

(e6, su(3)� su(3)� su(2)� R, K4) K1 + K5 A5 � A1 A1 � A1 � A1 � R3

K2 + K4 A5 � A1 A2 � A2 � R2

K2 + K5 D5 � R A2 � A1 � R3

K4 + K5 D5 � R A2 � A1 � A1 � R2

K1 + K2 + K5 A5 � A1 A1 � A1 � R4

K1 + K4 + K5 D5 � R A1 � A1 � A1 � R3

K1 C3 � A1 A2 � R2

K2 C3 � A1 A2 � A1 � R
(f4, su(3)� su(2)� R, K2) K4 B4 A1 � A1 � R2

K1 + K3 C3 � A1 A1 � R3

K2 + K4 C3 � A1 A1 � A1 � R2

(g2, su(2)� R, K1)
K1 A1 � A1 A1 � R
K2 A1 � A1 R2

(g, h, H ) � k h \ k F4 A2 � A1 � C1 � R
(e6, su(3)� su(3)� su(2)� R, K4)  Æ �K2 C4 A2 � A1 � D1 � R Æ �K4 C4 A2 � A1 � C1 � R

 : E�1 7! E�6, E�2 7! E�2, E�3 7! E�5, E�4 7! E�4
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9. Remarks on conjugations

9.1. dimz = 1, � Æ � = � Æ � . The case whereg = e6 and � = �(1=2)K4. We shall
show that�K2+K5 � �K1+K2, �K1+K4 � �K5 and �K4+K5 � �K1. We consider 2 Auth(g)
(see (8.9)). For�1 := t�5+�6 Æ t�2 Æ  2 Aut(g), we have

�1(�1) = ��5, �1(�2) = ��2, �1(�3) = ��6,

�1(�4) = �2 + �4 + �5 + �6, �1(�5) = �3, �1(�6) = �1.

Hence we get��1
1 (K4) = K4 and ��1

1 (K2 + K5) = K1 � K2 + 2K4. Thus ��1
1 is in

Auth(g) and gives a conjugation between�K2+K5 and �K1+K2.
Similarly as above, by using�2 := t�3 Æ t�1+�3 Æ , �3 := t�1 Æ t�3 Æ 2 Auth(g), we

obtain �K1+K4 � �K5 and �K4+K5 � �K1.
The case whereg = e8 and � = �(1=2)K2. From Proposition 8.1, we see thatg�K3 �=

g�K2+K3 and h\ g�K3 �= h\ g�K2+K3 . Now, we shall show that�K3 is not conjugate within
Auth(g) to �K2+K3. Put k1 := g�K3 and k2 := g�K2+K3 , then we havek1

�= k2
�= A1 � E7

and k1 \ h �= k2 \ h. We denote� 2 �(gC, tC) by � =
P8

i =1 ni�i and put

�k1 := f� 2 �+(gC, tC); �(K3) = 0, 2, 4g,
�k2 := f� 2 �+(gC, tC); �(K3) = 0, 2, 4, 6g.

Then

ki = t� X
�2�ki

(RA� + RB�), i = 1, 2.

Put 
 := 2�1 +2�2 +4�3 +5�4 +4�5 +3�6 +2�7 +�8. Then for any� 2 �k1 and�0 2 �k2,
we can see that�1�� 62 �(gC, tC) and 
 ��0 62 �(gC, tC) (cf. [3]). Therefore, we get

(9.1) k1 = su�1(2)� su�1(2)?, k2 = su
 (2)� su
 (2)?,

where su�1(2)? �= su�(2)? �= e7. For any � 2 Aut(g) satisfying �(k1) = k2, it follows
from (9.1) that�(su�1(2)) = su�(2). Hence there is no automorphism in Auth(g) such
that it mapsk1 to k2 becausesu�1(2)� h and su�(2) 6� h.

