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1. Introduction

Extra special p-groups are groups which are central extensions of Z/p by elemen-
tary abelian p-groups. The cohomology ring of these groups occupies an important
place in equivariant cohomology and in representation theories. Quillen [13] de-
cided the cohomology for p = 2. However for odd prime p cases, it seems very
difficult to decide the cohomology completely ([5], [14], [15], [17]). Therefore, in
this paper, we study the cohomology with localization for multiplicative sets defined
by a maximal split elementary abelian p-subgroup.

We consider the groop G which is the central product of the circle S! and
the extra special p-group G constructed by Leary, Kropholler, Huebschmann and
Moselle [12]. Let E,.** be the Hochschild-Serre spectral sequence induced from the
central extension

0—S'—G—V=a>"Z/p—0.

Let A be a split quotient group of G with A = ®"Z/p such that S'® A is a maximal
abelian subgroup of G, and let

eq4 = H Bz € H?*®"~1(4).
O£z € Ax

One of our observations is that the nonzero differentials in [e4~!]E,.** are only
Cartan-Serre and Kudo’s transgressions. Hence we get [e4 '] H*(G) easily.

In the paper [17], the author studied the spectral sequence E,.*™* and applied the
results to the representation theory and the group actions theory. However the proof
of the main lemma (Lemma 2.4 in [17]) using Araki’s base-wise reduced powers
is not correct. We correct this with Corollary 2.8 in Section 2. Indeed, the spec-
tral sequence becomes quite simple and easier to understand with the localization.
Moreover we can give wider applications to representation theory and equivariant
cohomology.
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In Section 2, we study the behaviour of the localized spectral spectral sequence
whose Fy-term is isomorphic to [e4 '] E2**. We recall the extra special p-groups in
§3. In §4, we study the case n = 1,2 with the localization by a smaller multiplicative
set. The cohomology of other similar groups are studied in §5, and a result of this
section is used in §7 for actions on CP* x CP*. In §6, we construct the periodic
modules with period 2p* for i < n, for extra special p-groups of exponent p? and for
similar other groups. We use the arguments by Benson-Carlson [6] in this section.
In section 7, elementary abelian p-group actions on C P! without fixed points are
studied by using the fact that its equivariant cohomology is almost same as the
comology of the group G constructed from the extra special p-group, according to
the idea of Allday [3]. In §8, we compute the cohomology of a Sylow p-subgroup
of GL4(F},) with some localizations. The Brown-Peterson cohomology is studied in
the last section.

The author thanks to the referee for careful reading and correcting some errors
of the first version of the paper.

2. Hochschild-Serre spectral sequence

We consider the Serre spectral sequence such that the Es-term is
2.1 Ey** = H* (&°"Z/p; H*(BS")) .

induced from a fibering X — Y — Z with H*(X) = H*(BS') and H*(Z) &
H*(®?"Z/p). In this paper cohomology H*(—) always means the Z/p-coefficient
H*(—; Z/p) for an odd prime p. Let us write

H(&™Z/p) = Son ® Aa, H*(BS) = Z/ply|

with S2,, = Z/ply1, -+ - Yanl, Ao2n = A(Z1, - - - Ton), Bx; = y;. We assume that the first
non-zero differential is

(2.2) dsu=Bf with f=) zor 122
k=1

Then by the Cartan-Serre and Kudo transgression theorems, we know

(2.3) dogp1(u') = 2(i),  dagpo1y41(2() ® u/ P = w(i),

2 j—
- PBf =Y yok-1"Tok — Yor'Tok—1, for J =p'7!

with  2(i) = PP~
w(i) = BP72(i) = 3 yak—1"y2k — yor yor—1 for I = p

Let us write S(i) = Sz, /(w(1),---,w(z)). Recall that (w(1),---,w(n)) is a regular
sequence in S,[14].
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Let B; (resp. Bz) be the n x n-matrix with (k,4)-entry (yax_17) (resp. (y2x”))
so that (.122, cee ,.’L‘zn)Bl - (m17 T ,xZn—l)BZ = (Z(].), Ty Z(TL)).

Lemma 2.4. The determinant of B, is ((—1)"e)Y/?=1) where

e= H(Alyl + Asys + -+ Aon—1Y2n—1)
with
(A1, -5 A2n—1) # (0,---,0) € (Z/p)".

Proof. Let us write the determinant |Bi| € Z/ply1,:--,yan—1]. If we take
Y2i1 = M¥1 + -+ 4+ Aifi2i—1 + -+ + AnYan—1, then |B;| = 0. Hence e/~ || By|.
Since deg(e'/(P=1)) = deg(|B;]|) and [Torez/p A = —1, we get the lemma. U

Lemma 2.5. By multiplying an upper triangular matrix with diagonal entries
1 in SL,(Sa2n), we can change B, to a lower triangular matrix B,' with (i,i)-entry
Yi2i—1 where Y; ;o = [](yx + A2i—s¥2i—3 + - + A1y1), dox—1 € Z/p.

Proof. It is immediate that we can change B; to a lower triangular matrix
By’ by a matrix in SL,(e~!S2,) localized by e, since (Y71,1..Yp 2n—1)P"1 = (—1)"e.
We will show that we need not the localization. Suppose that by multiplying an
upper triangular matrix C = (c;;), ¢j; = 1, ¢ij € Z/ply1,- -, y2i—3) from the right
hand side, we can change B; to a matrix B’ = (bij/) with b»ijl =0forj > 1
and 7 > k. We can take B’ when ¢ = 1, because by; = y1|by;; = ylpi_l. Think
br;' in Z/plys,- - yak—1], for k < j. If we take yor_1 = yas—1 for s < k, then

bi;' = bs;' = 0 by the supposition. Since by;’ is a linear combination of ya_1?"

with coefficients in Z/p[y1, - - - , Y2k—3], We also see if yog—1 = A1y1+- -+ Ap_1Y2k-3
then bkj’ = 0. Hence kazk_llbkjl . Therefore we can take a matrix C’ with entries in
Z/ply1, - - - yak—1), such that by;" =0 O

Note that if we take yor_1 = yos_1, then by’ = by’ also for ¢ > k. Hence
we have

(2.6) 2(1) =Yigi1x2i + -+ Yign—1%2n — Yiox1 — - — YVionZan—1
mod (2(1),---,2(i — 1)).

let us write e; = Y7 1Y2 3 -+ ¥; 2—1. One of our main theorems is

Theorem 2.7. Let R be an Sy, -algebra such that (w(1),---,w(i)) is regular in
R ande;~' € R. Let E,** be a Serre spectral sequence such that E;*° = R® Aoy,
and Ex"" = R ® Aoy, ® Z/plu] with Bx; = y; and dg is given by (2.2). Then for
I=p', J=p""! and R(k) = R/(w(1),---,w(k)), k < i, we get
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R(i — D[u!] ® A(Taiy2, s Tan, 1, Tan—1){1, z(i)u’ =1}
E2r+1*’* = forl+J<r< (p — l)J
R(6)[u!] ® A(x2ita, s Tan, T1, * Tan—1) for (p—1)J <r < I.

Corollary 28. Let E.** be a spectral sequence whose E,-term is isomorphic
to (2.1) and ds is given by (2.2). Then fori <n
[ei_I]E2r+1*’*
lei 1S (i — [u!] @ A(@aira, -, Tan, @1, - Tan—1){1, 2(6)u’P~1}

for1+J<r<(p—1)J

IR

[6,'_1]5(1')[11,1] ® /\(I2i+2,- ey Xony Ty, ':L'Zn——l) for (p - ].)J <r S I= pl

Corollary 2.9 (see Yagita [17]).  Suppose the same assumption as Corollary
28. If r < p"~Y(p—1), then Ey, (1™ contains the subalgebra

S(Z - 1)[u1] ® /\(11:2i+2,- T2, L1, ,.’152,,__1) forl+J<r< (p — 1)«]
S(1)[u'] ® A(z2ig2, -, Tan, T1, -+ Tan—1) for (p—1)J<r<I

Corollary 2.10. Suppose the same assumption as Corollary 2.8. Then

[eEx™* 2 [e7)S(n)[uP" ] ® A(Z1, - -+, Tan—1).

For proofs of Theorem 2.7 to Corollary 2.10, we need lemmas. We recall some
facts from algebraic geometry. Let k be an algebraic closed field over F, and
Var(fy---, fr) C kN be the variety defined by the ideal (f,--, f-) in Sn.

Lemma 2.11 ([13]). (f1,---, fr) is regular in Sy if and only if

dim Var(fy, -+, fr)=N—r.

Lemma 2.12. Ifs<n andt <n, then (w(l),---,w(s),e;) is regular in Sa,.

Proof. ~We will prove that J = (w(1l),---,w(s), Yok, Y2k—1 + A1y1 + -
+Aok—3Y2x—3) is regular in So,. The variety is
Var(Ideal J)
= Var(w(1),--+,w(s)) N {yak—1 = =My — - — Aak—3Y2k—3} N {y2x = 0}
= Va'r(w/(]-)v e ’wl(s)) C k2n‘2 = k{yl, e 7:’;2’6—17 g2k7 e y2n}'
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where w'(i) = w(%) — (Y2k—1"y2r — Y2 y2x—1)- Since (w'(1),---,w’(s)) is regular in
Z/p[y1, - Yok—1, U2k * * » Yon), We get dimy, Var(Ideal J) = 2n — 2 — .

