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Introduction and results

This paper is devoted the L? approach to genuine mixed displacement-traction
boundary value problems of nonlinear elastostatics. Our boundary condition is
a “regularization” of the genuine mixed displacement-traction boundary condition;
more precisely, it is a smooth linear combination of displacement and traction
boundary conditions, but is not equal to the pure traction boundary condition. The
crucial point is how to find a function space associated with the boundary condition
in which the linearized problem has a unique solution. Our result can be applied
to the St. Venant-Kirchhoff elastic material and the Hencky-Nadai elasto-plastic
material. Some previous results with pure displacement boundary condtion are
due to Ciarlet [4], Dinca [5], Marsden-Hughes [11] and Valent [16]. The results
here extend and improve substantially those results in a unified theory.

Let Q be an open, connected subset of Euclidean space R® with piecewise
smooth boundary dQ. We think of the closure Q=QuUdQ as representing the
volume occupied by an undeformed body; so the set #=Q is called the reference
configuration. A configuration of # is a C' map ¢:% - R> which is
orientation-preserving and invertible. A configuration represents a deformed state
of the body. Points in # are denoted by X=(X,,X,,X5) and are called material
points, while points in R* are denoted by x=(x,,x,,x;) and are called spatial
points. We write as x=¢@(X).

The 3 x 3 matrix of partial derivatives of ¢ is denoted by F(X)=Dg(X) and
is called the deformation gradient. The symmetric tensor ((F)="'FF is called the
Green deformation tensor.

A body ¢(%) is acted on by applied body forces b(x) in its interior and by
applied surface forces z(x) on a portion of the boundary. The pair (b,r) of forces
is called the load.

In additon, the body generally experiences internal forces of stress across any
given surface. Let #(x,n) be the force at position x across an ‘oriented surface
element with outward unit normal n. The celebrated Cauchy theorem asserts that
if the balance of momentum holds, then the stress vector #(x,n) depends
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linearly on n, that is, there exists a symmetric two-tensor o(x) such that

3
tx,m=o(x)'n; t1{xn)=Y o, x)n,
i=1
The vector #(x,n) is called the Cauchy stress vector and the tensor o(x) is called the

Cauchy stress tensor.
The vector T(X,N), defined by the formula

T(X,N)=P(X)-N(X), P(X)=det(D$(X))o($(X)):(D(X) ™",

is called the first Piola-Kirchhoff stress vector, where NM(X) is the outward unit normal
to the boundary 0Q at X. The two-tensor P(X), which is the Piola transform of
the Cauchy stress tensor o(x), is called the first Piola-Kirchhoff stress tensor.

A material is said to be elastic if one can write the first Piola-Kirchhoff stress
tensor P(X) as a function P(X,F) of points X€ 4 and 3 x 3 matrices F =(F;;) with
det F>0 such that

P(X)=P(X,D$(X)).

An elastic material is said to be hyperelastic if there exists a smooth function
W(X,F) of points Xe# and 3 x 3 matrices F with det F>0 such that

R ow - ow
P(X,F)=—(X,F), P(X,F)=——X,F).
(X,F) é;,{ ) AX.F) 3 Fu( F)
The function W(X,F) is called a stored energy function. The four-index tensor
A=0P/0F=0*W 0F0F, defined by the formula

oP;; *>w
Al"mX’ = UX’ = /Y, y
X )= 5 X = e 0P)

is called the first elasticity tensor.

We make the following two assumptions throughout the paper:

(H.1) The reference configuration is a bounded region = < R® with smooth
boundary 09Q.

(H.2) The material is hyperelastic.

Some boundary conditions often encountered are the following:

(a) Displacement ¢(X)=¢,(X) is described for XeoQ.

(b) Traction P(X,Dg¢(X))- N(X)=r(X) is described for X e Q.

Now let B:Q — R* be the density of a given body force per unit volume in
the reference configuration and r : 9Q — R? the density of a given surface force per unit
area in the reference configuration. In this paper we consider the following
equilibrium equations for the unknown configuration ¢:
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) {div P(X,Dg(X))+B(X)=0 inQ,
A X)P(X,DP(X))- NX)+(1 —a(X)p(X) =7(X) on 0Q,

where a is a smooth funciton on 0Q such that
0<axli on 0Q.

We remark that our problem (%) is a “regularized” genuine mixed displacement-
traction boundary value problem.

We study the nonlinear problem (*) in the framework of Sobolev spaces of
LP style. If seR and 1<p<oo, we define the Sobolev space (see Subsection
1.1)

H*P(Q)=the space of restrictions to Q of functions in H>?(R").
The space H¥?(Q2) is a Banach space with the norm
lulls,,=inf{| Ul ,; Ue H*A(R"), Ulq=uj}.
Furthermore, if s>1/p, we define

B~ 1PP(9Q)=the space of the boundary values ¢ of functions
ue H"(Q),
with the norm
lepls— 1/p,p=inf{“u"s,p sue HYH(Q), u| ,0=p}.