Next we shall show that�K5 is conjugate within Auth(g) to �K2+K5. Set


1 := �8, 
2 := ��1� �2� 2�3� 3�4� 3�5� 3�6� 2�7� �8,


3 := �7, 
4 := �8, 
5 := �5, 
6 := �4, 
7 := �3, 
8 := �1.

It is easy to see that� 0 := f
1, : : : , 
8g is a fundamental root system ofe8 (cf. [3]).
Therefore there exists a unique� in W(g, h) such that�(�) = � 0. Hence we have�(�i ) = 
i (i = 1, : : : , 8). Then it is easy to see that��1(K2) = �K2 and ��1(K5) =�3K2 + K5. Hence��1 2 Auth(g) and �K5 � �K2+K5.

The case whereg = e7 and � = �(1=2)K3. From Proposition 8.1, we can see that
g�K4 �= g�K3+K4 and h \ g�K4 �= h \ g�K3+K4 . However�K4 is not conjugate within Auth(g)
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to �K3+K4. Indeed, note thatg�K4 �= g�K3+K4 �= A1�D6, whereA1 � g�K4 and A1 � g�K3+K4

coincide withsu�2(2) (� h) and su�(2) (6� h), respectively. Here� = �1 + 2�2 + 2�3 +
4�4 + 3�5 + 2�6 +�7. Therefore, there is no automorphism in Auth(g) which mapsg�K4

to g�K3+K4 , since�(su�2(2)) = su�(2) for any � 2 Aut(g) satisfying�(g�K4 ) = g�K3+K4 .

9.2. dimz = 0, � Æ � = ��1 Æ � . The case whereg = e8 and � = �(1=2)K6. For the
reflectiont�1 2 Int(h), it follows from Proposition 5.1 thatt�1�1

Æ��2 Æt�1(E�3) =���2 (E�3)

and t�1�1
Æ ��2 Æ t�1(E�i ) = ��2 (E�i ) (i 6= 3). Hence we get

(9.2) t�1�1
Æ ��2 Æ t�1 = ��2 Æ �K3,

and therefore��2 Æ �K3 � ��2 � ��2 Æ � � ��2 Æ �K3 Æ � . By an argument similar to the
caseg = e7, for the reflectiont�3 2 Int(su�3(2))� Int(h), it follows that

��2 Æ t�3(E�i ) = �t�3 Æ ��2 (E�i ), ��2 Æ t�3(E� j ) = t�3 Æ ��2 (E� j ),

where i = 1, 4 and j 6= 1, 4. Therefore

(9.3) t�1�3
Æ ��2 Æ t�3 = ��2 Æ �K1+K4,

which implies��2 Æ �K1+K4 � ��2 � ��2 Æ � � ��2 Æ �K1+K4 Æ � .
Next, we shall prove

(9.4)
��2 Æ �K1+K8 � ��2 Æ �K4+K8 � ��2 Æ �K3+K4+K8 � ��2 Æ �K1+K3+K8 Æ � ,

��2 Æ �K1+K8 Æ � � ��2 Æ �K4+K8 Æ � � ��2 Æ �K3+K4+K8 Æ � � ��2 Æ �K1+K3+K8.

It is easy to see thatt�i (K4 + K8) = K4 + K8 (i = 1, 3), and it follows from (9.2)
and (9.3) that

��2 Æ �K1+K8 = ��2 Æ �K1+K4 Æ �K4+K8 = t�1�3
Æ ��2 Æ t�3 Æ �K4+K8

= t�1�3
Æ ��2 Æ �K4+K8 Æ t�3,��2 Æ �K3+K4+K8 = t�1�1
Æ ��2 Æ t�1 Æ �K4+K8 = t�1�1

Æ ��2 Æ �K4+K8 Æ t�1.

