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1. Introduction

Let X 7 be a fractional Brownian motion with index 7 (0 < 7 < 1). That is, X 7

is a real-valued centered Gaussian process such that

E[XΊ(t)XΊ(s)} = \{t2Ί + S2Ί - \ t - S\2Ί), 5, t > 0,

or equivalently,

X 7 (0) = 0, and E[(XΊ{t) - X 7 (s)) 2 ] = \t - s | 2 τ , M > 0.

If 7 — 1/2, then XΊ is the ordinary Brownian motion. From the definition of frac-

tional Brownian motion, it is easy to see that it has self-similarity, i.e., {XΊ(ct)} =

{cΊXΊ{t)} for every c > 0.

A d-dimensional fractional Brownian motion is defined to be an Revalued Gaussian

process

x(t) ~x^d{t) = (x?(t),xχt),...,xi(t))

where X ^ X ^ , . . . are independent copies of X 7 . We shall consider only the case

when fractional Brownian motion has jointly continuous local times which means the

sample paths are point recurrent case, i.e., 0 < yd < 1.

Let d > 2. Suppose f{x) > 0 be a bounded integrable function on Mrf such that

/ := J R d f[χ)dx φ 0. We denote by lΊ^{t,x) the local time of fractional Brownian

motion X 7 ' d , then putting a = 1 - ηd,

± £ f(X(s))ds ±±£ \f{X<X{u))du
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(1.1) A [ f{y)dyίΊ,d(t,O) as λ oo

over the function space C([0, oo)).

The aim of the present paper is to extend (1.1) for a certain class of Gaussian

process instead of fractional Brownian motion.

2. Main Theorem

Let ξ(t) be a centered Gaussian process with stationary increments and £(0) = 0.

Put φ{h) = E[(ξ(t+h) - ξ(t))2] for every t, h > 0. We shall assume that φ(t) varies

regularly at infinity, that is φ(i) = t2yL(t), where L(t) is a slowly varying function,

i.e., lirriί-^oo L(ct)/L(t) — 1 for every c > 0. We also assume that φ(t) is concave

on [0, oo). Notice that a fractional Brownian motion XΊ with 7 < 1/2 satisfies this

condition with L(t) — 1.

As the same way as we defined a d-dimensional fractional Brownian motion, de-

fine Md-valued Gaussian process

where Yι(t),... ,Yd(i) are independent copies of ξ(t). Throughout the paper we shall

assume that all components are equally distributed, though it is not essential. In fact

the independence of the coordinates is not crucial, either. However, for simplicity, we

shall not go into details here. Our main result is the following.

Theorem. Let d > % and 0 < ηd < 1. Suppose f(x) > 0 be a bounded inte-

grable function on Rd such that f := / R d f(x)dx φ 0. Then

X t ± as λ -> 00,(2.1) Aχ(t):= {φW)d/2 [Xtf(Y(u))du-±>fίΊtd(t,0),
λ Jo

where "C" denotes the convergence in law on the function space C([0,00)), and

ί7,d(£, 0) is the local time of a fractional Brownian motion XΊ'd as before.

We remark that £γ,d(£, 0) in Theorem is not the local time of y , but that of frac-

tional Brownian motion X 7 ' d .
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3. Proof of Theorem

DEFINITION 3.1. Throughout the paper, we set t0 = 0 and let 0 < t\ < t2 <

... <tn, and Atj = tj - tj-ι,j - 1,... ,n.

We denote by C(tι,t2,..., tn) the covariance matrix of

and for every λ > 0, we put

We also denote by Cλ(ti,ί2, ?*n) the covariance matrix of

Since y}(l < j < d) are equally distributed, C\(tχ,.. .,tn) is the nd x nd matrix

such that

c λ =

0 CxJ

l^ei Xj — ^x^ , . . . , Xj ) t iK. , j — i , . . . , /i, men

So,

x =

ί
.(1)

€ R ,

Without loss of generality, we may and do assume that f(x) vanishes outside a com-
pact set (see Kόno [5]). By the assumption that f(x) > 0, the continuity of the lim-
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iting process leads to the tightness. Therefore, it is enough to show the weak con-

vergence of all finite-dimensional distributions. To this end, we shall use Bingham's

method(see [1]), which is to show the convergence of the Laplace transforms.