Hence J is regular and so is its subsequence. Since e; = Y7 ;...Y; 2;—1, we have
the lemma. O

Corollary 2.13. Ifi <n, then S(i) C [e;+171]S(4).

Proof of Corollary 2.9. It is immediate from the above corollary and Corollary

2.8. ]
Corollary 2.14. Ifi < n, w(i) is non zero divisor in [e;~|S(i — 1).

Proof. If w(i) (e;Na) =10 in S(i — 1), then (e;Va) = 0 from the regularity of
w(i) and a = 0 from Lemma 2.12. O

For an odd degree element z in some graded algebra A, the homology H (A, z)
is defined by d(a) = za for all a in A. Let R be an S;,-algebra satisfying the
assumption of Theorem 2.7, e.g., ;" € R. Let A; = R(i) ® Aan/(2(1), - - -, 2(3)).

Lemma 2.15. H([e;+17 ' As;2(i+ 1)) = {0}.

Proof. From (2.6) and kazk_l_l € [ei 1] S2, for k <1, we inductively see

A; 2 R(1) ® AN(Z2i42,+, Tan, 1,7+, Tan—1)-

Hence we get

H([eir1 Y R(E) ® A(Z2it2, ", T2n, T1, s Tan—1), 2(6 + 1) = Yit1 2ip1Z2i42 + )
= [€i+1_1]R(’i) ® H(/\(z(l + 1)’ T2i+4y "y T2ny L1 "y $2n—l)) Z(Z + 1)) = {O}’

since the homology H(A(z,z,- ), z) is always zero, from the definition. U
Proof of Theorem 2.7. Suppose that E5;.2™™ is isomorphic to
}%(Z - 1)[“1] ® /\(1:22'-}—27 oy Ton, Ty, t ’x2n—1){17 z(i)uJ(p_l)}

Since Eypp1™F =0 for 0 < k < 2J(p — 1), we know di,; = O for these k.
The next differential is the Kudo’s transgression da (p—1)4+1(2(¢)u? ®=1) = w(i).
Since w(¢) is non zero divisor in R(: — 1),

(1) Eysp-1)42"" & (B2y42™° ) (w(i))[u]
=~ R(i)[u'] ® AN(T2it2, s Tan, 1, "+ 5 Tan—1)-
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So EQJ(p_1)+2*’O &~ A;[ul]. Since Eyy42*F = 0 for 2J(p — 1) < k < 2I, the next
non zero differential is the Cartan-Serre transgression dgr4;(uf) = 2(i + 1). Hence

Eor1*°/(2(i + 1)) for r=0
Eary2™" 2 H(Eayp1™°, 2(i + 1)) for 0<r<p—1

Kerz(i 4+ 1)|Eyr41™° for r=p-—1
Eary2™* = {0} k# 0mod I.

From Lemma 2.15, [e;41 | H (Eay41*°, 2(i+1)) = {0}. For each odd degree element
z € A, we see that Kerz|A = H(A, z) + Image(z). Hence we get

lectr ™ Barya™ 2 [ersn 1A/ (2(i + 1)1, 26 + 1l ).

Thus we can complete the proof of Theorem 2.7. U

Proof of Corollary 2.10.  To see this corollary, we only need to show that u?"
is permanent, i.e,

dop1(WP ) =2(n+1)=0 in [e]S(n) ®A(z1, -, Tan_1)-
From (2.6), we can easily see
Z(n + 1) = —Ip41,2T1 — - — Ypp12nTon mod (Z(].), Tty z(’n))

where Y,112: = [[(v2i + A2n—1¥2n-1 + -+ + A1y1). We want to show that each
Ypt1,2: is in the ideal J = (w(1),---,w(n)) of [e7!]Sz,. For this we recall that
J =+/J and its variety Var(J) has the decomposition

Var(J) =UW ® k

(see [14] or Theorem 5.1 below) where W ranges over the maximal B-isotropic
subspaces of the vector space V. = Z/p{y1, -, ¥2n} = (Z/p)*"™ with B(y,y’) =
S YokY'ak—1 — Y2k—1Y 2k As a subspace of [e71] Sz, (k), each W @ k is expressed by

e IWek= m {15, Y2n)lY2i = Ariys + -+ + Aan—1,iY2n—-1}

1<in

otherwise W is defined by linear forms not involving y,; for some i, which would
imply that yo;_; = 0 by the B-isotropic condiction, but this is ruled out by the
localization e~!. On the otherhand

Var(Yy11,2i) = U {1, y2n)ly2i = Miyn + - + Aon—1y2n-1}-
(A1, A2n—1)
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Thus Var(Y,,41,2;) contains all [e~!]W ® k. Since J = v/J, we get the result. O

REMARK 2.16. Corollary 2.10 is also proved easily by using the cohomology
of the extra special p-group E,, defined in the next section (see [14] Proposition
4.7). Let M be a maximal abelian subgroup of E\; and z be the I-dimentional
representation of M of which is the dual of non zero element in the center Z(E,).
Then the Chern class of the induced representation of z gives

™ (Indp ™ (2))| Z(En) = uP".

REMARK 2.17. Let A be an elementary abelian p-group and suppose that there
exists a continuous map X — BA for some space X. Define e4 = [[y where
y ranges over all Bockstein images of non zero elements in H!(A). Then we can
consider the localized cohomology [e4~'|H*(X). Since e4 = e = (—1)"(det B;)P~?
for rank,(A) = n, we know Pi(ey) € ideal(es) for all i. Let P, : H*(X) —
H*(X)[[t]] be the total reduced powers defined by P:(z) = Y_ Pi(z)t'. Then this
is a ring homomorphism and easily extends to [e | H*(X) by Pr(ea™!) = Pi(ea) ™!,
e.g.,

'Pt(y_l) =y 11+ yp_lt)_1 =y P —yP 24+ y?P 32 ... forO#ye H*(A).

Thus [e~!]H*(X) is a Ap-algebra in which holds the Cartan formula. Of course the
Cartan-Serre and Kudo’s transgression theorems hold for the localized Hochschild-
Serre spectral sequence, however it is not unstable, e.g. in general Piz # 2P for
i = 2deg(z). Given an A,-module M, the unstable module Un(M) is defined
by elements 2 € M such that Pi(z) = 0 for all 2 > deg(z). It is immediate
that Image (H*(X) — [e"!]H*(X)) C Un(le"*]H*(X)). (For more details about
Un(le"']H*(X)), see [7] or Corollary 7.10 bellow.)

3. Extra special p-groups

An extra special p-group G is a group such that its center is Z/p and there is a
central extension

3.1 1—Z/p—G—V —1 where V=2>"Z/p.

Such a group is isomorphic to the n-th central product E---E = E,, or E,_1M
where E (resp. M) is the non abelian group of the order p* and exponent
p (resp. p?). Hence we can explicitly write

(32) En = (al, *+Agn,C I [agi_l, agi] =c¢, cCE Center
lai,aj] =1fori<j, (i,5)# (2k—1,2k)
af =P =1 ).
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The group E,_1 M is written similarly except for as,? = c.
Let us write by z; € H!(V) = Hom(V, Z/p) the dual of a; and write y; = Bz;
Then the cohomology of V' is H*(V') = Sz, ® Aagp.

Proposition 3.3 (Proposition 2.4 in [14]).  The extension (3.1) represent the
element in H*(V)

n n
f= ngi_laczi (resp. szi_lxzi + yan) for G = E, (resp. E,—1 M).
i=1 i=1

We consider the spectral sequence induced from (3.1)

(3.4) E)** = H* (V;H*(Z/p))
Son ® Non ® Z/plu] ® AN(z2) = H*(G)

IR

with Bz = u. From Proposition 3.3, we know (Lemma 2.5 in [14])
(3.5) daz = f.

Then E3** is not isomorphic to (2.1), while d2y41(u’) = 2(i) and

dap—1)7+1(2(i) ® u? P~ = w(i). This spectral sequence seems quite difficullt.
Hence we consider other arguments which are used by Kropholler, Leary,

Huebschmann and Moselle. Embed (c) & Z/p C S* and consider the central product

(3.6) G =G xS

Note that E,, & E,_ ;M , indeed, take as,c—'/? as agy, if azn? = c. Then we have
the exact sequence

3.7 1—S'—G—V-—1
and the induced spectral sequence
(3.8) E,»* = H*(V; H*(BS')) = H*(G)

This spectral sequence satisfies (2.1) and (2.2), hence we can apply all results in
Section 2. In particular, from Corollary 2.10, we get;

Theorem 39. [e~Y|H*(E,) = [e71]S(n)[u”"] ® A(z1, 23, -, Ton_1).