For t�4 2 Int(h), we get

��2 Æ t�4(E�3) = �t�4 Æ ��2 (E�3), ��2 Æ t�4(E�i ) = t�4 Æ ��2 (E�i ),

where i = 1, 4, 6, 7, 8. Moreover, we obtain

��2 Æ t�4(E�2) = b2��2 (E�2+�4) = b2kE�4+�5,

t�4 Æ ��2 (E�2) = t�4(E�5) = b5E�4+�5,��2 Æ t�4(E�5) = b5��2 (E�4+�5) = b5k�1E�2+�4,

t�4 Æ ��2 (E�5) = t�4(E�2) = b2E�2+�4,
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for someb2, b5, k 2 C with jb2j = jb5j = jkj = 1. Puta := b2k=b5. Then we have

��2 Æ t�4(E�2) = at�4 Æ ��2 (E�2), ��2 Æ t�4(E�5) = a�1t�4 Æ ��2 (E�5).

Hence we havet�1�4
Æ ��2 Æ t�4 = ��2 Æ �K3 Æ �s(K2�K5), wherea = es�p�1. Note thats 2 Z

since (t�1�4
Æ ��2 Æ t�4)

2 = Id, and thus we may assumes = 0 or 1. If s = 0, then we

have t�1�4
Æ ��2 Æ t�4 Æ �K1+K8 = t�1�4

Æ ��2 Æ �K1+K8 Æ t�4 = ��2 Æ �K1+K3+K8, which contradicts

Proposition 5.1. Thust�1�4
Æ ��2 Æ t�4 = ��2 Æ �K3 Æ �K2�K5 and

t�1�4
Æ ��2 Æ �K1+K8 Æ t�4 = t�1�4

Æ ��2 Æ t�4 Æ �K1+K8 = ��2 Æ �K3+K2�K5+K1+K8

= ��2 Æ �K1+K3+K8 Æ �K7 Æ �K2�K5+K7

= ��2 Æ �K1+K3+K8 Æ � Æ �(�(1=2)K6+K7)+(K2�K5+K7)).

It is easy to see that
p�1h :=

p�1(�(1=2)K6+K7+K2�K5+K7) is a (�1)-eigenvector
of ��2 . Thereforet�1�4

Æ ��2 Æ �K1+K8 Æ ��4 = ��(1=2)h Æ ��2 Æ �K1+K3+K8 Æ � Æ �(1=2)h, which

implies ��2 Æ �K1+K8 � ��2 Æ �K1+K3+K8 Æ � . Moreover since

��2 Æ �K1+K8 Æ � � ��2 Æ �K1+K3+K8 Æ � 2 = ��1 Æ ��2 Æ �K1+K3+K8 Æ � ,

we have��2 Æ �K1+K8 Æ � � ��2 Æ �K1+K3+K8. We have thus proved (9.4).
Finally, by usingt�8 2 Int(h), we shall show that��2 Æ �K1+K3+K4 � ��2 Æ �K1+K3+K4 Æ� . It is easy to see that��2 Æ t�8(E�i ) = t�8 Æ ��2 (E�i ), i = 1, : : : , 6, and

��2 Æ t�8(E�7) = b7��2 (E�7+�8) = b7kE�0+�8,

t�8 Æ ��2 (E�7) = t�8(E�0) = b0E�0+�5,

for someb0, b7, k 2 C with jb0j = jb7j = jkj = 1. By an argument similar to the above,
we obtaint�1�8

Æ��2 Æ t�8 = ��2 or ��2 Æ�K7. If t�1�8
Æ��2 Æ t�8 = ��2 , then sincet�8(K1) = K1,

t�8(K8) = K7� K8, it follows that

��2 Æ �K1 Æ �K8 = t�1�8
Æ ��2 Æ t�8 Æ �K1+K8 = t�1�8

Æ ��2 Æ �K1+K7+K8 Æ t�8

= t�1�8
Æ ��2 Æ �K1+K8 Æ � Æ �K7�(1=2)K6 Æ t�8.

