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1. Introduction

The Gevrey well possedness for the weakly hyperbolic equations has been studied
by many people (see [1], [S], [13], [16] etc.). They got the results concerned with the
relation between the order of Gevrey classes and the maximal multiplicity of charac-
teristic roots.

While E. Colombini, E. Jannelli, S. Spagnolo and T. Nishitani gave the interesting
results concerned with the relation between the order of Gevrey classes and the regu-
larity of the coefficients for the second order weakly hyperbolic equations (see [3],
(12)).

But there are few papers for the weakly hyperbolic systems. K. Kajitani got
the Gevrey well possedness for the weakly hyperbolic systems with Leray-Volevich’s
weights (see [8]). As for the analytic well posedness P. D’ancona and S. Spagnolo
treated the nonlinear weakly hyperbolic systems (see [4]). Moreover E. Jannelli treated
the weakly hyperbolic systems with the coefficients which belong L, (see [6]).

For the strictly hyperbolic systems E. Jannelli got the result concerned with the
relation between the order of Gevrey classes and the regularity of the coefficients (see
[7]). With a differnt method M. Cicognani also got this result for the strictly pseudo-
differential systems (see [2]). In this paper, we shall extend this result to the weak-
ly hyperbolic systems and investigate the relation among the Gevrey wellposednes and
the regularity and the form of the matrices of the coefficients.

We shall consider the following system in [0,7] x R?

Opu =) An(t)Bhu + B(t)u
O h=1

u(0,z) = uo(z),

where Ap(t)(1 < h < n), B(t) are N x N matrices, while u(t,z), up(z) are N-
vectors.
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We denote by C°([0,T])(0 < o < 1) the space of o-Holder continuous functions.
Now we assume that

) Ap(t) (1 < h <n) € C7([0,T)), B(t) € C°([0,T))

and (1) is weakly hyperbolic, i.e.,

3) Z Ap(t)€nhas real eigenvalues (allowing multiplicity) for ¥¢ € [0,T], V¢ € R{.
h=1

We shall treat the following two cases.
Case 1. No condition is imposed.
Cask 2. There exists a non-singular matrix P(t,&) such that

P(t,€)A(t,€)P(t,§)~" = diag{D1, D2,--- D} (1 <7k < N)
|P(t, )] + |P(t,§) 7| <7C for t € [0,T), €] =1,

where D; (1 < j < k) are the triangular matrices whose diagonal components are real
and whose sizes are m; X m;.
We introduce the space of Gevrey functions as follows.
L2, (RY) = {u(e) € L*(R2);e"O%a() € LA(RY)},

where (&), = (I +v%)/* (v >0).
Then we get the following result.

Theorem. Let 0 < pg < 0o and vy > 0. Assume that the coefficients Ax(t)(1 <
h < n) and B(t) satisfy (2), (3) and case 1 (resp. case 2). Then there exists v >
0 such that for any uy € L? (R™), the Cauchy problem (1) has unique solution

PO,K,V0
u(t,z) € C*([0,T), L2, . ,(R"), provided

1,K,V

p(l+o071)

4 0 <po, 1 <——7T—— 7
“ <p<po, l<s< RN

where u is equal to the dimension of the system, i.e.,
&) p=N

(resp. the maximal sizes of D; (1 <j <k), ie,

(6) K= Imax m

), and s = k1.
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We remark that by taking the parameter v > 0 large, p; (the convergence radius
of the Gevrey solution) does not decrease with time and also can be chosen arbitrarily
close to pg.

In case 1, we find that “No condition is imposed” means that the multiplicity of
eigenvalues of Y p_, Ax(t)€s is variable. As for case 2 the following examples can
be also treated.

ExampLE 1. The multiplicity of eigenvalues of > ,_, An(t)& is independent of
t, & ie,

det (/\ -3 Ah(t)£h> =TI, (A = Xi(t, €)™ for Yt € [0,T], ¢ € RE
h=1
with 1 <Fk < N, 3m; € N' (1 <i<k), where \i(t,€) (1<i<k)

satisfy that if ¢ # j, A;i(¢,&) # A;(¢,€) for t € [0,T], |£] =1.

We shall show in Appendix that Ex 1 is included by case 2 and p is equal to the
maximal multiplicity of the eigenvalues of }:::1 An(t)€n, ie., p = max;<i<k M.