Given H*(G), to see H*(G) we use the following fibration induced from (2.1)

(3.10) $' = G/G — BG — BG.
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The induced spectral sequence is
(3.11) Ey** = H*(G; H*(SY)) = H*(G) ® A(2) = H*(G)
with dyz = f. Therefore
Proposition 3.10. There is an S(n)-module isomorphism
H*(G) = (Ker(f)|H*(G){z} @ H*(G)/(f).
Since (22, +,Z2n) = (€1, "+, Tan—1)B2B1 7' + (2(1), -, 2(n)) By *
f =" Ta;_179; is expressed as
f= bizai_maj_1 for BB = (by)).
In particular, when n < 2, we can compute that f =0 in [e7}]S(n)®A(z1, - -, Ton—1)-
Corollary 3.11. Ifn < 2, then there is an S(n)-algebra isomorphism

[e | H*(E,) & [e’l]S(n)[u”n] QN(Z1,- ", Tan—1) ® A(2).

Corollary 3.12. Ifn < 2, then there is an S(n)-module isomorphism

™' H* (Bp-1.M)
= [6—1]((Ker(yzn )IS(n)){z} @ S(n)/(y2n)) P} ® A1, -, Ban—1).

Proof. From Proposition 3.3, for this case, f = yay,. ]

Next consider other similar groups. Let E(s), = E, X(c) Z/p° be the central
extension by Z/p*, s > 2. Then the central extention

0 — Z/p* — E(s), — V — 0.

induces the spectral sequence E(s),™* converging to H*(E(s),). Let us write
H*(Z/p*) = Z/plu] ® A(2).

Proposition 3.13 ([17]). E(s),”" = E.** ® A\(z') where E.*" is the spectral
sequence (3.8) converging H*(E.,,).

Proof. Letda(z Z Xijz;x;+ pkyk. Then \;; = 0 since B(2') = 0. Consider
the automorphism A of E(s), defined by a; — aiaz,a; — a; (for j > 1) and
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¢ — c. The induced automorphism A* of E(s),™" is given by y2 — y2 + y1,
y; — y; (for j # 2) and 2z’ — 2’. Hence dy(2’) is invariant and we see g = 0.
Similarly we see all py = 0. Therefore dy(2’) =0

Since E(s), C E,, there is the natural map E,** — E(s),™*. By induction
on r, we see this proposition. O

Finally for this section, we look at the spectral sequence (3.4) for E,,_;.M. Let
us write this spectral sequence as 'E,.** and write as F,™* the spectral sequence

converging to H*(E,). Recall that
d2(2) = f' +yon with f'=zi20 4+ + T2n_1%20.

Hence 'E3™* X S;, 1 ® A2n ® Z/plu] where San_1=2Z/p[y1,"*,Y2n—1]. Now
we consider a filtration of 'E,.** by the ideal I = (x1,---,Z2,), and its graded
algebra gr'E,.** = @s-0I°/I°TL. Of corse gr'E3™* = So, ® Nan @ Z/plu]/(yan)-
Then almost all arguments in Section 2 work.

Theorem 3.14. For

r<p <p" 1t [ei Ngr' Bapi1™* = e Eari1 ™/ (y2n)

For the proof of this theorem we recall the following lemmas.

Lemma 3.15. Let F; be a submodule of a module F and w € F. If the multi-
plication by w on F/F; is injective, then Fy /wF; C F/wF.

Lemma 3.16 (Lemma E in [15]). Let Fy C F and zF, C F. If the spectral
sequence H(F/F1®Fy, z) => H(F, z) collapses at the E, -level, then F, /2F; C F/zF
and (F/zF)/(F\/zF\) & (F/F,)/z(F/Fy).

Proof. IfzFNFy # zFy, then H(F, 2) D (Ker z|F1)/zF but 2 (Ker d|F})/zF.
This means the spectral sequence does not collapse. ]

Proof of Theorem 3.14. Suppose the statement for » = J + 1. Then by Lemma
3.15 and Kudo’s transgression theorem, we get the statement for » < I. By the reason
similar to the proof of Lemma 2.15, we get H([e; '|gr' Ear41*°, 2(i + 1)) = 0. Of
course the spectral sequence

H(lei1 ' gr' Ears1 ™, 2(i + 1)) = H([leit1 |Bar41™°, 2(i + 1))

collapses, hence we have the statement for » = I 4+ 1 from Lemma 3.16. O
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4. The cases n small

In this section, we study the spectral sequence (2.1) without or with less
localization when n is small. More strong results are given in [15].

Suppose n < p. The first non zero differential is dsu = z,(1). At first we want
to compute H(s2, ® Aap,2(1)). For this, we use the following lemma taken from

[15].

Lemma A. Letz,y € A be elements of |z| = odd and |y| = even. Then for
|z| = |z| — |y|, we have additive isomorphism

H(A® N(z),yz + 2) = (H(A, z)/y){z} & Ker(y|H(4, 2)).

From Lemma A, we have H(S2, ® A1,y221) = San/(y2){z1}. By induction
onn

(4.1)  H(S2, ® Aan,2(1)) = Z/p{z1---z2n} = Z/p{f"} since n <p.

Since Ker z = Im z @ H(A, 2) for z € A°44, it is immediate that

Lemma B. There is an isomorphism (A/z)/H(A, z) = Im z C A. In particular,
if A is w-free for w € A®¥®", then so is (A/z)/H (A, z).

Apply this lemma with A = Sy, ® A2p,z = 2(1),w = y;. Since w is injective
on A for this case, we know that y; is injective on A/(z @ H(A,z)). Since f™ is
y;-torsion, there is no non zero differential d, : Z/p{f"u’} — A/z forr < 2p—1.

Next recall the Kudo’s transgression dgp—1(2(1) @ uP~1) = w(1).

By Lemma B with w = w(1), we know Ker(dap_1|Im z(1)) = 0.

Lemma 4.2. do,_;(f"uP™!) = nz(2) "L

Proof. Since E,*° = 0, the Bockstein maps from E,*'" to E,*Thever,
The element B(f"uP~1) = nB(f)f* 'uP~! = nz(1)f"~'uP~! maps to nw(1) ™!
by dap-1. Since B(2(2)) = w(1), we know that dop_1 (f"uP~!) = nz(2)f"~' +a with
a € Ker B. Since z;f = 0 in Sz, ® Agpn, We know z;a = 0 in Sz, ® A2n/(2(1)) and
hence B(z;a) = y;a = 0 but Kery; = Z/p{f™} from Lemma B with w = y;. O

Therefore we get ([15])
San ® Aan/(2(1),w(1), 2(2) /1) j = 0 mod p

Theorem 4.3.  Ep,"* = Z/p{f"} 1<j<p-1
0 j=p-—1
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The next differential is dapy1(uP) = 2(2). Let E = San ® A2n/(2(1), w(1)).
We want know H(E/z(2)f"1, 2(2)). First we note the additive isomorphism

(4.4) H(E/z(2)f",2(2)) = H(E, 2(2)) ® Z/p{f" "}

The computations in [15] for the cohomology H(E, 2(2)) is very long. Hence
in this paper, we give a computation with [y; ~!], which is somewhat shorter. Recall
(2.4) which shows that with mod (z(1))

2(2) = y2,171 + E Y2i,1T2i—1 — Y2i—1,1T2i
=2

where yi,1 = H/\GZ/p(yk —Ay1) = kP — 1P

Let A = Si,/(w(l)). Applying Lemma A we get H(A ® A(z3);ya123) =
A/(ya1) - {zs}, Applying Lemma A and induction on n, we have

(4.5) H(A® Nz3,-- -, Tan), Zy2i,2n—1$2i—1 — Y2i—1,2n—1%2i)
i=2

=A/(Y3,1, " Yan,1){T3 - Tan}

if we can see the following lemma.
Lemma 4.6. (w(1),y31, " ",Y2n,1) is regular in [y; ~']San.

Proof. Since the variety is expressed by

Var(yin) = Var [ ] wi—2n) | = U {@n - ven)lys = A},
AEZ/p XEZ/p
we easily see Var(ys 1, -, y2n,1) = UV(x5,.220)

with ‘/()\37"',)\21;) = {(yh ce 7y2n)|yi = )"Lylh Z 3} Then
n Var(w(1)) N Virg, . apn) = Var(yiyz,1) C k{y1, 42} = k?

since

(2 w(@)= Zy2iy2i—1,2i +Y1y21 = ZyZini—l,l — Y2i-1Y2i,1 T Y1Y2,1
=2 =2
=YYz on Vg, )

Therefore (1) = Uyez/,{(¥1,92)ly2 = Ay1} and this has dimension 1. O

Since y,1 = 0 in Ideal(w(1),y3,1," -, Y2n,1), We have from Lemma A
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Proposition 4.7. [y '|H(E,2(2)) = [y17Son/In{zs - 22n} ® A(z1) with
I = (Y21, ", Y2n,1)-

For arguments without localization, after long calculations the following is
given in [15],

Proposition 4.8 ([15]). B : H(FE,z(2))°dd =~ H(E, 2(2))**" — Z/p{f"} and
H(E,2(2))°% 2 Sopf{z1/, - -, 220} (yijes', vizr’ = yri) where z;! = z; f*~ 1.