Therefore��2 Æ�K1+K8 � ��2 Æ�K1+K8 Æ� since
p�1(K7� (1=2)K6) is a (�1)-eigenvector

of ��2 . This contradicts Proposition 5.1, and hencet�1�8
Æ ��2 Æ t�8 = ��2 Æ �K7. Thus

t�1�8
Æ ��2 Æ �K1+K3+K4 Æ t�8 = t�1�8

Æ ��2 Æ t�8 Æ �K1+K3+K4 = ��2 Æ �K1+K3+K4 Æ �K7

= ��2 Æ �K1+K3+K4 Æ � Æ �K7�(1=2)K6 � ��2 Æ �K1+K3+K4 Æ � ,

which implies��2 Æ �K1+K3+K4 � ��2 Æ �K1+K3+K4 Æ � .
The case whereg = e7 and � = �(1=2)K4. We consider��3 Æ �K1+K2, ��3 Æ �K2+K6,��3 Æ �K1+K2 Æ � and ��3 Æ �K2+K6 Æ � (see Proposition 5.1). Let' be the automorphism
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of g given by (5.11). It follows from (5.9) and (5.11) that' Æ ��3 = ��3 Æ '. Since'(K1 + K2) = K2 + K6� 4K7 and '(K4) = K4� 4K7, we have' Æ � = � Æ ' and

' Æ ��3 Æ �K1+K2 Æ '�1 = ��3 Æ �K2+K6,

and therefore

' Æ ��3 Æ �K1+K2 Æ � Æ '�1 = ' Æ ��3 Æ �K1+K2 Æ '�1 Æ � = ��3 Æ �K2+K6 Æ � .

Thus we obtain��3 Æ �K1+K2 � ��3 Æ �K2+K6 and ��3 Æ �K1+K2 Æ � � ��3 Æ �K2+K6 Æ � .
Next considering reflectiont�1 2 Int(su�1(2)) � Int(h), we get t�1(E�i ) = E�i for

i = 2, 4, 5, 6, 7 because�1� �i are not roots. Put� := �1 + �2 + 2�3 + 3�4 + 2�5 + �6.
Then ��3 (�4) = � and � � �1 =2 �(gC, tC). Hence we havet�1(E�) = E� . Since

���3 Æ t�1(E�1) = b1��3 (E��1) = �b1E��1,
t�1 Æ ��3 (E�1) = �t�1(E�1)) = �b1E��1,���3 Æ t�1(E�3) = b3��3 (E�1+�3) = b3kE�0+�1,
t�1 Æ ��3 (E�3) = t�1(E�0)) = b0E�0+�1,

for someb0, b1, b3, k 2 C with jb0j = jb1j = jb3j = jkj = 1, there existss 2 R such that
t�1�1
Æ��3 Æt�1 = ��3 Æ�sK3. Moreover, since (t�1�1

Æ��3 Æt�1)
2 = Id and��3 (K3) =�3K3+2K4,

we gets 2 Z, and thust�1�1
Æ ��3 Æ t�1 = ��3 or ��3 Æ �K3. If t�1�1

Æ ��3 Æ t�1 = ��3 , then

��3 Æ �K1+K6 = t�1�1
Æ ��3 Æ t�1 Æ �K1+K6 = t�1�1

Æ ��3 Æ �t�1 (K1+K6) Æ t�1

= t�1�1
Æ ��3 Æ �K1+K3 Æ �K6 Æ t�1 = t�1�1

Æ ��3 Æ �K1+K6 Æ �K3 Æ t�1

= t�1�1
Æ ��3 Æ �K1+K6 Æ � Æ �K3�(1=2)K4 Æ t�1.

Put � := �(1=2)(K3�(1=2)K4). Then sinceK3 � (1=2)K4 is a (�1)-eigenvector of��3 , it is
easy to see that

��3 Æ �K1+K6 = t�1�1
Æ ��1 Æ ��3 Æ �K1+K6 Æ � Æ � Æ t�1.