The space B°~ '/P"P(0Q) is a Banach space with respect to the norm ||,_,,, ,; more
precisely it is a Besov space.
We let

H*P(Q,R%)=the space of all H*? functions ¢:Q — R3,
B~ YPP(9Q0), R?) =the space of all B*~'/P? functions ¢:0Q — R>.

We introduce a subspace of the Besov space B*~!~/PP(9Q,R?) for s>1+1/p which
is associated with the boundary condition

aP(Dg)- N+(1—a)p=7 on 0Q
in the following way: We let
BT PPOQRY) ={p=0p, +(1—a)p,; ¢, € B TPHIQRY),
¢, € B UPP(OQR?)},

with the norm
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liPla;s—1—1/p,p=i“f{|¢1|s—1~1/p.p+|¢z|s—1/p,p;¢=°‘¢1+(1—O‘)Soz}-
Then it is easy to verify that the space B, '™ '/PP(0Q,R%) is a Banach space with
respect to the norm ||, _y_y;,,» We remark that
B, " 'PP(0QR%) =B~ VPP0Q,R?)  if «=0 on 9Q (displacement),
B, " PP(0QR?) =B~ "1VPPOQRY)  if a=1 on 0Q (traction).
If s>3/p+1, we let
% =the subspace of all configurations ¢ in H*P(Q,R3).

We remark that the set € is open in the space H*?(Q,R?). Indeed, this follows
from an application of the inverse mapping theorem, since the Sobolev imbedding
theorem tells us that the H*? topology is stronger than the C' topology, for all
s>3/p+1.

We associate with problem (*) a nonlinear map between Banach spaces

F:H>P(Q,R3) —» H*~ 2P(Q,R?) x B, 1=1/rr(9Q,R3)
as follows:

F($)=(—divP(Dg), aP(D$)  N+(1 - |s0), €.

It follows from an application of the w-lemma (see [11, Chapter 3, Theorem 1.13],
[16, Chapter II, Section 4]) that the map F is of class C'.

Now we can state our main existence and uniqueness result for problem ()
of nonlinear elastostatics:

Main theorem. Let 1<p<oo and s>3/p+1. We assume that.

(P) P(DF)=0 when ¢ =1, (identity map on Q).
(H) The first elasticity tensor A=02W |0FOF evaluated at §=1I, enjoys the
property of symmetry
A-'jlm =A jilm( = Ahm' j)a

and is uniformly pointwise stable, that is, there is a constant n>0 such that
1 2
5eu&-eZﬂl!ell

for all symmetric two tensors e.

(A) a#l on 0Q.

Then there exist a neighborhood U of the configuration ¢ in H*P(Q,R?) and a
neighborhood v~ of the point
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(—divB(D§), aP(D§)  N+(1—2) |50)

in H*"2P(Q,R® x Bi;; ' ~1"2(0Q,R®) such that the map F:U — ¥ is one-to-one and
onto.

Condition (P) implies that the undeformed state is stress free. Condition (A)
implies that our boundary condition is not equal to the pure traction boundary
condition. It is worth pointing out here that the pure traction problem may have
non-unique solutions even for small loads and near a stress free state (see [11,
Chapter 7, Section 7.3]).

Rephrased, Main Theorem states that if the linearized problem is uniformly
pointwise stable, then, for slight perturbations of the load or boundary conditions
from their values at the undeformed state, the nonlinear problem (*) has a unique
solution ¢ near ¢=1I,,

We give two examples of hyperelastic materials.

ExaMpLE 1 (The Hencky-Nadai elasto-plastic material). The stored energy
function W(X,F) has the form

(F) 2
W(X,F)%JT g(c)dé+K<szk—3) :
0

where ge C*([0,00),R), K is the modulus of compression and

3 2
r(lF)—§ » (( F,~.~)—§<k; mm) 6.~,~) .

i,j=1

ExaMPLE 2 (The St.Venant-Kirchhoff isotropic material). The stored energy
function W(X,F) has the form

W(XF)——@(Z ColF) 3) L )Z (CoF)—8,)%,

i,j=1
where A(X), u(X) are smooth functions on Q and Ci(F)=X}_,F,F,; is the Green

deformation tensor.
For the Hencky-Nadai elasto-plastic material, we have the following result (cf.

[5, Théoréme 2]):

Theorem 1. Let 1<p<oo and s>3/p+1. We assume that

(A) a#l on 0Q

(G) £(0)>0 and K>0.

Then condition (H) is satisfied and so Main Theorem applies.