Note that the cocycle in [y;~1]E/z(2) which is represented by z3 - - - z2, in the
righthand side module in Proposition 4.7 is y; ! B(z1x3 - - - Tan ).

The fact that Ea,y2™" = Egpp_1)41™"" is also proved in [15]. When n = 2, we
have

(4.9) da(p-1)p+1 {S" PPV} = (y12” — ysd') B(z172).

where y;;’ = (yi”zyj - yjpzyi)/yiyji = yP(P-1) 4 yi(p—l)(p—l)yjpﬂ 4o yjp(p—l)
so that w(2) = Y_ y2iy2i—1,2iY2i—1,2;"- Moreover d2p3_3{f2Up3_2} = z(3), and these
are all of the non-zero differentials for the case n = 2.

In this paper, we give a proof of the above fact with [y, ~!]-localization but for
general general n

Lemma 4.10.

dapp-1y+1{z1f" 71 ® wPPVY = yo sy (23 - Tom)

+z; Z y2i—1,2il(y2i($3 R YR '$2n) - y2i—1(1'3 <o 332n))
i=2

Proof.  Recall z;f"! = ziz3- -T2, The element yo 1711 = 2(2)
T3 Top g0 to w(2)z3 - - - T2, via Kudo’s transgression dyp(p—1)+1. The target is

m w(2)$3 o Top = Zyzi—1,2i'y21‘y2i—1$3 cTon

!
= E Y2i—1,2i (yziyzi—1,1 - yzi—1yzi,1)$3 c Ton

From (26), Y2171 = Zi:Z Y2i—1,1T2; —Y2i,1T2—1 mod (21(1), 2(2)), SiI’lCC Yzyk = Yk,1-
Thus we know with the same modulo, Yz 12123 - $2; - Tap = Y2i-1,1%3 " ** T2n.
Hence

(1) = yo,1(y12'z3 - T2n

+ Z y2i—1,2i,x1 (y2i(m3 SRR TRRE J5277.) - y2i—1(x3 T iZi—l co xZn)))
=2
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Since y,1-torsion elements in F/(z(2)) are also contained in H(E,z(2)) from
Lemma B, we get the lemma. O

Since the target element of the differential in Lemma 4.10 and its Bockstein are
not in H(E, z(2)), they are [y; ~!]S(1)-free. Hence we get

Theorem 4.11.

(117 Bape 1™ = [1171)(S(2) ® A2, 22, -, 22n)/(2(2), d, B(d))
®52n/In{x1fn-l’ B(:Elfn_l)}{upv u2p, U ’up(p—2)}) ® Z/p[up2],

where I, = (y2,1,-**,Y2n-1,1) and d is the image of dyp(p—1)4+1 given by Lemma
4.10.

5. Cohomology of other similar p-groups

In this section we study some applications for arguments in §2. Let A be
a commutative ring and let A(k) denote the variety, that is the set of ring ho-
momorphisms from A to k endowed with the Zarisky topology. Let us write by
H*(G)(k) the variety (H*(G)/+/0)(k). For example, H*(V)(k) = San(k) =V ® k
and S(n)(k) = (S2n/J)(k) = Var(J) for J = (w(1),---,w(n)).

Theorem 5.1 ([14]). LetB:V xV — Z/p be the alternating from defined by
B(a,b) =Y azi_1bai —azibei—1. Then Var(J) = UW ®k where W ranges over the set
I of maximal B-isotropic subspaces of V and the cardinality of [ is (p+1) --- (p"+1).

Theorem 5.2. The ideal J has a prime decomposition J = \/J = Nwer Pw
where Py, = Ker(H*(V)/v/0 — H*(W)//0).

We consider a group G which is an extension of E, & V' for V/ = = ™ Z/p by
S, Such a group is represented by elements in H2(E, ® V', S8') = H}(E,® V', Z).
Consider the spectral sequence

(5.3) E, = H*(E,® V') ® Z/plu'| = H*(G).

First assume the case dgu’ = Y., B(z4;—124;—3) for 2s < n. Let J' be the ideal
in Z/ply1, - - -, y2n] generated by BPP ... P(dsu) and let Py, be the corresponding
prime ideal. Of course e € Py;, for all W, so e € J'. Hence we only have the trivial
result, namely, [e~'|H*(G) = 0.

Next we consider the case

(5.4) dsu' = Zﬁ(wzi_lxgi/) with

=1
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H*(VI) = Z/p[yzl’ toe ’y2ml] ® /\("1:2/7 che ,me/)‘
This group is represented as G’ = G’ X (¢y ST with
= (E(n),a2', coyaom, ¢ | agj—1,ak] = b2k

d? =ai” =ai',a;'] = 1, ¢’ € Center(Q))

i—2

Theorem 5.5.  Let J' = (w'(1),---,w'(m)) with w(i)' = BPP
for (5.4) and let G’ be the group above. Then

[e Y JH*(G') = [e ™| H*(En) ® Z/plya’,++, yom/1/(J') ® Z/plu?"].

- P(ds(v))

Proof. From Theorem 2.7, we only need to prove the regularity of (w(1)’,---,

w(m)’) in [e71]S(n) ® Z/ply2’,- - -, y2m'] For this, we study the map
i:[e7S(n)(k) — S(n)(k) = | W k.
wer

Suppose that 0 # z € Image(i) "W for some W € I. This means that there are non
zero maps z; and zo such that the following diagram commutes

Son/Pw = S(W)~_,

S(n) = Sy, /g —2=H21)

(€18 (n)

Hence e € Py . Conversely if e & Pw, then it is easy to see [e~ HS(n)(k) D W ®k.
Therefore [e71]S(n)(k = UW ® k where W ranges I with e ¢ P Hence

k

Sodd = Z/ply1, -+, Y2n-1] — S(n) — S(W)
is an isomorphism. Therefore W is
Z/p{y1, -, yanly2; = Ajiyi + - + AjnYan—1} C V' for some (Ajx) € (Z/p)".
Similar arguments can be applied for yeven' instead of yeven. Then we have

([e_l]s(n)[y217" s Yon ]/J, UWI®’C

with W' = Z/p{yi, y2r'ly2; = Ajiyr + -+ + Ajn¥on—1,Y25" = Mi'yr + o+
Ajm'Y2m—1}. In particular dimy W ® k = n. Hence (w(1)',---,w(m)’) is regular.
O
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6. Periodic modules with large period

Let Q7 (M) be the r-th kernel in the minimal resolution of k(G)-module M, i.e.
if

(6.1) O—)Mr_’Qr—1—>“'—“’Qo—>M——>0

is exact and if each Q; is projective, then M, = Q"(M) & Q for some projective
module Q. A G-module M is said to be periodic if Q™ (M) = M for some m > 0.
The smallest such m is called the period of M.

For a G-module M, let Ig(M) be the annihilator ideal in H*(G;k) of
Extiy(g) " (M, M) = H*(G,Homy(M, M)). Let V(M) be the subvariety of H(G)(k)
associated with Ig(M),e.g., Vo(k) = H(G)(k). Remark that if V' is a closed homo-
geneous subvariety of Vg (k), then there is a k(G)-module M with Vg(M) = V
(Proposition 2.1 (vii) in [6]).

We recall arguments of Benson-Carlson [6]. Consider a central extension of a
finite group

(6.2) 1—N—>G—Q—1

where N = Z/p® for s > 1 and Q is a p-group. Remark that the paper [6] is written
assuming that s = 1, however all arguments in [6] work also in the case s > 2.
Let N denote the sum de N 9 as an element of the group ring k(N). Then for
r >0, NQ*"(k) is a k(G)-module with N-acting trivially, so we may regard it as a
k(Q)-module. We set V, = Vo(NQ?(k)) C H(Q)(k).

Theorem 6.3 (Andrews [6]). Let M be an indecomposable k(Q)-module
regarded as a k(G)-module by inflation.Then M is a periodic k(G)-module of period
dividing 2r if and only if V(M) V, = {0}.

Theorem 6.4 (Benson-Carlson [6]). Let E.™* be the spectral sequence induced
from (6.2). Let K; C H*(Q) be the kernel of the induced map Ey*° — FEq;,1*° for
I= pi. Then VI = VQ(KI)

Theorem 6.5 ([17]). Let G be the p-group E(S)n, s >2orE,_ .M. Then
there are periodic k(G)-modules of period 2p® for all i < n, and no higher period.

Proof (See the proof of Crollary 6.2 in [6]). By Proposition 3.13, Theorem
3.14, Corollary 2.9 and Theorem 6.4, we may find a closed homogeneous subvariety
V of H(Q)(k) with VNV, # {0} but VO V; = {0} for I = p* and J = p'~ L.
By the remark after the definition of V(M), we may find a k(Q)-module M with
Vo(M) = V. Then by Theorem 6.3, M has period 21 = 2p°. OJ
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Corollary 6.6. Let G and G' be p-groups such that there is a commutative
diagram of central extensions

(1) 0 — Z/p — G — & — 1
I
(2) 0 — Z/p* — Es)y — V — 0

where s > 2 and g : G — E(s)n is a split epimorphism. Then there are periodic
k(G)-modules of period 2i for all i < n, and no higher period.