Because�Æ t�1 2 Int(h), it follows that ��3 Æ�K1+K6 � ��3 Æ�K1+K6 Æ� , which contradicts
Proposition 5.1. Hencet�1�1

Æ ��3 Æ t�1 = ��3 Æ �K3, and

t�1�1
Æ ��3 Æ �K2+K6 Æ t�1 = t�1�1

Æ ��3 Æ t�1 Æ �K2+K6 = ��3 Æ �K3 Æ �K2+K6

= ��3 Æ � Æ �2 Æ �K2+K6 = ��3 Æ �K2+K6 Æ � Æ �2

= ��1 Æ ��3 Æ �K2+K6 Æ � Æ �,

since t�1(K2 + K6) = K2 + K6 and ��3 (K3� (1=2)K4) = �(K3� (1=2)K4). Consequently
we obtain��3 � ��3 Æ �K3 and ��3 Æ �K2+K6 � ��3 Æ �K2+K6 Æ � .
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10. Classifications

From Propositions 5.1, 6.1, 7.1 and 8.1 together with the results in Section 9,
we obtain the following theorem which gives the complete classification of involutions
preservingh.

Theorem 10.1. Let (G=H , h , i, � ) be a Riemannian4-symmetric space such that
G is compact and simple. Suppose that� = Ad(exp(�=2)

p�1K i ) for some�i 2�(gC, tC)
with mi = 3 or 4. Then the followingTables 5, 6, 7and 8 give the complete lists of
the equivalence classes withinAuth(g) of involutions� satisfying� (h) = h.

Table 5. dimz = 0, � Æ � = ��1 Æ � , � = �(1=2)H and k = g� .
(g, h, H ) � k h\ k��1 so(16) so(8)� so(2)

(e8, su(8)� su(2), K3) ��1 Æ �K6 e7 � su(2) sp(4)� so(2)��1 Æ �K6+(1=2)K3 so(16) sp(4)� so(2)

(e8, so(10)� so(6), K6)

��2 so(16) (so(5) +so(5))� (so(3) +so(3))��2 Æ �K1+K8 e7 � su(2) (so(7) +so(3))� so(5)��2 Æ �K1+K3+K4 e7 � su(2) so(9)� (so(3) +so(3))��2 Æ �K1+K3+K8 so(16) (so(7) +so(3))� so(5)

(e7, so(6)� so(6)� su(2), K4)

��3 su(8) (so(3) +so(3))� (so(3) +so(3))� so(2)��3 Æ �K1+K2 so(12)� su(2) so(5)� (so(3) +so(3))� su(2)��3 Æ �K1+K6 e6 � R so(5)� so(5)� su(2)��3 Æ �K1+K6+(1=2)K4 su(8) so(5)� so(5)� su(2)��3 Æ ' so(12)� su(2) so(6)� so(2)��3 Æ ' Æ �(1=2)K4 su(8) so(6)� so(2)��4 sp(3)� su(2) (so(3) +so(3))� so(2)

(f4, so(6)� so(3), K3) ��4 Æ �K1+K4 so(9) so(5)� so(3)��4 Æ �K1+K4+(1=2)K3 sp(3)� su(2) so(5)� so(3)

' : E�1 7! E�6 , E�2 7! E�2 , E�3 7! E�5 , E�4 7! E�4 , E�7 7! E�0��1 : E�1 7! �E�1 , E�2 7! E�0 , E�3 7! c1E�1 , E�4 7! E�8 , E�5 7! E�7 , E�6 7! �E�6 ,
(�1 = �1 + 2�2 + 3�3 + 4�4 + 3�5 + 2�6 + �7)��2 : E�1 7! �E�1 , E�2 7! E�5 , E�3 7! �E�3 , E�4 7! �E�4 , E�6 7! c2E�2 , E�7 7! E�0 ,
E�8 7! �E�8 , (�2 = �1 + �2 + 2�3 + 3�4 + 3�5 + 3�6 + 2�7 + �8)��3 : E�1 7! �E�1 , E�2 7! �E�2 , E�3 7! E�0 , E�4 7! c3E�3 , E�5 7! E�7 , E�6 7! �E�6 ,
(�3 = �1 + �2 + 2�3 + 3�4 + 2�5 + �6)��4 : E�1 7! �E�1 , E�2 7! E�0 , E�3 7! c4E�4 , E�4 7! �E�4 , (�4 = �1 + 2�2 + 3�3 + �4)
whereci (i = 1, 2, 3, 4) is some complex number withjci j = 1.
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Table 6. dimz = 1, � Æ � = ��1 Æ � , � = �(1=2)H and k = g� .
(g, h, H ) � �1 (g�, k) h\ k