For the St.Venant-Kirchhoff isotropic material, we have the following result (cf.
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[4, Theorem 6.7-1]):

Theorem 2. Let 1<p<oo and s>3/p+1. We assume that:
(A) a#l on 0Q.
(M) There exist constants ¢, >0 and c¢,>0 such that

wX)y=c,, /1(X)+§/1(X)202 on Q.

Then condition (H) is satisfied and so Main Theorem applies.

The rest of this paper is organized as follows.

In Section 1 we present a brief description of the basic concepts and results
of the L? theory of pseudo-differential operators.

In Section 2 we linearize problem (x) and study the following problem of
linear elastostatics for the unknown vector function v:

) {Av =div(a-Vv)=f in Q,

By.=a(@a-Vv-n)+(1—ojv=¢p on 0Q.

Here a is smooth elasticity tensor and n is the outward unit normal to 9Q.

In Sections 3 through 6 we study the linearized problem (1) in the framework
of Sobolev spaces of LP style, by using the LP theory of pseudo-differential
operators. Our fundamental existence and uniqueness theorem for problem (%) is
stated as Theorem 2.1 in Section 2.

In Section 3 we show that problem (}) can be reduced to the study of a 3x 3
matrix-valued pseudo-differential operator on the boundary. We explain more
precisely the idea of our approach to problem ().

First we consider the displacement boundary value problem

D) {Av=div(a “Vy)=f inQ,

v=¢p on QL

The existence and uniqueness theorem for problem (D) is well established in the
framework of Sobolev spaces of L? style (Theorem 3.1). Thus one can introduce
the Possion operator

P: B~ 1rr(3Q,R?) — H*P(Q,R?)

as follows: For any ¢e B*~'/PP(5Q,R?), the function Py is the unique solution of
the problem
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{Av=0 inQ,
v=¢ on 0Q.

Next we consider the following mixed displacement-traction boundary value
problem:

™) {A v=div(a-Vv)=f inQ,

@Ven+v=p on 0Q.

The existence and uniqueness theorem for problem (M) is also well established in
the framework of Sobolev spaces of LP? style (Theorem 3.2).

Then, using problems (D) and (M), we show that problem () can be reduced
to the study of a 3 x 3 matrix-valued operator

T,=B,Z=oll +(1 -,
where
H¢=a'vg¢'n|ag.

It is known that the operator I is a 3 x 3 matrix-valued, classical pseudo-differential
operator of first order on the boundary 0Q.

In Section 4 we prove a regularity theorem for problem (}). More precisely one
can construct a parametrix S, for the operator T, in the HoOrmander class
L? 1,,(0Q,R%), and then apply a Besov-space boundedness theorem due to Bourdaud
[3] to the parametrix S, to obtain the regularity theorem for problem (}) (Theorem
4.1). ’

Section 5 is devoted to a uniqueness theorem for problem (1) (Theorem 5.1). We
show that the operator

o :=(A,B,): H*"(Q,R?) - H*~>/(Q,R%) x Bi; '~ 1/PP(6Q,R?)

is injective. In the proof we make good use of Korn’s inequality (Theorem 3.7)
to show an inequality of Gérding type for problem (1).

Section 6 is devoted to an existence theorem for problem (1) (Theorem 6.1), which
is an essential step in the proof of Main Theorem.

By the uniqueness theorem, we know that the operator 7, is injective. Hence,
in order to prove the surjectivity, it suffces to show that the index of the operator
o, is equal to zero (Proposition 6.2).

In doing so, we replace the operator 4 by the operator 4 — Al with 1>0, and
consider instead of problem (f) the following boundary value problem:

(A—ADv=div(a-Vv)—Av=f inQ,
(s

By=a(a-Vv-n)+(1—av=¢ on Q.
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We remark that problem (}); coincides with problem (f) when 4=0.

In order to study problem (});, we shall make use of a method essentially
due to Agmon [1], just as in [13]. This is a technique of treating a spectral
parameter Al as a second-order differential operator of an extra variable and
relating the old problem to a new one with the additional variable (Propositon 6.4).

The final Section 7 is devoted to the proof of Main Theorem, Theorem 1
and Theorem 2. By Theorem 2.1, our Main Theorem follows from an application
of the inverse mapping theorem. In the proof of Theorems 1 and 2, we calculate
explicitly the first elasticity tensor A, and verify that condition (G) or condition
(M) implies condition (H).

I am grateful to Hiroya Ito for fruitful conversations while working on this
paper. I also would like to express my hearty thanks to the referee for his
careful reading of the first draft of the manuscript and many valuable suggestions.

1. Theory of pseudo-differential operators

In this section we present a brief description of the basic concepts and results
of the L? theory of pseudo-differential operators which will be used in the sebsequent
sections. For detailed studies of pseudo-differential operators, the reader is referred
to Hormander [7], Kumano-go [9] and Taylor [14].