Proof. Let us write by 1 E.** and 2 E,.** the spectral sequences induced from
(1) and (2) respectively. Then the following diagram is commutative

1E2141*° (k) i(k) 1E2541™°(k)
f(k) f(k)

2B ™(k) = S@)(k) Z S~ 1)(k) = 2F2pa™ (k)

Here f(k) is split epic but there is not a split epimorphism S(i — 1)(k) — S(7)(k).
Hence (k) is not an isomorphism. ]

For example, the group G’ x .y Z/p® for G’ in Theorem 5.5 satisfies the above
corollary.

7. Elementary abelian p-group actions on CP™

We recall arguments of Allday [3]. Let X be a finite complex such that
H*(X) = H*(CP™) = Z/plu]/(u™"").

Let V' =®'Z/p and H*(BV') = S, @ At = Z/ply1, -+, yt) ® A(z1, -+ -, T¢). Assume
that X is a V’-complex. Consider the spectral sequence

(7.1) Ey™* = H*(BV'; H*(X)) = Hy.*(X) = H*(X xv EV').

Since Bu = 0, we can take n with 0 < 2n <t such that

(72) d3u = ZB(wgi_lei) as in (22)

=1

Lemma 7.3. Ifdo;ul #0 for I =pt, then pIim + 1.

Proof. We prove this lemma by induction on ¢. It is clear when : = —1.
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Suppose m + 1 = I's and

21-2
Eorp ™" = @ Ear1™ | ® Z/plu']/(u'®).
=0

If pfS, then 0 = d21+1um+1 = s(u1)3_1d21+1(u1) 7é 0 in E2[+1*’*. This is a
contradiction, so p|s. (]

Corollary 7.4.  If (7.2) holds, then p™|m + 1
Proof. This is immediate from Theorem 2.7. [l

Theorem 7.5. Let X be a V'-complex such that H*(X) = Z/plu]/(u*"*) and
(7.2) holds. Then [e~'|H*y(X) = [e"}]S(n)[uP"]/(uP"®) ® A(z1, -, T2n—1) and
[e™H v (X) 2 [e"|Hy" (X) ® Z/p[Yan+1,+ Ye) ® AN@2nt157 75 Tt)-

Hereafter we always assume (7.2) and consider only the V-action induced from
the V’-action.

For a given multiplicative set S C H*(V) and a V-complex X, let X° be a
set of points x such that each element in S maps to non zero element in H*(V) —
Hy*(X) — H*(Vy) where V, is the isotropy group of V at z € X. Then the
localization theorem (Hsiang) is stated as S™1Hy*(X) = S~1Hy*(X5). Hence for
a subgroup W of V, we get SW—IHV(X) = SW_lHV(XW) for the fixed points
set X" where Sy is the multiplicative set generated by B(V* — Ker(V* — W*))
identifying W* = H1(W). Let ey = [ Bz where x ranges all non zero elements in
HY(W), e.g., evodda = € for Vogqa = Z/p{y1,"*,Y2n_1}. Then

(7.6)  [ev Hv(X) 2 [ev NHy (XY) = ey TNH*(XY) @ H* (V).
Recall the set I of maximal B-isotropic subspaces W in V in Theorem 5.1.

Corollary 7.7. Suppose that X is a V-complex as in Theorem 1.5 and n > 0.
Then [ey~'|Hy*(X) = 0, (X is V-fixed point free), [e}|Hy*(X) = [e7}]
Hy*(X®), Svodda "Hyv*(X)(k) & Voaa ® k, [e"Hy*(X)(k) & UW' ® k where
W' ranges in I such that m,(W') = Voaq form: W CV % Vodd.

Proof. We only need to see the last statement. If e ¢ Py, then the map
7w S(Vodad) C S(V')/J — S(W) is injective and hence =, is surjective. Thus we
get the corollary. O

Now we recall some results of Hsiang. We say the orbit type 0(X) of a given
G-space X is the set of conjugacy classes of isotropy subgroups G, for each z € X.
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Theorem 7.8 (Hsiang [8]). Let X be a compact V = ®2"Z/p-space without
fixed point. Let J be Ker(r* : H*(BV) — H,*(X)), V/'J be the radical of J and
VJ = PiN---N P, the irreducible decomposition of J into its prime components.
Then
(i)  There is 1-1 correspondence between {P;} and the maximal elements {H,} of

0(X) by P, = Ker(H*(BV) — H*(BH;)).
(i) LetY; be the fixed point set of H;, Then

Hy(X)p, = H"(Y;)p, = H*(Y;/V) @ H™(H;)p;.-

Corollary 7.9. LetV and X satisfy the assumptions of Theorem 1.5. Then
(i)  There is 1-1 correspondence between the set of maximal elements in 0 (CP™)
and the set I of maximal B-isotropic subspaces of V, i.e. all maximal isotropy
subgroups are isomorphic to ®"Z/p and the cardinal number of I is (p +
(P2 +1)- - (p" +1).
(i1) Svodd THy*(X) = Syoda” " Hy* (X Vodd)
> Svodd ™ (H*(XV4/V) ® H* (Voaa))

Proof. From Theorem 5.1 and Theorem 5.2, the corollary is immediate. [

Recall that we can extend the Steenrod algebra action to the localized equi-
variant cohomology (Remark 2.16). Dwyer-Wilkerson [7], [4] proved Hy *(X4) =
Un(Ss~'Hy*(X)) for each finite V-complex X and each subgroup A of V.

Corollary 7.10. Let X andV satisfy the assumption of Theorem1.5. Then we
have Hy*(XV°dd) 2 Un(Syoqqa 1S (n)[uP"]/(uP"®) @ A(z1, -+, Ton_1)).

Next we consider the case X = CP*x CP?® and V' = ®?"*™Z/p acts on X such
that the projection onto the first factor is equivariant with respect to an action of
V'’ on CP?; and supposed that V"’ acts trivially on H*(X). Then we get the fibering

CP* — (EV' xy/ (CP' x CP*)) — (EV' xy: CP")
which induces the spectral sequence

Ey** = H*y/(CPY) ® H*(CP®*) = Hy/*(CP' x CP®).
Then by the same arguments as in the proof of Theorem 5.5, we can see

Theorem 7.11. Let V' =V & Z/p{y2’, ", yam’} andt =t'p" and s = s'p™.
Consider a V'-action on X = CP' x CP* such that the projection onto the first
factor is equivarent with respect to an action of V' on CP" ; and suppose that V'
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acts trivially on H*(X). Suppose also dsu is as in (1.2) and dzu’ is as (5.4). Then
e Hv*(X) = [e7']S(n) @ Z/plys’s -+, v2m1/(J) @ Z/p[w?” ,w'P" ]/ (ut, %)

where u and v’ are ring generators of H*(CP*) and H*(CP?) respectively.

Remark that we can construct V' actions which satisfies Theorem 7.5 and
Theorem 7.11, by using skeletons of classifying spaces of E, and G’ in §5.

Finally we give the example for n = 1. The ideal J = (w(1)) = (y1Py2 — y1y2P)
has the primary decomposition (y.)N[;c, /p(y1—iy2). Hence there are p+1 maximal
isotropy subgroups, which are isomorphic to Z/p. On the other hand, there is a E;-
action on CP such that

a1 ¢ (21,77, 2p) — (€'21,-++,€P2,) with € =exp2mV/~1/p
az : (21"",zp) — (ZZ;"'7Zpaz1)
0: (z1,-+,2p) — (nz1,---,n20) with 7 = exp2mv/—16.

Consider the induced (Z/p @ Z/p)-action on CPP~! = (C — {0})/(8). The fixed
points under the (a;)-action are (1,0,---,0),---,(0,---,0,1). For z = (1,0,---,0),
we see G, = (a1) = Z/p. Since we can take p;; € GL,(C) such that p;; ~'a;‘ax’p;; =
ay in GL,(C), all maximal isotropy groups are (a1), (aza;®) for 0 < i < p—1,
which correspond to (y2), and (y; — iy2) respectively by (y1 — ty2) = Ker(H*(G) —
H*({az2a:%)).

We also see equivariant cohomologies for n = 1.