(e8, su(8)� R, K2) E8 �2 (e8(8), so(16)) so(8)

(e8, e6 � su(2)� R, K7)
E8 �7 (e8(8), so(16)) sp(4)
F4 �7 (e8(�24), e7 � su(2)) f4

(e7, su(6)� su(2)� R, K3)
E7 �3 (e7(7), su(8)) so(6)� so(2)
F4 �3 (e7(5), so(12)� su(2)) sp(3)� so(2)

(e7, su(5)� su(3)� R, K5) E7 �5 (e7(7), su(8)) so(5)� so(3)

(e6, su(3)� su(3)� su(2)� R, K4)
E6 �4 (e6(6), sp(4)) so(3)� so(3)� so(2)
F4 �4 (e6(2), su(6)� su(2)) su(3)� su(2)

(f4, su(3)� su(2)� R, K2) F4 �2 (f4(4), sp(3)� su(2)) so(3)� so(2)
(g2, su(2)� R, K1) G2 �1 (g2(2), su(2)� su(2)) so(2)

Table 7. dimz = 0, � Æ � = � Æ � , � = �(1=2)H and k = g� .
(g, h, H ) h (� = �h) k h\ k

(e8, su(8)� su(2), K3)

K1 so(16) su(8)� so(2)
K3 e7 � su(2) su(8)� su(2)
K4 e7 � su(2) sp(4)� su(2)
K6 so(16) s(u(4) +u(4))� su(2)
K3 + K4 so(16) sp(4)� su(2)
K3 + K6 e7 � su(2) s(u(4) +u(4))� su(2)
K1 + K4 e7 � su(2) s(u(6) +u(2))� so(2)
K1 + K6 so(16) s(u(6) +u(2))� so(2)

(e8, so(10)� so(6), K6)

K1 so(16) (so(8) +so(2))� so(6)
K3 e7 � su(2) (so(6) +so(4))� so(6)
K6 so(16) so(10)� so(6)
K8 e7 � su(2) so(10)� (so(4) +so(2))
K1 + K8 e7 � su(2) (so(8) +so(2))� (so(4) +so(2))
K2 + K7 e7 � su(2) u(3)� u(5)
K3 + K8 so(16) (so(6) +so(4))� (so(4) +so(2))
K2 + K6 + K7 so(16) u(3)� u(5)
K1 so(12)� su(2) so(6)� (so(4) +so(2))� su(2)
K2 su(8) so(6)� so(6)� so(2)
K4 so(12)� su(2) so(6)� so(6)� su(2)
K1 + K2 e6 � R so(6)� (so(4) +so(2))� so(2)

(e7, so(6)� so(6)� su(2), K4) K1 + K6 so(12)� su(2) (so(4) +so(2))� (so(4) +so(2))� su(2)
K3 + K7 su(8) u(3)� u(3)� su(2)
K1 + K2 + K6 su(8) (so(4) +so(2))� (so(4) +so(2))� so(2)
K2 + K3 + K7 so(12)� su(2) u(3)� u(3)� so(2)
K3 + K4 + K7 e6 � R u(3)� u(3)� su(2)

(f4, so(6)� so(3), K3)

K1 sp(3)� su(2) (so(4) +so(2))� so(3)
K3 so(9) so(6)� so(3)
K4 so(9) so(6)� so(2)
K1 + K4 sp(3)� su(2) so(6)� so(2)