ExampLE 2. The multiplicity of factors of all the elementary divisors of
> n_i An(t)&n is independent of t, &, ie.,

er(N) =TI (A = \i(t,€)™) (1 <1< N) for Yt € 0,T], V¢ € R}
with 1 <*k < N, m(i,l) e N! (1 <I< N, 1<i<k), where \;(t,&)
(1 < i < k) satisfy that if i # §, Xi(t,€) # A;(¢,€) for t € [0,T], |¢] = 1.

By Jordan normal form, we can see that D; (1 < j < k) are the Jordan
blocks whose sizes are m(i,l) x m(i,l) (m(i,l) denotes the multiplicity of the fac-
tor (A — ;) of the elementary divisors e;(A) of 3_}_, Axn(t)&) and p is equal to the
maximal multiplicity of factors of the elementary divisors (or the minimal polynomial)
of 3 h_y An(t)én, i€, p = maxicick1<i<ny m(i,1).

When the maximal multiplicity for factors of the minimal polynomial of
Y on—1 An(t)€n is equal to 1 in case 3, the system is symetrizable and K. Kajitani
proved that the Cauchy problem (1) is v*-well posed (1 < s < 1+ ) (see [9]). More-
over when Y p_, Ax(t)€s has real distinct eigenvalues or is Hermitian, the Cauchy
problem (1) is L2-wellposed (see [11]). Concerned with the higher order single equa-
tion, the conditon corresponding to (4) is 1 < s < po~!/(uo~! — 1) (see [13]).
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2. Preliminaries

In this section we shall construct the algebraic lemmas which is necessary to
prove the theorem.

Lemma 1. Let A be a N x N constant matrix which has real eigenvalues A,
A2, -+ AN (allowing multiplicity). Then for ¥n € (0,1], there exists a non-singular
matrix P, such that

Q) P,AP;' = A+R,
where A = diag{A1, A2,---, AN} is Hermitian, and P,, P~ L R, satisfy that
®) IP)| <C1, |P7Y <Con'™™, |Ry| < Can.

The constants Cy, Cy > 0 are independent of A, but C3 > 0 depends on |A|.

Proof. From linear algebra we find that there exists a unitary matrix P such that
©9) PAP7'=A+R

where A = diag{A1, A2, -, An} is Hermitian, and R is a strictly lower triangular
matrix with zeroes on the diagonal (see [15]).
Since |\;] < ]A] (1 <i < N), we get

(10) IR| < [PAP™'| + |4] < C1]AIC: + |A] = (C1C: + 1Al
Defining Q,, = diag{1,7,--- ,nV~1} and putting P, = Q,P, by (9) we have
Py AP = Qy(A+ R)Qy = A+ R,

where R, = Q,RQ;". Hence we get (7).
At last noting that Q! = diag{1,n™%,---,n~V=1}, we can easily estimate P,,

Py 1 as follows

|P,,| < |Q,,||P| <1-C,=0C;.
[P < |PHIQ7Y < Co -t = Con! V.

Here actually C; = Cy = 1 since P is a unitary matrix.
Noting that (R);; = 0 for j > i and (10), we can estimate R, as follows.

— = i—j .
|Ry| = lsr]ng%]v I(Ry)isl = lsl}lg.-’é]v'n (R)sl

< | =

<, max | |(R)yl = iR

< (C1C; +1)|Aln = Csn.
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Hence we get (8). O

Lemma 2. Let A(§) be a N x N matrix which has real eigenvalues \;(£),
A2(8), -+ An(&) (allowing multiplicity), and is continuous and homogeneous of de-
gree one in § € RE. Then for Yn € (0,1), there exists a non-singular matrix Py ()
such that

an Py(&)A(€)P,(6) = A(6) + Ry(6)

where A(€) is Hermitian, and P,(€), P71 (€), R,(€) satisfy that

(12) PO <O, |P(O)7 < Con'™N, |R,(€) < Csmle| for Y€€ RE.
The constant Cs > 0 is independent of €.

Proof. S™~! = {¢ € R?;|¢| = 1} is a compact set, for any fixed € > 0, there
exists a finite partition I'; (1 <i <[ =1(¢)) of S~ such that

sup |6 —&| <e, Ul =851
£1,62€l';,1<:<1

Defining
AED) - |€] for £€#0, —€eT; (1<i<l
A(6) = &) -1l # i ( )
0 for £€=0,
with 3¢(®) € T';, we get from the hypotheses
(13) |A(€) — Ae(€)] < Coel€].