1.1 Function spaces. First we recall the basic definitions and facts about the
Fourier transform. If fe L'(R"), we define its (direct) Fourier transform #f by the
formula

FO= J e™ ¢ f(x)dx.

Similarly, if geL'(R"), we define its inverse Fourier transform % *g by the
formula

Frg(x)=

ix-&
(Wf ige)de.

We let
S (R")=the space of C* functions on R" rapidly decaying at infinity.

The transforms & and & * map S(R") continuously into itself, and F F *=F *F = ¢

on L(R"). The dual space &'(R") of #(R") consists of those distributions T'e 2'(R")

that have continuous extensions to &(R"). The direct and inverse Fourier

transforms can be extended to the space &'(R"). Once again, the transforms &

and & * map &'(R") continuously into itself, and FF *=F *F =4 on F'(R".
If se R, we define a linear map
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J S (R") - F'(R")
by the formula

Tu=FX(1+[E3)"2Fu), ueP (R

Then the map J* is an isomorphism of &'(R") onto itself, and its inverse is the
map J7°. The function J*u is called the Bessel potential of order s of w.

The function spaces we shall treat in this paper are the following (see [2],
[15]): If seR and 1<p< o0, we let

H*P(R")=the image of LP(R") under the mapping J*.

The space H*?(R") is called the (generalized) Sobolev space of order s.

We list some basic topological properties of H>?(R"):

(1) The space £(R") is dense in H*?(R").

(2) The space H *P(R") is the dual space of H*?(R"), where p'=p/(p—1)
is the exponent conjugate to p.

(3) If s>1t, then we have the inclusions

S(R") = HS*(R") = H"P(R") = &'(R"),

with continuous injections.

(4) If s is a nonnegative integer, then the space H*P(R") is isomorphic to the
usual Sobolev space H®?(R"), that is, the space H*?(R") coincides with the space
of functions ue LP(R") such that D*ue LP(R") for |a|<s.

Next, if 1<p<oo, we let

B''P(R"~!')=the space of functions g e LP(R"™!) such that

x+y)—2 —y)P
J f lo(x+) :o_(iciﬂp(x ») dydx <o,
Rr-1xRr-1 | P

The space B“P(R"~') is a Banach space with respect to the norm

|<p|1,,,=<f lpolrdx

— —v\IP 1/p
N J J lp(x + ) —2¢(x) + p(x— )| & dx) .
Rn-1xRn-1

Iyln—1+p

If seR, we let
B*P(R"~')=the image of B"?(R"~!) under the mapping J"*~?,

where J*~! is the Bessel potential of order s—1 on R"~!. The space BS?(R"~1)
is called the Besov space of order s.
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We list some basic topological properties of B¥P(R"™!):

(1) The space L(R""!) is dense in B“P(R"™1).

(2) Thespace B~*P(R"!)is the dual space of B*F(R"~!), where p'=p /(p—1).
(3) If s>t, then we have the inclusions

SR < BARY) < BHRY) < SR,

with continuous injections.

(4) If s=m+ e where m is a nonnegative integer and 0 <e <1, then the Besov
space BSP(R"~') coincides with the space of functions ¢ € H™?(R"~!) such that we
have, for |a|=m,

o — D% P
” D)= DO
Rn-1xRn-1

|x_y|n-—1+pa

If M is an n-dimensional compact C® manifold without boundary, then the
spaces H*P(M) are defined to be locally the spaces H*P(R") upon using local
coordinate systems flattening out M, together with a partition of unity. The
spaces BSP(0Q) are defined similarly, with H*P(R") replaced by BSP(R"~'). The norm
of B*?(0Q) will be denoted by |-[; ,.

Finally we state two important facts which will be used in the study of
boundary value problems:

(I) The restriction map

p: H*P(Q) — B~ 1PP(9Q)
U Ul

is continuous for all s>1/p, and is surjective.
(I) (Rellich) If s>t, then the injections

H**(M) —» H"Y(M),
B*?(0Q)) — B"P(0Q)
are both compact (or completely continuous).
1.2 Pseudo-differential operators. Let Q be an open subset of R". If meR
and 0<d<p<l1, we let

Srs(@x RV)=the set of all functions ae C*(Qx R") with the property
that, for any compact K < Q and any multi-indices «, 8, there
exists a constant Cy , ,>0 such that we have for all xe K and
O0eR"

1050%(x,0)] < Cr g (1 +10) 114301,

The elements of S7'(Q x RY) are called symbols of order m. We set
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S™2@Qx RY)= () S"{Q x RY).

meR

A symbol a(x,0)€ ST'o(Q x R") is said to be classical if there exist C® functions
aj(x,0), positively homogeneous of degree m—j; in 0 for |§|>1, such that, for all
positive integers k,

k—1
a— Y a;eS7;"QxR").
j=o0

We let
S™Q x R¥)=the set of all classical symbols of order m.