[e ' Hy*(CPP1) 2 (6792 @ A(x1)/(y2P — 1P u2)
Svoead "Hy*(CPP™') = Hy*(CPP™ ") (vodd) = Z/plyr ", y1] ® A(z1)

[e—l]Hv(CPp_l)(k) = U Var(yg — ’iyl), Svodd—le(CPp—l)(k) = Voaa ® k.
1€Z/p

8. Cohomology of a Sylow p-subgroup of GL4(F})

Let GL,(F,) be the general linear group over F, and U, be its p-Sylow subgroup
generated by upper triangular matrices with diagonal entries 1. Let a;; be the element
in U, such that all entries are zero except for diagonal entries and the (3, j)-entry,
which are 1. Then it is well known

Un = (a5]1 <i<j<n)
I if j#h

and [ais, ane] = {aik if j=h

Hereafter we compute H(U,). When p = 2 the cohomology is computed in [16] and
it is used to compute H*(GL4(Fz)). The cohomology is also important to decide
the cohomology of the sporadic simple groups M, O'N [2], [1].
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We assume p odd. For ease of argument we simply write the subscripts(12) (resp.
(23), (34), (13), (24), (14)) as 1 (resp. 2, 3, 4, 5, 6), for example a; = a12, T2 = a3, -

1 4 6
2 5
3

Let us write by U(iy - - -ix) the subgroup of U generated by a;,,---,a;, . The
subgroup U(124) is isomorphic to the extra-special p-group E;. Hence we know
from Corollary 3.11.

(8.1 [yi T H*(U(124)) = Z/plyr ", y1, y2, va] / (wi2(1)) ® A(z1, 24)

Here v, is defined by using the Evens’ norm

(8.2) vg = Norm(U(14) C U(124))(ya)
and hence
(8.3) va|U(14) = ya? — y1P rya = ya1, 24|U(14) = 24 — (ya/y1)21,

and wiz(1) = y1Py2 — y1yef = v1y21.

Note that zo = (y2/y1)z1 in [y1~}|H*(U(14)). The conjugation map ap*
induced from ay on [y; ~'|H*(U(14)) is given by

Ys — Ys t Y1, T4 — T4+ 2.

Since the elements z4 and v, must be i{lvariant under this ax*, we get (8.3).
Let us write M = U/U(6) and M = M Xxys) S'. We study the cohomology
[y1~'|H*(M). We consider the spectral sequence

84) B =[nH (U(124) @ U(3)) ® H*(U(5)) = [y~ |H* (M)
where U(5) = U(5) xy(s) S*. Let us write

(8.5) R=Z/plyr™" 41, 93,v4] ® A(1,21) and B =Z/p{1l,ya, -, 52" '}.
Then E>** = R® B ® Z/plys] ® A(z3). The first nonzero differential is
(8.6) d3ys = Y223 — Y3T2 = y2(23 — (¥3/y1)71)-

Let 3’ = 23 — (y3/y1)z1. Then the homology is

H(R ®B® /\(113), dy5) = H(R ®B® /\(333’),1/2.’153/)
= Ker(2)|(R® B) ® R® B/(y2){zs"}
= R{ys" ' — P 25"} = R{1 — (y2/91)P 7", 25"}
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since wi12(1) = y1Py2 — y1y2P = 0 in [y; "1JH*(U(124)). For ease of notations, we
write by 1’ simply the element 1 — (y2/y;)P~1. Therefore we get

R®B® A(wgl)/(ygl‘;;/) ¥ =0
(87  ESY ={ R{l'zs'} 0<+<p-—1
R{l',z3'} @ R® (B - Z/p{1}){zs'} + =p-1.

Lemma 88. d,=0ford<r<2p-—2.

Proof. We only need to show that d.(z ® ys') = 0 for z = z3’ or 1. Let us
write U(i---36)/U(6) by U(i-- - j)'. Consider the extension
0 — U(5) — U(1435) — U(134) — 0
and the induced spectral sequence EFE,**. Since U(1345) = (Z/p)* is abelian, all
differentials in EE,.** are zero. Let i* : E,.** — EE.™" be the map induced from

the inclusion ¢ : U(1345)" — M. Suppose dz # 0 in E,.™* for one of the above z.
Since z is yp-torsion,

dyx € R{l',z3'} ®ys® for 0<s<p-1.

However ¢*|R{1’,z3'} ® y5° is injective. Hence i*d,z = d,i*z # 0 and this is a
contradiction. O

Lemma 89. dy,_1(1' ® ysP™1) =0, dop—1(z3' ® y5P7*) = (y2/y1)P ys2.

Proof.  Since i*(1’) = 1, d.(1’ ® ysP"!) = 0 is proved by the arguments
similar to the proof of Lemma 8.8. By the Kudo’s transgression theorem, we have
d(yaz3’) = yoys2, Hence we get dap_1(z3") = yz2 modulo Ker(yz) = Ideal(1’). Since
i*(d2p—1(x3’)) = 0 for the map * : E,* — EE,™* in the proof of Lemma 8, we
know da,_1(z3’) must be in the ideal (y,). Hence we get this lemma. O

Therefore we have

Lemma 8.10.

R® B ® A(z3')/(yazs’, y2ys2) * =0

[y1 7Y E, o o
12 R®A(zs){1'} 0<+ <p—1

Here we note that R{z3’,1'} = R® A(z3’}{1’} for 0 < ¥ < p— 1 and that
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additively
Er*’o = R/(y3){y2, o >y2p_1} ® {1’ Y3, 7y3p_1} ORQ® /\("Eg,).

Since v5|U(5) = wysP, ysP is permanent in this spectral sequence. Thus
[y1 7Y Eop™™ =2 [y1 71 Eoo™™. Next consider[y; ~*|H*(M). From the fibering

S' — BM — BM,
we get the spectral sequence
E')"* = H*(BM) ® A(xs) = H*(M).
The differential is
da(25) = 2223 = (Y2/y1)2123 = (y2/y1)T125" = 0.

Hence this spectral sequence collapses and [y; ~!|H*(M) 2 [y; ~!|H*(M) ® A(2s).
Here we can take vs and zs such that

(8.11) vs|U(1345)" = ys3, 25|U(1345)" = 5 — (ys/y1)x3.

Let ks be an element corresponding to 1’ ® ys in Ex™*. Then ks|U(1345) =
ys — (ya/y1)ys and ks* corresponds 1" ® ys* = 1’ ® y5* for 1 < i < p — 1. Moreover
Bzs = ks on U(1345)'. Here we notice that for all s > 1

18 = 1670 — (yp/yr)P 17D = 167D = 1,

Proposition 8.12. There is an additive isomorphism [y; | H*(M) = Q® (C @
K) with Q ® C = Ker(1') and Q ® K = Im(1"), where

Q = Z/plyr ", y1,v4,v5] ® A(z1, 24, 25)
C = Z/p{y% e ?y2p_1} ® Z/p{l’yB) e ay3p—1}
K = Z/p[ys] ® /\(3)3/) ® {1I7k5) o ’,k5p_1}

Let ¢ : U(1345) C M be the inclusion. Then it is immediate that i*|QK is
injective. Let £ : [y Y H*(M) — [y17 !, y2 " |H*(M) be the localization. We can
take ks so that yoks = 0 multiplying by 1’ if neccessary. Then [y; ™1, yo | H* (M) =
[y271)Q ® C. Therefore we get

Corollary 8.13. The map i* x { is injective.
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Let U=U Xu(6) S1. The short exact sequence
1—U®6) —U—M-—1
induces the spectral sequence
(8.14) [y By = [y, T H*(M; H*(U(6)) = [y2 Y| H*(U)
Since 1’ is permanent and Ker(1’) = Im(y,), we have a decomposition
[y1 7Y E.** 2 Im(1")E,** @ Ker(1')E,**.

From the argument just before Corollary 8.13, we have

Lemma 8.15. [y 71,y |E.** 2 [y 1] Ker(1)E,. ™.

Write by IE,.** the spectral sequence induced from
(8.16) 1 — U(6) — U(13456) — U(1345)' — 1

and write by 4 : U(13456) C U the usual inclusion. Since U(13456) = E.E the
extra-special p-group of order p°®, we know the spectral sequence [(y1y41) !|IE, ™"
well from Section 3.

Lemma 8.17. The following map i* of spectral sequences is injective;

i [y1v4_1]Im(1')ET*’* — [(y1y41)_1]IET*’*.

Proof.  First recall Im(1')Ex** = Q ® K ® Z/plys]. The differntial ds(ys) is
contained in Image (i*) and Q ® K is a free A(zs,z3’) -module. We can easily see
the lemma for r = 3, by using the fact

Im(1)E3*° = Im(1) E2*°/(d2(ys) = y125 + - ).

For 3 < r < 2p — 1, the statement in the lemma is correct, since i*d, = 0 so d, = 0.
For r = 2p—1, in IE.** the non zero differential is just the Kudo’s transgression. In
IE, ™", w(l) = y1ys1 + yayas is a non-zero-divisor, and so it is also in Im(1")E,.™".
Thus we want to see that

& Im(1) B, J(w(1)) — TE™* /(w(1)).

is injective. For this, it is sufficient to prove that if w(1)a in Im(1)E,*° = Q ®
K/(d2(ys)) for a € IE,*, then a € Q ® K. Here we note the fact that i*(Q ®
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K) = H*(U(1345)")U @) the invariant ring under a,. This is proved by the facts that
Z/ply1,ya]’® = Z/ply1,v4] and i*(ks) = ys + -~ If w(1)a € Q ® K, then w(l)a
is invariant under ay*, hence w(1)(az* — 1)a = 0. Since w(1) is non-zero-divisor,
(ag*—1)a = 0 and this means a is in the invariant ring @ ® K. Using similar
arguments for larger v, we can prove the lemma. OJ

We will study Im(1') E,.** more explicitly. Hereafter we work only in Im(1’) or
in the restriction to U(13456).