(g, h, H ) � k h\ k' e6 � R so(16)� sp(1)
(e7, so(6)� so(6)� su(2), K4) ' Æ �K2 su(8) so(16)� so(2)' Æ �K4 su(8) so(16)� sp(1)

' is the same involution as in Table 5.
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Table 8. dimz = 1, � Æ � = � Æ � , � = �(1=2)H and k = g� .
(g, h, H ) h (� = �h) k h\ k

(e8, su(8)� R, K2)

K1 so(16) s(u(7) +u(1))� R

K2 so(16) su(8)� R

K3 e7 � su(2) s(u(6) +u(2))� R

K4 e7 � su(2) s(u(5) +u(3))� R

K5 so(16) s(u(4) +u(4))� R

K8 e7 � su(2) s(u(7) +u(1))� R

K2 + K3 e7 � su(2) s(u(6) +u(2))� R

K2 + K4 so(16) s(u(5) +u(3))� R

(e8, e6 � su(2)� R, K7)

K1 so(16) (so(10) +R)� su(2)� R

K2 so(16) (su(6) +su(2))� su(2)� R

K7 e7 � su(2) e6 � su(2)� R

K8 e7 � su(2) e6 � so(2)� R

K1 + K7 e7 � su(2) (so(10) +R)� su(2)� R

K1 + K8 e7 � su(2) (so(10) +R)� so(2)� R

K2 + K7 e7 � su(2) (su(6) +su(2))� su(2)� R

K2 + K8 so(16) (su(6) +su(2))� so(2)� R

K1 so(12)� su(2) su(6)� so(2)� R

K2 su(8) s(u(5) +u(1))� su(2)� R

K3 so(12)� su(2) su(6)� su(2)� R

K4 so(12)� su(2) s(u(4) +u(2))� su(2)� R

K5 su(8) s(u(3) +u(3))� su(2)� R

(e7, su(6)� su(2)� R, K3) K7 e6 � R s(u(5) +u(1))� su(2)� R

K1 + K2 e6 � R s(u(5) +u(1))� so(2)� R

K1 + K4 so(12)� su(2) s(u(4) +u(2))� so(2)� R

K1 + K5 su(8) s(u(3) +u(3))� so(2)� R

K3 + K4 so(12)� su(2) s(u(4) +u(2))� su(2)� R

K3 + K5 e6 � R s(u(3) +u(3))� su(2)� R

K1 so(12)� su(2) s(u(4) +u(1))� su(3)� R

K3 so(12)� su(2) s(u(3) +u(2))� su(3)� R

K5 su(8) su(5)� su(3)� R

K6 so(12)� su(2) su(5)� s(u(2) +u(1))� R

K7 e6 � R su(5)� s(u(2) +u(1))� R

(e7, su(5)� su(3)� R, K5) K1 + K5 su(8) s(u(4) +u(1))� su(3)� R

K1 + K6 so(12)� su(2) s(u(4) +u(1))� s(u(2) +u(1))� R

K1 + K7 e6 � R s(u(4) +u(1))� s(u(2) +u(1))� R

K3 + K5 e6 � R s(u(3) +u(2))� su(3)� R

K3 + K6 so(12)� su(2) s(u(3) +u(2))� s(u(2) +u(1))� R

K3 + K7 su(8) s(u(3) +u(2))� s(u(2) +u(1))� R
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(e6, su(3)� su(3)� su(2)� R, K4)