A pseudo-differential .operator of order m on Q is a Fourier integral operator
of the form

1 )
Au(x)= Jf e alxy uy)dyds,  ueC(Q),
2n)*J J o x gn
with some a€ S;';(Q2 x Q x R"). Here the integral is taken in the sense of oscillatory
integrals.
We let

»s(Q)=the set of all pseudo-differential operators of order m on Q,

and set

L™ 2(Q)= mR L"),

If AeL};(Q), one can choose a properly supported operator 4, L,)'5(Q) such
that 4 —A,e L™ °(Q), and define

o(A)=the equivalence class of the complete symbol of A4, in the
factor class S;',(Qx R")/S™°(Q x R").

The equivalence class o(A4) does not depend on the operator A, chosen, and is
called the complete symbol of A.

A pseudo-differential operator 4 e LY ((Q) is said to be classical if its complete
symbol a(A) has a representative in the class SJ(Q2 x R").

If M is an n-dimensional paracompact C® manifold without boundary and
ifmeR and 1 —p<d<p<1,then we can define a class L)',(M) of pseudo-differential
operators of order m on M, and transfer all the machinery of pseudo-differential
operators to manifolds. We let

L] (M)=the set of all pseudo-differential operators of order m on M.

Some results about pseudo-differential operators on R" are also true for
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pseudo-differential operators on M. For example, we have the following three
important results:

(I) The class L}";(M) is stable under the operations of composition of operators
and taking the transpose or adjoint of an operator.

(II) A pseudo-differential operator A4 in the class L{'s(M), 0<é<1, extends
to continuous linear operators : H¥?(M) —» H*~™P?(M) and A:B“?(M)— B*~™¥(M)
for all se R and 1<p<oo (see [3, Theorem 17J).

(ITT) Let AeL]'s(M) with complete symbol p(x,l). Assume that, for any
compact set K in each local chart U and any multi-indices «, f8, there exist constants
Ckap>0, Cx>0 and peR such that we have, for all xeK and [{|>Cy,

IDEDEP(x,8)| < Cr 5 | Px,E) | (14 [E]) 01121,
P06 ™! < Cr(1 + €

Then there exists a parametrix B in the class L) (M) for A (see [7, Theorem 22.1.3]).

2. Linear elastostatics

In this section we study a linearization of problem (*) of nonlinear elastostatics,
and state our fundamental existence and unigueness theorem (Theorem 2.1) for
the linearized problem () in the framework of Sobolev spaces of L? style.

2.1 Linearization of nonlinear elastostatics. First we linearize the nonlinear
equations of elastostatics

divP(Dg)+B=0 in Q.

The corresponding equations linearized at a configuration ¢ are the following (see
[11, Chapter 4, Section 4.2]):

div(f’(i)+A~VV)+B=0 in Q,

where

Similarly the linearization of the boundary condition
aP(Dg)- N+(1—a)p=7  on IQ

about a configuration ¢ is the following:

a<ﬁ(ﬁ)+A-VV) -N+(—o)¢+ V)=t on Q.
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Summing up, we obtain the following linearization of problem () for the
unknown vector function V:

(vx) {div(/& -VV)= —divP(F)—B inQ,
WA VV-N)+(1—o)V=z—aP(F)- N—(1—0)¢ on 9Q).

2.2 Linear elastostatics. In this subsection we consider problem (**) of linear
elastostatics in the following form:

) {div(a V) =f inQ,

oa-Ve-n)+(1—op=¢ on 0Q.

Here a is a smooth elasticity tensor and n is the outward unit normal to 0Q.
Now we let

Av=div(a- Vv),
By=o(a - Vv-n)+(1—o)v|;q,
and associate with problem () a linear operator
(4,B,): H*?(Q,R®) > H*~ >P(Q,R*) x B, ' ~'/»P(6Q,R>).

Then it is easy to verify that the operator (4,B,) is continuous, for all s>1+41/p.
Our fundamental result is the following existence and uniqueness theorem for
problem (1) (cf. [8, Theorem I]):

Theorem 2.1. Let 1<p<oo and s>1/p+1. We assume that:
(H) The elasticity tensor a enjoys the property of symmetry

Ajjim = Amij = Qjiims
and is uniformly pointwise stable, that is, there is a constant n>0 such that

1
—e-a-e>nlel?
5 nlel

for all symmetric two tensors e.
(A) a1 on 0Q.
Then the operator
(4,B,): H*P(Q,R%) —» H*~ *P(Q,R%) x B{,; ' ~/PP(0Q,R%)

is an algebraic and topological isomorphism.
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In order to prove Theorem 2.1, it suffices to show that the operator (4,B,)
is bijective. Indeed, the continuity of the inverse of (A4,B,) follows immediately
from an application of Banach’s closed graph theorem, since (4,B,) is a continuous
operator.