Lemma 8.18. da2(ys) = y125 — ksT1 + Y324

Proof. The group U(13456) is isomorphic to the extra special p-group with
order p° and exponent p. Hence

d2(ye) = 2(1) = Y15 — YsT1 + Y3T4 — Y4T3
= y1(zs — (ya/y1)z3) — (y5 — (ya/y1)y3)z1 + y3(xa — (ya/y1)z1). O

Lemma 8.19. 2(2) = y1P25 + vaw3 — (vs + ksysP~1)z1 + ysPza,

w(1) = y1Pks + vays — (vs + ksys? ™)y
Proof. Since B(z(2)) = w(1), we only need to compute 2(2). Applying P to

2(2) = P'2(1) = P (y125 — ksz1 + y324)
= P25 + y1P (2z5) — P (ks)z1 + ysPzs + ysP (24).

Here P!(25) = P'(z5 — (ya/y1)z3) = —P*(ya/y1)zs. Since P'(y~') = —yP 72, we
get

PYya/y1) = yaP /1 — Yay1® 2 = ya1/y1.
Similarly P'(z4) = P} (x4 — (ya/y1)21) = —(ya1/y1)z1. Next compute

PUk) = P (ys — (ya/y1)ys) = ys* — (ya1/y1)ys — (ya/y1)ys”
= ys3 — (Ya1/y1)ys + Y593 " — (Ya/y1)ys? = vs — (ya1/y1)ys + ksys? L.
Hence
Z(2) = P25 — y1(Ya1/v1)T3

—(v5 — Ya1ys/y1 + ksys? )Ty + ysP 24 — y3(yar/y1) 2
= y1Pz5 — v473 — (Vs + ksysP " ')z1 + y3P 2. 0
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Since y1P712(1) = y1Pz5 — 1P kszy +y1P " yz24, we have with modulo (z(1))

(

w(

(8.20)

2) = (11?7 — ysP Hksz1 — v423 — vsT1 + Y3124
1) 1

(177" — ys?")ksyr — vays — vsy1.
Moreover, modulo (w(1)), we can make the change
(8.21) 2(2) — (w(1)/y1)z1 = —va(x3 — yaz1 /Y1) + Y3124
To compute PPz(2), we prepare
PPys/y1) = yaPyn” % — yagn? P =y ®
since PP~1(y~1) = y?*~2P and PP(y) = —yP"~P~1. Hence
P(zs5) = PP(z5 — (ya/y1)z3) = ~yay” s,
Similarly PP(z4) = —y41917 ~2Pz;. The action for ks is

PP(ksys?™') = PP(ysys? " — (ya/y1)ys”)
— 2_ 2
= (ysys )P — yaryn® “Pys? — (ya/y1)ys® -

Lemma 8.22. z(3) = PPz(2)

2 2
P 25 — v P “Pr3 + vPx3 — vsPxy

2 2
- (175213’”2_” + ksys? ~')z1 + ys? zs.

and w(2) = y1” ks — vayr” Pys + vaPys — vsPy1 — (vsys? P + ksys? L)ys.
Proof. The PP action for 2(2) is

2 2_
PP2(2) = y1? 25 + 1P (—ynyi® ~Px3) +vePs — vsPay

2_ 2_ 2 2_
—(ysPys? P —ynyi? “PPys? — (ya/y1)ysP)zs + ys? 24 — ysPymys® P,
The sum of the above line gives

2 2 2 2
—(ys193” P +ysys? ' — (ya/y1)ys® )T1 + ysP za. O

2

Let vg(2) be an element such that v6(2)|(7(6) = yeP

Theorem 8.23. [y}, vy~ |H*(U){1'}
= Z/plyr, y17,va, 047 ks, y3, v6(2)] © A2, 24) /(w(1), w(2))
where vs = ks? — vy(y3/y1)P + ksysP ! in w(l) and w(2) .
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Proof. We only need to see

ks? = (ys — (ya/y1)ys)?
= ys? — ysys? ' +ysysP Tt — (Y — yayi® ) /yiP)ys® — (ya/y1)ys®
vs — va(ys/y1)? + ksys? ! O

For the study of [y; =1, y2 | H*(M), we study first [y2~*|H*(M). By arguments
similar to those of the case [y; ~}|H*(M), we get

[yz‘l]H*(U(124)) = Z/P[Z/2_1> Y2, Y1, v4]/ (Y12) ® A2, 24)

Proposition 8.24. [y, '|H*(M) = R'[y1, 3]/ (y12, y31)
=R ® Z/p{]-ayh e ,ylp_l} ® Z/P{l,ys, e 7y3p_1}
where R' = Z/p[yg,yg—l,’w;,?),s] ® /\(.’L‘Q,Z4,25).

Proof. Consider the central extension
(8.25) 1— (as) — M — U(124) eoU@3) — 1.

The facts that [y, | H*(U(124) @ U(3)) is Z/ply2, y2~ 1, y3] ® A(x3)-free and that
d3ys = yaT3 — Y32 prove the proposition. 0O

Next consider the spectral sequence
(826)  [(v1y2) B2 = [(yaye) T H(M; H*(U(6)) = (1) |H* (D).

To study d3(ys), we first consider the theory without any localization. In the spectral
sequence induced from

1 —U4) — U124) — U(1) 8 U(2) — 1,
the element [zoz4] € E,™" is permanent since dg(rs4) = z1z2, Write by o4 the
element [zoz4) in H?(U(124)) and by 2, its Bockstein image. Similarly we can
define z25 and 25’ in H3(U(235)) such that B(zas) = z5' = ya2s5 in [y | H*(M).

Here we recall the weight defined by the action of diagonal elements [11].
Namely the weight w(z) € Z/(p — 1){e, 3,7} is defined by

wt(zy1) (resp. z2, 3, T4, Ts5,T6) =  (resp. B,v,a+ 3,8+ v,a+ B +7).

The weight has the properties wt(z;) = wt(y;) and wt(yz) = wt(y) + wt(z).
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We can show that the weight space H*(M)a+425+y = Z/p{ysz24,y1725}. For
dimensional reasons, 4-dimensional elements are generated by y4ys, y1Z2T5, YsTaZy
in the spectral sequence of

1—U@4)eUB)—M —UQ1)aUQ2)aU(3) — 1.

But y4ys is not a permanent cycle.

Since wi(y226) = o + 206 + v, we get da(y226) = YsT24 + Y1225 in the spectral
sequence converging to H*(U). Applying the Bockstein, d3(y2ys) = 324’ + y125’.
Therefore we have

Lemma 8.27. d3(ys) = y3z4 + y125 in the spectral sequence (8.26).

We will study P(z4'). Let A; = (azai%,a4) C U(124) for 0 < 7 < p— 1.
Then y2|A; = y, y1|A; = iy and vg|A; = ysP — yP~ 'y, after the identification
H*(Ai) = Z/p[y47y] ® /\(I4,$).

Lemma 8.28. If the restricted image x|A; =0 for all0 <i<p—1, thenz =0
in [y2~'|H*(U(124)).

Proof. We will prove the case © = f(y1,y2) € Z/p[v1,y2). Other cases are
proved similarly. Since z|4; = f(iy,y) = 0 in Z/p[y|, we see that z = f(y1,y2)
divides y1 —iyo, so divides y12 = IL;c, /(Y1 —iy2), which is zero in [y, ' |H*(U (124)).

O
Lemma 8.29. Plzy = ypP 12y —vyzxs.
Proof. Plz|A; = P (yzy — yaz) = yPx4 — ysPx
= yP " (yzq — yaz) — (yaP — yay® ")z
From Lemma 8.28, we get the lemma. U

Lemma 8.30. 2(2) = 4P !(y125" + y324') — 2~ (Y105 + y3v4) T2
w(l) = B(2(2)) = —y1v5 — Y3va.

Proof. Compute the following

Py N (y12s' +ys24')) = —yP 2 (y125’ + ysza') +y2 (1P 25’ + ysPes)
+y2 ty (yoP s’ — vsa) + Y2 tya(y2P T 2d’ — vaTo)

= 1 (yiPz' + ysPz') — y2 7 (Y1vs + y3va) 2.

Using the facts that y1? = 9P~ 1y, ysP = yoP lys, we get the lemma. O
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Since z(2) = 0 mod (2(1),w(1)), we have that Ey, " = E,,** for the spectral
sequence (8.26). Therefore we get

Theorem 8.31. [y, vy, |H*(D)
= Z/ply1,y17 " Y2, 27t Y3, va, ve] © A(@2,24) /(31P T — y2P Y, ys2)

Theorem 8.32. [y; !,y |H*(U) §~[y1_1,y2_1]H*((7) ® A(26)
[~ T HFU){U} = [y v HH(U) ® A(26){1}

Proof. First note that da(26) is

z1T5 + 324 = T1(T5 — (Ya/y1)z3) + z3(xa — (ya/y1)z1)
= x125 + 324 in [yl_l]H*(fj(13456)).