Now we apply Lemma 1 to each constant matrix A(¢(Y)). We can construct, for
In € (0, 1], non-singular matrix P;, such that

(14) P AP = Ai + Ry,

where A; = diag{A;(£9), \2(€D), -, AN(ED)}, |Pigl < Gy, |P}] < Con*™N,
|Ri | < C3n. The constant C3 depends on |A(£())|, however C3 can be taken inde-
pendently of ¢ since |A(£(¥))| is bounded for Y¢() € T;.

Hence, multiplying the both sides of (14) by || and putting

3 .
P,,(f):{Pi’" for & #0, mGr‘i 1<i<)

0 for £€=0,
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- ¢ .
A(E):{A’K' for &76()7@5[‘,' (1<i<
0 for ¢€=0,

R,

(S)z{Ri,nlfl for 57’50,1%€F,~ (1<i<l)
0 for £€=0,

we obtain

Py()Ac () Py(&) ™! + Py()(A(E) — Ac(©) Py (97"
A(€) + Ry (€)

Py(&) AP ()"

where A(¢) is Hermitian, and P,(¢), P,(€)~1, R, (¢) satisfy that

|Py(€) < Cry  |Py()7H <t
[Ry ()] = [Ry,(€) + Py(€)(A(E) — Ac(€))Pn(€) 7Y
< Canlé] + C1|A(€) — A (8)|Coan* N
using (13) and taking € = n",
< (Cs + C1C2C6)n¢|
= Csnl¢].

Hence we get (11), (12). O
Lemma 3. Let T > 0, A(t,£) be a N x N matrix which has real eigenvalues

AL(t,8), A2(t, &), -+ AN(L, &) (allowing multiplicity), and is o-Holder continuous in

t € [0,T), and continuous and homogeneous of degree one in ¢ € R}. Then for Yne

(0,1), there exists a non-singular matrix P,(t,€) such that

as) Py(t, ) At )Py (t,€) = A(t,€) + Ry (t,€)

where A(t,€) is Hermitian, and Py(t,€), Pyl(t,€), Ry(t,€) satisfy that

(]6) IPn(t’g)' S Cl; 'Pﬂ(ta 6)_-1] S C2771—Nv an(t:E)l S C77’|€|

t
an / Ian(s,é)Ids < 2C1ty~ N
0 63

for Yt e [0,T], YéeRZ.

Proof. Since £ € R? is fixed to the end of the proof, we shall omit the letter
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For any fixed 7 > 0, we take a finite collection of disjoint intervals I; (1 < i <
l=[t/r] + 1) of [0,¢] such that

_ [(—Drir) for1<i<i-1
T Any fori=1t

Defining A, (t) = A(t®)) for t € I, (1 < i < 1) with 3t() ¢ I;, we get from the
hypothesis,

(18) |A(t) — A-(t)] < Cs77[€].
Now applying Lemma 2 to each matrix A(t(*)), we can get
P A(t)P )l = A; + R;,,
where A; is Hermitian,
|Piy| < C1, P | < Con™™N,  |Rijyl < Csnlg).
Hence putting

P,(t)=PF,, fortel,;, (1<i<l),
Ait) = A; fortel; (1<i<l),
R;I(t) = Ri,n fort € I; (1 <i< l),

we obtain
(9 Py (AP, (0" = A(t) + Ry(t),
where A(t) is Hermitian, and

(20) |Py(t)] < C1,  |Py(8)7H < Con™N
|Ry(t)] = | Ry (1) + Py(t) (A(t) — A (£))Py(8) 7"
< Csmlé] + ClA(t) — A, (1)|Con' ™"
using (18) and taking 7 = n™V/7,

< Crlél.

By (19), (20) we get (15), (16).
It remains the estimate (17). For any fixed 7 > 0, defining with delta function 4(¢)

0;(t)=d8(t—ir) for 1<i<I-1,
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and noting that P, (t) is the piecewise constant function satisfying

|Pig = Pic1,n] S |Pipl +1Pic1,p| £2C1 (2<9 <),

we obtain
t o t -1
il < )
/0 |5 Pa(o)]ds < /0 ;2015,(3)(13
= 20,(I - 1)/ 5(s)ds
t 3 —N/o
=20, H <20, L =20ty N/e,
T T
here we used [*°_6(s)ds =1 and T = n™¥/?. Hence we get (17). O

Lemma 4. Let T > 0, A(t,€) be a NxN matrix which has real eigenvalues (al-
lowing multiplicity), and is o-Hdlder continuous in t € [0,T], and continuous and ho-
mogeneous of degree one in § € Rg. Moreover assume that there exists a non-singular
matrix P(t,£) such that