Theorem 2.1 will be proved in a series of theorems (Theorems 4.1, 5.1 and
6.1) in the subsequent sections.

3. Reduction to the boundary

In Sections 3 through 6 we study the linearized problem (}) in the framework
of Sobolev spaces of L? style, by using the LP theory of pseudo-differential
operators. In this section we show that problem (}) can be reduced to the study of
a 3 x3 matrix-valued pseudo-differential operator on the boundary.

3.1 Operator 7,. First we consider the displacement boundary value
problem

D) {div(a “Vy)=f inQ,

v=¢ on 0Q.
We let
Av=div(a-Vv),
V=" oo
and associate with problem (D) a continuous linear operator
(A,p): HSP(QR?) » H*~ >P(Q,R3) x BS~/PP(9Q, R).
Then we have the following result (cf. [11, Chapter 6, Theorem 1.11], [8,
Lemma 1.3]):
Theorem 3.1. If condition (H') is satisfied, then the operator
(A,7): H¥P(QR?) - H*~2P(Q,R3) x B*~'/P?(9Q),R?)

is an algebraic and topological isomorphism, for all s>1/p.

By Theorem 3.1, one can introduce a linear operator
P B~ 'PP(0Q,R%) — H¥P(Q,R%)

as follows: For any pe B*~''PP(9Q,R>), the funciton P¢ is the unique solution of
the problem
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Av=0 inQ,
v=¢ on 0Q.

The operator 2 is called the Possion operator for problem (D).
We remark that the spaces

NAsp)={we H*?QR?;Aw=0 in Q) and B 'PP(3Q,R?)

are isomorphic in such a way that
NA,sp) L B~ 1rr3Q,R?).

N(A,sp) < B~ 1P EQ.R?).

Next we consider the following mixed displacement-traction boundary value
problem:

o {div(a V) =f inQ,

(a-Vv-n)+v=9¢ on Q.
We let
Av=div(a- Vv),
Bv=(a-Vv-n)|so,
and associate with problem (M) a continuous linear operator
(A,B+7): H*P(Q,R?) — H*~ >P(Q,R?) x B*~ !~ 1PP(9Q,R3).
Then we have the following (cf. [11, Chapter 6, Theorem 1.11], [8, Lemma
1.3]):
Theorem 3.2. If condition (H') is satisfied, then the operator
(A,B+7): H*P(Q,R?) - H*~*P(Q,R?) x B*~ 1 =1/PP(9Q, R?)
is an algebraic and topological isomorphism, for all s>1+1/p.
Now, using problems (D) and (M), we show that problem () can be reduced
to the study of a 3 x 3 matrix-valued pseudo-differential operator on the boundary.

Let f be an arbitrary element of H*~2P(R"), and ¢ an arbitrary element of
B{, ' ~1PP(0Q,R?) such that

p=ap;+(1 —a)p,,
with
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p BT TIPPOQRY), g€ BTUPHOQRY).
We assume that ue H*?(Q,R%) is a solution of the problem

{Au =f inQ,

M) Bu=aBu+(1—ojyu=¢p on dQ.

By Theorem 3.2, we can find an element ve H*?(Q,R?) such that

{Av:f inQ,
Brtyv=9p,—¢, on 0Q.

M)

We let
w=u—v.

Then it is easy to see that we H*P(Q,R?) is a solution of the problem

) {A”’z" ing,

Bw=¢p,+Q2a—1)pm on 0Q.

But the Possion operator 2 is an isomorphism of the space BS~!/7P(0Q,R?) onto
the space N(A4,s,p). Therefore we find that we H¥P(Q,R?) is a solution of problem
(1) if and only if ¢ € BS~/7P(0Q,R3) is a solution of the equation

69] B, Pp=p,+ (20— 1)y on 4Q.

Here ¢ =7w, or equivalently, w=2¢. This is a generalization of the classical
Fredholm integral equation.
Summing up, we obtain the following:

Proposition 3.3. For given fe H*"*P(Q,R®) and @eB '~ '"H0Q,R) with
s>141/p, there exists a solution ue H¥P(Q,R3) of problem (1) if and only if there
exists a solution ¢ € B°~''"P(0Q,R>) of equation (1).