Since wt(zg) = a+ B+, for dimensional reasons z3 and y, do not appear in da(ys).
Hence da(26) = 7125 + 324 also in [y; ~]H*(U). For the case with [y; 1y, 1], we
get yo(z125 + T324) = x2(y125 + y32z4) = 0. For the case [(y1v4) " Im{1’}, we have

y1(T125 + 324) = 21(ksT1 — Y324) + Y1324
(—z1ys +y173)24 =0 from (8.21). O

9. Brown-Peterson cohomology theory

Let BP*(—) (resp. K(m)*(—)) be the Brown-Peterson cohomology theory
(resp. the Morava K-theory) with the coefficient BP* = Z,[vy,- -] (resp. K(m)*
= Z/p[vm,vm "]). For any compact Lie group G, it was conjectured in [9] that

BP°(BG)=0 and K(m)°¥4(BG)=o0.

However L. Kriz [ 10] claims that K (m)°d4(BU,) # 0 for the Sylow p-subgroup U of
GL4(F,). In this section we cosider the mod p BP-theory P(1)*(—) = BP*(—; Z/p)
and show that P(1)°44(BU,) is zero with some localization.

We also recall the theory P(m)*(—) with the coefficient

P(m)* = Z/p['l)m,vm+1, v ]
Theorem 9.1. There is a filtration such that

grlen™|P(m)*(BEy) & [en ' |P(m +n)" ® S(n)[u?").

Proof. Consider the Atiyah-Hirzebruch spectral sequence

Ey** = [en Y| H*(BEy; P(m)*) = [en~|P(m)*(BE,).
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Here we recall [e, ~}|H*(BE,) = [e,}]S(n) [wP"]®A(z1,- - -, Tan_1). First non-zero
differential is

dzpm_l(.’ti) =Un ® Qm(xi) = vy’ ([9]7 [10])

where @, is the Milnor primitive operation inductively defined by Qo = 8, Q@ =
m—1 m— . m

PP Qm_1— Qm_1PP 1. Let us write (E,’I =x; — (yi/yl)p ;. Then dzpm_l(l‘i/)

=0 and A(zy,z3',- -, Z2n-1") = A(z1, -+, ZTan—1). Hence we have

Eppm 1™ = [en '|P(m +1) @ S(n)[u’] ® A(zs', -, B2n—1).

We can continue this argument for dyps_; for all s > m. Let B’ be the matrix
whose (i,k) entry (yzs—1”" ) = (Qmsi—1T26—1). By multiplying an upper
trianglar matrix D with diagonal entries one from right, we can change B’ to a
lower triangular matrix B”, i.e. B'D = B” since |B'| = ((—1)"e)?" /(=1 Let us
write D = (d;;). Then (¢, j)-entry of B'D = B" is

ZQm+i—1(m2k_1)dkj = Qm+i-1 (Z dkj932k—l>
3 k

since Q;(d;s) = 0. Let (21, ,z2,-1") = (21, -+, Z2n—1)D. Then we have

(Yi,2i-1 )pm for s=1 (see Lemma 2.5)
0 for i<s.

Qm+l(x2s—ll) = {

Thus we get
™) Bagmn ™" 2 ™Y P(m + )" ® S(n)[u"]

This term is even dimensionally generated and hence is isomorphic to the infinite
term. O

Recall the statements and the notations in Theorem 8.23 and Theorem 8.31.

Theorem 9.2. There is a filtration such that
() gr{(yiva) HP(1)*(BUL){1'}
= P(3)*[y1, 17", vay va Y, ks, y3, v6(2)]/ (w(1), w(2), v3ve(2)P)
(i)  gr{(y1va) ™', y2] P(1)*(BUs)
= P(3)*[y1, 117 y2, Y2, ys, v, va ™, vg)
/1Pt — y2P Y, Y31, a2, vave(2)P)  with  wg(2) = veP — y2PP~Dug.

By arguments similar to the proof of Theorem 9.1, we can easily prove the
theorem if we can show

9.3) Q226 = v(2) in both the cases Im{1'} and Ker{1'}.
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At first, we study the [(y1v4)~!]Image{1'}.
Lemma 94. 2|U(146) = z6 — (Y64/¥14)1 — (Y61/Ya1)T4.
Proof. Let us write the restriction as
26|U(146) = zg + byz1 + bazy

with b; € Z/p[(y1ya1) !, 1, Vs, ve]. The element 24|U(146) is invariant under the
action as* induced from the element as in U(5). Since

a5*z6|U(146) = Te + T + (as*bl)xl + (a5*b4)a:4,

we have (as*—1)b; = —1 and (as*—1)by = 0. By the action az*, we also know
(ag*—1)bs = —1 and (as*—1)by = 0. Since Z/ply1, y6]Y® = Z/p[y1, ye1], we have

by = —(yea/th4)° and by = —(ye1/ya1)".

We will prove s = t = 1 by showing that y;ys126 is permanent without any
localization in the spectral sequence

Ey* = H*(U(13456)) ® A(ze) => H*(U(13456)).
From (2.6), we know in H*(U(13456)),
y125 = 0 mod (z1,z3,74) and ya1z3 = 0 mod (z1,x4).

Hence da(y1y41%6) = y19a1(z175 + z324) = 0. ]

Corollary 9.5. BZ|U(146) = 0.

Lemma 9.6. Q.25|U(146) = —ygP” mod {ys‘|i < p?},

Proof. First we note that

Plyn =P (ya® — 1" 'va) = 1P 2ys — 91" 9" = —n” 'y

Since 0 = P (ya1ya1 ") = (=917 'yar) (Ya1 ") + ya P (yar 1), we get P (ya ™) =
¥1P a1/(ya) "2 = 41?7 /ys. Therefore P'(yea/y14) = (—vaP 'Yea/Y14 +

Y64¥4P " /y14) = 0. From Lemma 9.4, we have

Pl26|U(146) = —P (Yoa/y14)21 — P (Y61/ya1)z4 = 0.
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Hence Q126U (146) = 0. Thus with mod{ye’|i < p?}, we get

QQZ(;]U(146) —Q1Pp26]U(146)
(Y64® /114) Q121 + (Y61 /Ya1) Q124

6" (117/ (y1a) + v4"/ (1)) = 6 - 0

Il

It

Next consider the case with localization [y2~']. Recall the subgroups A; of
U(124) and Lemma 8.27, In [(y1y2) '|H*(U(124)), the element z24 defined before
Lemma 8.23 is expressed by z224 because its restrictions to A; are all zox4. Since
da(y2ze) = (y1%a2s + YsTaq) in H*(M), we get

da(y22z6) = y2(y1225 + Y3z24)
= Yo (11%225 + Y3x224) = T2(Y125" + y324) =0

in H(U). Therefore y,%z¢ is permanent. Hence
26|U(1246) = z6 — (ys/y2)T2 + (bye/y2>)za

since 2z6|U(124) = 0 and 2|U(1246) is invariant under the action as*. But, by
considering the degree and weight, b = 0. Thus we have

Lemma 9.7. ZGIU(1246) = Tg — (yg/yz)ilfg.

Hence Bzs|U(1246) = 0 and P'2z6|U(1246) = (—ye2/y2)z2. Therefore Q12 =
—Veg.

Lemma 9.8. QQZGIU(1246) = ysgp — y62y2p(p—1)‘
Proof. The left hand side of the above formula is
2_
Y2 — Q1PP(Ys/y2)T2 = Ys2¥ — Yeayo? PyaP. 0
Last, we note the case p = 2. When p = 2, the situation is quite different.

However Theorem 9.1 also holds in this case. The cohomology of extra-special
2-groups are completely determined by Quillen [13], in particular

H*(Dy) = San'/J ® Z/2[2%"]

where D,, is the central product of the dihedral group D of order 8, Sy, =
Z/2[I17 T 71:271,]’ J = (f’ Sq1f7 T Sq2 Tt Sqlf)a f = Z‘,L.Qiflx2i’ and |Z| =1.



LOCALIZATION OF THE SPECTRAL SEQUENCE 115

Let us write ;2 (resp. z;?) by y; (resp. u) and use the filtration by y;. Then we
have

grH*(Dn) = S2n ® Aan/(2(1), -+, 2(n = 1), w(1), -, w(n — 1), f, f*) @ Z/2[u""]

grH*(D,) = Sop, @ Aan/(2(1),- -+, 2(n),w(1), -, w(n)) ® Z/2[u2n].

Therefore Theorem 3.9 and Theorem 9.1 also hold for p = 2.

(1]

(2]

(3]
(4]
(5]
(6]

(7]
(8]

(9]
(10]
(1]
[12]
[13]
[14]
(15]

Proposition 9.9. [e, !|grH*(D,) = [e, 1|S(n) ®@A(z1, "+, Ton_1)® Z/2[u?"]

[en"VgrP(m)*(BD,,) = [en Y|P(m + n)* ® S(n) ® Z/2[u").
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