/»OO rC

(3.1) lim s1...sn / . . . /
λ-+°° Jo Jo

= sι...sn ... e i
Jo Jo

Let us consider the special case of fractional Brownian motion, in which case we have,

by (1.1), that Aχ(t) —> /£y,d(ί,0). Therefore, we shall evaluate the left side of (3.1)

compared with the case of fractional Brownian motion XΊ>d and show that (3.1) holds

for a certain class of Gaussian process Y.

Integrating by parts, the left side of (3.1) may be rewritten as

/•oo />oo r n I

(3.2) lim / . . . / φ(λ)nd'2e-Σ'ίtίE\]lf(Y(λtj))\dt1...dtn.x^°°Jo Jo lj=1 J

Here, we define

By the symmetry of domain of integration in (3.2), it is enough to calculate the val-

ue of lirriλ->.oo Φn ( s i , . . . , sn). Considering that Y(t) is a Gaussian process, we have

only to evaluate the following:

(3.4) lim [-[φ(\)n

λ->ooJ J

d/2e-Σs^e
0<*i<...<ίn

f f exp{-l/2(Cx(tu ...,fn)""1*,*)}
J ' Ί (2π)"dx

Rdx...xRd

xf(xi)...f(xi + . . . +xn)dxι ...dxndtι ...dtn.

Lemma 3.1. For every M > 1, let

G(n;M) = {( ί i , . . . , ί n ) 6 Rn \ Atj > M,Vj = 1,...,«},

then for every K > 1,

lim sup sup{(C(tι,...,tn)-ιx,x)\x eRn,\x\<K} = 0.
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Proof. As in the proof of Lemma 3.7 in [3], we have

which proves the assertion. •

Lemma 3.2. For 1 < i, j < n, and for every 0 < t\ < . . . < tn,

(3.5) lim

λ-+oo

= \{\tj-i ~ hi2-1 + \tj - ίi-i|27 - \tj -

Proof. By the definition of C\(tι,... ,tn) and the property of regularly varying

function, we have

lim

- φ(Xtj - Xti) - φ(Xtj-i

= lim —-—{φ(χtj_1 - XU) + ψ{Xtj - XU-

•

Notice that the right side of (3.5) is exactly the same element of covariance matrix

of {XΊ{tj) - Xy(tj-ι)}^=li where XΊ is the fractional Brownian motion as before.

Lemma 3.3. For sufficiently large λ, and every e > 0 such that e < (2/d —

2 7) Λ (27),

*j Λ

> 0 w some constant which does not depend on λ.

Proof. Applying Lemma 3.3 in [2], we have

det Cχ{tu ..., tn) > 2~n Γ f[ φ{Xtj - λ^ -iΛ .
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Therefore,

φ(X)nd/2

2n

Π?=i
L(X)nd'2

Notice that L(λ)/L(λΔtj) is also a slowly varying function. When XAtj is small,

the following inequation is shown in [6]: Consider y{< 1) an arbitrary positive small

number. Then for every η (0 < η < 1),

(3.6) lim sup ΓΆdt <M Γ
Jo L(xt) Jo

where M does not depend on y. According to (3.6), we have only to consider the

case when XAtj is large enough. For some C<ι > 0, every e > 0, and sufficiently

large

L(X)

Therefore,

L(X)

L(XAtj)

nd/2

Π Δ^IUJ v U j
,d/2

°2

and this proves the assertion. D

Now we are ready to prove Theorem. From Lemma 3.3, we can apply domina-

ted convergence theorem to (3.4). From Lemma 3.2, we obtain that (3.4) has the same

limiting law as the case of fractional Brownian motion, i.e., Y(t) = XΊ>d(t), for 7 <

1/2; and thus the assertion follows.
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