Now we let

T,: C*(0Q,R?) - C*(0Q,R?)
¢o— B, Z¢.
Then we have
T,=all +(1—-a)l,

where
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Ho=BPp=a-VPp n|,g

It is known (see [7, Chapter XX]) that the operator IT is a 3 x 3 matrix-valued,
classical pseudo-differential operator of first order on 0Q; hence the orepator T,
is a 3 x 3 matrix-valued, classical pseudo-differential operator of first order on 0Q.
Consequently Proposition 3.3 asserts that problem (}) can be reduced to the
study of the system T, of pseudo-differential operators on the boundary dQ. We
shall formulate this fact more precisely in terms of functional analysis.
We associate with problem () a continuous linear operator

ot ,=(A,B,): HP(QR?) » H*~ *P(Q,R?) x B{;; 1 ~1/PP(6Q,R3).
Similarly we associate with equation (}) a densely defined, closed linear operator
T . B~ 1PP(0Q,R%) — BT 1PP(0Q,R)

as follows.

(a) The domain D(J,) of 7, is the space

D(T )={pe B PPQR%; T,peB''PP(0Q,R%).

(b) T.p=T,p, 9eD(T,)

Then Proposition 3.3 can be reformulated in the following form (cf. [12,
Section 8.3]):

Theorem 3.4. (i) The null space N(A,) of o, has finite dimension if and only
if the null space N(7 ) of T, has finite dimension, and we have

dim N(«/ ) =dim M(J ).

(i) The range R(,) of o, is closed if and only if the range R(T ) of T, is
closed; and R(,) has finite codimension if and only if R(J ,) has finite codimension,
and we have

codim R(&/,)=codim R(Z ).

(i) The operator of, is a Fredholm operator if and only if the operator T, is a
Fredholm operator, and we have

ind ,=ind 7.

Furthermore the next theorem states that the operator &/, has regularity
property if and only if the operator , has:

Theorem 3.5. Let 1<p<ooands>1/p+1. Then the following two conditions
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are equivalent:

() weLPQR?), Aue H*" > QR%), Bue B!~ PP(0Q.R?)
=ue H*"(Q,R).

(i) peB PPOQR?), T,pe B PP(Q,R?)
= pe B UPr(Q RY).

Proof. (i)=(ii): First, just as in [12, Proposition 8.3.2], we can prove that the
boundary condition B,u is defined as a function in B~ 1/7P(3Q,R?) if ue LP(Q,R?)
and Aue H*~>?(Q,R*). Furthermore we remark that the Poisson operator 2 is
an isomorphism of the space B'~1/72(9Q,R?) onto the space N(4,t,p) = {we H"?(Q,R®);

Aw=0 in Q} for all teR.
Now we assume that

pe B~ 1rP(oQ,R%) and T,p € B~ 1PP(5Q),R3).
Then, letteing u=%¢p, we obtain that
ueLP(Q,R?), Au=0 and Bu=T,pe B~ 'PP(oQ,R3).
Hence it follows from condition (i) that
ue HP(Q,R>),

so that by Theorem 3.1

p=7uec B PP (O0Q,R?).

(i) = (i): Conversely we assume that
ue LP(Q,R3), Aue H*~*P(Q,R) and Bue B~ 1PP(0Q,R?),
where
Bu=op,+(1—-a)¢p,,
with
€ BT UPPBQR3), ¢, e BSTPP(OQ,RP).
Then the function u can be decomposed as follows:
u=v+w,

where ve HP(Q,R3) is the unique solution of the problem
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Av=Au in Q,
M) {

Bvi+yv=¢,—¢, in 0Q,
and so
w=u—veNA,0,p).
Theorem 3.1 tells us that the function w can be written as
w=2¢, ¢=yweB PP(OQ,R3).
Hence we have
T,p=Bw=Bu—B,y=¢p,+Q20—1)ve B~ PP(3Q,R3).
Thus it follows from condition (ii) that
pe B 1PP(6Q R3),
s0 fhat again by Theorem 3.1
w=2Ppe H*?(Q,R%).
This proves that
u=v+weH""(QR>.

The proof of Theorem 3.5 is complete. O

3.2 Operator II. In this subsection we prove some properties of the operator
IT as a 3 x 3 matrix-valued pseudo-differential operator. In doing so, we need the
following Green’s formula and Korn’s inequalities:

Theorem 3.6 (Green’s formula). We have for all u,ve C*({,R%)

u[a-Vrn]da-J Vu-a-Vvdx,

Q2

(3.1) f u-div(a- Vo)dx = f
(2]

o

Here da is the area element on the boundary 0Q.