P(t,§)A(t, £)P(t,£)"! = diag{Dy,Ds,---Di} (1 <Pk < N)
[P(t, )|+ [P(t,6)7| <7C,

where D; (1 < j < k) are the triangular matrices whose diagonal components are
real and whose sizes are m; x m;. Then for Yn € (0,1], there exists a non-singular
matrix Pp(t,§) such that

1) Py (t, )AL )P, (1:€) = A(t,€) + Ry (1,€),
where A(t,€) is Hermitian, and Py(t,€), Py'(t,€), Ry(t,€) satisfy that

(22) |P,(t,8)] < Co, |Py(t,€)7Y < Cron' N, |Ry(t, )| < Cuunlé]
t a /
| g5Pr(o©)|ds < 260t
for Yt € [0,T), V€ € R?, where r = maxi<j<k m;.

Proof.  Since { € Rf is fixed to the end of the proof, we shall omit the letter .

For A(t) using again the disjoint intervals I; (1 <i <1) and A, (t)(= A(t®) for
t € I, with 3t € I,) of Lemma 3, we get (18).

From the assumption, for each matrix A(t(*)), there exists a non-singular matrix
P; such that

P,A(#9) P! = diag{D{",D{?,---D{’} (1 <* < N)
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-1
|P:| + P71 <3C,

where D;i) (1 < j < k) are the triangular matrices whose diagonal components are
real and whose sizes are m; X m;.
Defining

Q77 = diag{l, tet )nml_lala e )"mz_l, """ 9 1, Tty UMk—l},
and putting P; , = Q,P;, we obtain
PipA(t) Pl = Q,PA(tY)PTQ;!
= Q,diag{D{", DY, ---,D{"}Q;"
= Ai + Rna
where A; is Hermitian, and
|Piyl < Co, |P] < Cion' ™", |Rin| < Cranlé].
Hence we can connect the proof of Lemma 3 and get (21), (22). d

3. Proof of Theorem

For the proof of Theorem for case 1, case 2, we use Lemma 3, Lemma 4, respec-
tively. The defference of the result of each Lemma is only the meaning of the param-
eter u. Therefore it is sufficient to prove Theorem in the case 1.

Assuming that u is the solution of (1), we shall derive the energy estimates. By
Fourier transform the system (1) can be changed to the form

(23) 0w = 1A(t,§)v + B(t)v

where A(t,&) = > ph_, An(t)én.

Furtheremore we shall change the system (23). With some function p(t) €
C'([0,T]) and some constant x € (0, 1], putting w(t,£) = Py(t,&)er® &0 y(t,£), and
multiplying the both sides of (22) by P,(t,£)e?®{€)>, we have the following.

OO P, (1,6)8,{e DO P, (t,6) " w(t, £)}
= ie?WEL P, (t,6) A(t, €)e POEL P, (t,€) " w(t, €)
+ e?WEI P, (¢, £) B(t)e PO P, (2, €)  w(t, £).

Then we obtain
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the left side
= OO P (,6) (= (1(€)5)e "V Py (t,€) T w (2, )
+ e”(t)“):P,,(t,§)e_"(t)(5):6t{P,,(t, €) tw(t, €)}
= —p' (€S w(t,) + Py(t, )0 { Py (8, &) w(t, €)}
= —p' (€ w(t,€) + O { Py (t, ) Py (8, ) w(t, €)}
—{0.P, (t, OH Py (t,6) "' w(t, )}
= —p' (1)) Sw(t, €) + Bpw(t, €) — {8 Py (t, ) H{ Po(t,€) " w(t, €)}-

While by Lemma 3 we obtain

the right side
= iPy(t, &) A(t, &) Py(t,€) " w(t, ) + Py(t, &) B(t, &) Py(t, &) "'w(t,€)
= iA(t, )w(t,€) + iRy (t, Ow(t, €) + B(t, w(t, £),

where B(t,£) = P,(t,£)B(t)P,(t, &)L
Thus we get the system

(24) Bpw(t, &) = iA(t, w(t, &) + iRy (t, w(t, &) + o' ()(E) sw(t,€)
+ {0:P, (t, ) H{ Py (t,6) " w(t, €)} + B(t, )w(t, &)

Hence we shall derive the energy estimate. Noting that A(t,£) is Hermitian, by
(16) we get the estimate

(29 SO = Re(drw(s ), u(t,)

= 2Re(iR,w + p'(§)sw + 8, P, - Py 'w + Bw, w)
< 2(Conlé| + /(€)% + Ca|8: Py |n* N + C1C2Cran* V) |w)?