K1 so(10)� R s(u(2) +u(1))� su(3)� su(2)� R

K4 su(6)� su(2) su(3)� su(3)� su(2)� R

K5 su(6)� su(2) s(u(2) +u(1))� su(3)� su(2)� R

K1 + K2 so(10)� R s(u(2) +u(1))� su(3)� so(2)� R

K1 + K5 su(6)� su(2) s(u(2) +u(1))� s(u(2) +u(1))� su(2)� R

K2 + K4 su(6)� su(2) su(3)� su(3)� so(2)� R

K1 + K2 + K5 su(6)� su(2) s(u(2) +u(1))� s(u(2) +u(1))� so(2)� R

K1 + K4 + K5 so(10)� R s(u(2) +u(1))� s(u(2) +u(1))� su(2)� R

K1 sp(3)� su(2) su(3)� so(2)� R

K2 sp(3)� su(2) su(3)� su(2)� R

(f4, su(3)� su(2)� R, K2) K4 so(9) s(u(2) +u(1))� su(2)� R

K1 + K3 sp(3)� su(2) s(u(2) +u(1))� so(2)� R

K2 + K4 sp(3)� su(2) s(u(2) +u(1))� su(2)� R

(g2, su(2)� R, K1)
K1 su(2)� su(2) su(2)� R

K2 su(2)� su(2) so(2)� R

(g, h, H ) � k h\ k f4 su(3)� su(2)� sp(1)� R

(e6, su(3)� su(3)� su(2)� R, K4)  Æ �K2 sp(4) su(3)� su(2)� so(2)� R Æ �K4 sp(4) su(3)� su(2)� sp(1)� R

 : E�1 7! E�6 , E�2 7! E�2 , E�3 7! E�5 , E�4 7! E�4



INVOLUTIONS OF 4-SYMMETRIC SPACES 689

References

[1] M. Berger: Les espaces symétriques noncompacts, Ann. Sci. École Norm. Sup. (3)74 (1957),
85–177.

[2] N. Bourbaki: Groupes et Algébres de Lie, Chapitre 4, 5 et 6, Masson, Paris, 1981.
[3] H. Freudenthal and H. de Vries: Linear Lie Groups, Academic Press, New York, 1969.
[4] P.B. Gilkey and G.M. Seitz:Some representations of exceptional Lie algebras, Geom. Dedicata

25 (1988), 407–416.
[5] A. Gray: Riemannian manifolds with geodesic symmetries of order3, J. Differential Geometry

7 (1972), 343–369.
[6] S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press,

New York, 1978.
[7] J.A. Jiménez:Riemannian4-symmetric spaces, Trans. Amer. Math. Soc.306 (1988), 715–734.
[8] V.G. Kac: Infinite-Dimensional Lie Algebras, third edition, Cambridge Univ. Press, Cam-

bridge, 1990.
[9] S. Kaneyuki and H. Asano:Graded Lie algebras and generalized Jordan triple systems, Nagoya

Math. J.112 (1988), 81–115.
[10] S. Murakami: Sur la classification des algèbres de Lie réelles et simples, Osaka J. Math.2

(1965), 291–307.
[11] H. Naitoh: Compact simple Lie algebras with two involutions and submanifolds of compact

symmetric spaces, I, II, Osaka J. Math.30 (1993), 653–690, 691–732.
[12] H. Naitoh: Grassmann geometries on compact symmetric spaces of general type, J. Math. Soc.

Japan50 (1998), 557–592.
[13] K. Tojo: Totally real totally geodesic submanifolds of compact3-symmetric spaces, Tohoku

Math. J. (2)53 (2001), 131–143.
[14] K. Tojo: Classification of totally real and totally geodesic submanifolds of compact3-symmetric

spaces, J. Math. Soc. Japan58 (2006), 17–53.
[15] J.A. Wolf and A. Gray: Homogeneous spaces defined by Lie group automorphisms, I, II, J.

Differential Geometry2 (1968), 77–114, 115–159.

Hiroyuki Kurihara
Department of Computer and Media Science
Saitama Junior College
Hanasaki-ebashi, Kazo, Saitama 347–8503
Japan
e-mail: kurihara@sjc.ac.jp
Current address:
5–15–5 Hanamigawaku-makuharihongou
Chiba 262–0033
Japan
e-mail: h-kuri@leo.nit.ac.jp

Koji Tojo
Department of Mathematics
Chiba Institute of Technology
Shibazono, Narashino, Chiba 275–0023
Japan
e-mail: tojo.koji@it-chiba.ac.jp