where Ci3 = maxo<i<7 |B(t)|.
Writing the left side of (25) as

d 2 _ d
St O = 2u(t,€)| 5w . 6)]
and deviding the both sides of (25) by 2|w(¢, )|, we get the estimate
d _ -
—lw(t, )] < (Crnlé] + 2" ({)(E)5 + C2l0Py (8, &) 1"~ + C1C2Crsn* M) |w(t, €)].

dt

Moreover by Gronwall’s inequality and (17), we get the estimate

(e, )] < w0, <>|exp{ | e+ prer
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+C3|05 Py (5, &)In* N + 0102013t771—N)d5}

< |w(0, &) exp{Crtnlé| + p(t)(€)y — p(0)(£)y
+2C102t171~_N(1+6_1) -+ 0102013tn1_N}

< Crahw(0,&)| exp{p' (£)(€)5 — p(0)(E)%
+H(Crmlé] + 3C, Cont~N O+ D)},

where Cy4 = exp{p~1¢!~PC;C,C},T}. Here we used
1 1 1

ab < =aP + =b? (l<p,q<oo, -

D q b

and supposing p < 1+ (N —1)/(No™1),

exp{C1C2Custn' "} = exp{ {Cll:gqq—l/q (C'1CzC'l:J,tnl—N)1/11’7)1/111\/”-1 }
X {Cl':sl/qql/q(ClCQClgtnl—-N)l/qn_l/qNU—l }}

IN

exP{%{ the first factor }” + %{ the second factor }4}

- _ _ N -1
= exp{p—lcfs lql pClc2013t’f}l N+(p—1)N }

b eXP{Clcztﬂl_N(Ha_l)}

exp{pnlql_pCHCzCﬁTno} exp{CIC2tn1—N(1+a—l) }

A

Putting
N1l+o71) -1
N(1+o01)
lw(t, )] < C1alw(0,€)| exp{p(t)(€); — p(0)(€)7
+ H(Cr(€); €] + BC1 Cy (€)1 o 1N A+7 ™)}
< Cug|w(0,€)| exp{(€)5 (p(t) - £(0))
+ H(Cr (€)o7 + BC1Ca(€)0(6) ;1NN Thy) }
using (€)5° < ¥ and (£); NI TRNIHTD — ()0 = 1,
< Chalw(0,8)| exp{(€)5 (p(t) — p(0) + Cisv™™"t) },
where C5 = C7 + 3C,C5.
Here if we choose p(t) such that in [0, T
{ p(t) — p(0) + Cisv™ ="t =0
p(0) = po, i.e.,
(27 p(t) = po — Cisv™~"t (t € [0,T)),

(26) 0< ko= <k<1l, p=(&;1r <1,
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where o = wpp + (1 — w)p; for 0 <"w < 1, 0 <¥p; < pp, we have
(28) [w(t, &) < Cra|w(0,&)].
Noting that
[w(0,6)] = |P,(0,§)e”@0(0,)|
< Cie®0(0,¢)],
ot ) = e D@ Py (t,6) " w(t, €)|

< C2n1—Ne—p(t)(£).'f lw(t, €)|
= Oy NP O (s, €)],

(28) is changed to the estimate
(29) ep(‘)(5)5|v(t, 6| < 0102014(5)(1"‘0)(”‘1)ef’°(5):Iv(O, €)).

It holds generally that

(1 = Ko)(V — 1)]’

(30) e *<nlz™ for >0, n =[ p

and for v; > vy
1
(31 (f)ﬁl - <€)ﬁ2 = (- V2)/0 0,,({)';|,,=,,2+9(,,1_,,2)d0

1
= (1 - 1/2)/0 k(va +6(vy — V2))<£>ﬁ;—|?0(ul——vz)d0

= k() — )52 < kRVET2

If we put v = (C15T/{w(po—p1)})/(*~"0) and take 0 < w < min{1,C15T/{(po
—p1)V§~"°}}, we get v > vo. Hence by (30), (31) the right side of (29) is changed
to

(32) the nght Side of (29) S 0162014<E)'(/1—NO)(N—1)6—(P0_ﬁO)(E):
x ePo (O =(O)5,) po ()50 |0, £)|

< C1C2C14 (&) N "Dl (pg — o) (€)5} "

x PRV rs T2 opo(6)X, (0, €)|

< C1CCryn{(1 - w)(po — p1)} ™"
x ePor(C1sT/(wlpo—p )/ 7 052 gpol8), 14 (0, £)).

While, noting that

p(t) > p(T) = po — CrsV™~"T
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wpo — (L —w)p1 — C15{ (w—(p%l‘s%)‘y/(""‘o)}ﬂo—nT

=p for Yte0,T),
the left side of (29) is changed to
(33) the left side of (29) > e”*{)v|u(t, £)|.
Thus by (29), (32), (33) we get

G4 e O u(t,€)| < CL1CCLMH(1 —w)(po — p1)} "
 ePor(C15T/(w(po—p1))) /7 005~ oo ()], [v(0, €)|

< const. "% |y(0,£)| for Yt e[0,T), Y€ Rg,
where p; and « satisfy

N(l+o71)-1

<1
Nito 1) <Fsh

0<pl < po,

respectively from (26), (27). This implies (4) and (5) of the case 1.
From (34) we have the following energy inqualities

< C || uo ||z for Yt €[0,T],

KLY T PO KIVO

(35) I u(t) llz2,
and

10wl lzz, ., < C I (Dyu@®) llzz, .,

g

< C ” U(t) “ng,m.u (,0] <Vp2 < pO)
<Clluollez, ., for Yt € [0,T).

To show the existence of solutions for system (1), we consider the following sys-
tem in [0,7] x R}

Oy = Xn: Ap ()il sin(Dy, [)u; + B(t)w
(0,2) = uo(a)

(36)

Here we remark that {;(§) = (Isin(&; /1), -,lsin(é,/1)) satisfies

) G)—=¢ (- o0
i) |Gl <€l
i) | (€)] < CalG(€))11
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Since ilsin(Dy /1) (h=1,2,---,n) belong to OPS° for any fixed [,
> ilsin(Dy /1) is a bounded linear operator on L2 (R™). Thus the solvability and

uniqueness of (36) is elementary.
With the same methods, we can get the analogous estimate

37) || eGPy (2) |2 < C || PP oony || 2
<Ol e?* PPy, llz2= C || uo ”Lgo'wo
for Yt €[0,T),
(38) I em((z(D)).‘,aul(t) llz < C || epo((z(D)).’fouO Il
< C || e PPoug |lp2= C || uo llrz

PQO>%V0
for vt e [0,T).

Futhermore by (38) it holds that

t
39 [1er PN (w(t) — w(t)) llz= < / || (1PN Gy () || 2 dr
tl
< Clt—t]] uo ||L‘z70'w0 .

From (37) and (39), we find that the sequence {ef((P)lqy(¢)}52, is bounded in L,
and has a weak limit e?1(P)Cy(t) which is also a solution of (1) and satisfies

(40) lu(t) = u(t') llzz, ., < Clt =t lluo llez, . -

we also get

@) (DY (u(t) = w(t) llzz, ., < llu(t)—w()llzz, ., (pr <"p2 < po)
< Clt =t 1uolleg, ., -

By (40), (41) we can see u(t), Opu(t) € CO([O,T],Lf,l,n’,,). Thus by (1) we find
u(t) € CH([0,T), I3, ,.,)-

This concludes the proof of Theorem under the case 1. Theorem under case 2 also
can be proved quite similarly.

Appendix

We shall show that the Ex 1 is included by case 2 and y is equals to the maximal
multiplicity of the eigenvalues of Ay (t)&s, i.e., p = maxj<i<km;. Since the multi-
plicty of the eigenvalues is constant, it is sufficient to consider the constant matrix A.
Moreover for the simplicity we may suppose that the N x N matrix A has two dis-
tinct real eigenvalues A\; and A, whose multiplicity are m, and ms respectively. Then
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similarly as Lemma 1, we can get a non-singular matrix P such that

A -0 0\
az1 A ' .
PAP'=A+R = Amyd 0 Gmymy—1 A1
Qmy411 - Gy ttmy 2
0
any . e e o a1 Mg

_ D, O
=\Ee b,/
As it is well known, if D; and D, have no eigenvalues in common, the matrix
equation D; X — XD; = E has a unique solution X (see [14]). Hence putting P =

()I( ?)P, we find that

S I 0 D, 0 I 0
-1 _ 1
PAP™ = (X I) (E D2> (—X I)
_ D, 0\ _ .
= (XD1 ~DyX+E Dz) = diag{Dy, D}
Here we can easily see that D; and D, are the triangular matrices whose sizes are
my X my and mgy X my respectively. Therefore u is equals to the maximal multiplicity
of the eigenvalues of A.
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