By the symmetry of the tensor a, Theorem 3.6 follows from an application
of the divergence theorem.
We define the strain tensor e=(e;;) as

1<¢3u,-+6uj>
e.i=—| — 4.
) Ox; 0x;

Then the next inequalities are special cases of Garding’s inequality for the elliptic
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operator ur e (see [6, Chapitre 3, Théorémes 3.1 et 3.3]):

Theorem 3.7 (Korn’s inequalities). (i) For every non-empty open subset
w < 0Q, there exists a constant ¢(w)>0 such that

j Ilellzdxzc(w)q ||ll[|2dx+f IIVuHZdX>

Sfor all ue H'*(Q,R?) satisfying u=0 on w.
(ii) There exists a constant ¢>0 such that

J ||e|!2dx+f IIullzdx2c<J ||u||2dx+J [IVuIIde>
Q Q Q Q

for all ue H*(Q,R3).
Now we can prove the following (cf. [8, Propositon 1.4]):

Theorem 3.8. (i) The operator I is formally self-adjoint: II*=1T.
(ii) The operator II is strongly elliptic, that is, there exist constants ¢, >0 and
¢,>0 such that we have for all ¢ € C*(0Q,C?)

(3.2) f Ho-gda>cylol}),—calel® )2,
o0

(i) The principal symbol p,(x',&') of II satifies the condition
(3.3) Pr(x'&)=cold'lT on T*09),

with a constant c,>0. Here T*0Q) is the cotangent bundle of 0Q and || is the
length of & with respect to the Riemannian metric of 0Q induced by the natural
metric of R.

Proof. (i) The formal self-adjointness of I follows from the symmetry of
the tensor a, by using Green’s formula (3.1).

(i) Since the tensor a is uniformly pointwise stable, it follows from an
application of the second Korn inequality (Theorem 3.7) that, for all ue H"*(Q, C?),

J Vu~a-717dx=f e-a-édx
0

(7]
ZZWJ llel| > dx
[2]
>2nc|ull} ,—2nlull3 ,.

In particular, taking u=2¢ and using formula (3.1), we have, with C,=2#xc and
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C2 = 2"’

(G4 f e ¢da=f VP¢-a-VPpdx>C,|Polli ,— C,|2ell; ».
2]

Q

But we recall that the Poisson operator & is an isomorphism of B*~/2-2(5Q,R?)
onto MA,s,2) for all seR.

Therefore the desired inequality (3.2) follows from inequality (3.4).

(i) It is known (see [7, Chapter XX], [9],[14]) that inequality (3.2) implies
the strong ellipticity (3.3) of the operator II. O

4. Regularity theorem for problem (¥)

In this section we prove the following regularity theorem for problem (7):

Theorem 4.1. Let 1<p<oo. If condition (H') is satisfied, then we have, for
any s>1+1/p, :

ue LA(Q,R?), Aue H*"*P(Q,R*), Bue B;;'~'"P(0Q,R%)
=ue H*"(Q,R3).

Proof. By Theorem 3.5, we are reduced to the study of a 3 x 3 matrix-valued,
classical pseudo-differential operator T,=all+(1 —a)l. Hence it suffices to prove
the following:

Lemma 4.2. If condition (H') is satisfied, then we have for all se R

0 e D' (0Q,R?), T,pe B“P(0Q,R*) = ¢ € BSP(0C,R?).
Furthermore, for any t<s, there exists a constant C;,>0 such that

|¢|s.p S Cs,t(l Tu(P Is,p + |¢’|r,p)~

Proof. First we find that the operator T, is a 3 x 3 matrix-valued, classical
pseudo-differential operator of first order on 0Q and its complete symbol #(x',&)
is given by the following:

4.1) 1(x',&) = a(x)p,(x",&') + [(1 — allx D + alx)po(x",¢)]
+ terms of order < —1,

where (cf. inequality (3.3))

4.2 Pi(xE)=coll')l  on TX0Q).

Thus, just as in the proof of [13, Lemma 4.3], one can prove the following:



576 K. TAIRA

Claim 4.3.  If condition (H') is satisfied, then, for each point x' of 09, one can find
a neighborhood U(x') of x' such that:

For any compact K < U(x') and any multi-indices a,f, there exist constants
Ckap>0 and Cy>0 such that we have, for all x'e K and |&'| > Cy,

1D% DEt(x' &)| < C g pll(x', (1 4]E) ™1+ /2N,
l#x',&) ™1l < Cx

Therefore, applying [7, Theorem 22.1.3] to our situation, one can construct
a parametrix S, for the operator T, in the Hormander class L9 ,,,(0LR®) of 3x3
matrix-valued pseudo-differential operators on 0Q. Lemma 4.2 follows from
an application of a Besov-space boundedness theorem due to Bourdaud [3,
Theorem 1]. O

The proof of Theorem 4.1 is complete. O

5. Uniqueness theorem for problem (f)

The next uniqueness theorem for problem (1) asserts that the operator o7, is
injective:

Theorem 5.1. Let 1<p<oo and s>1/p+1. Assume that conditions (A)

and (H') are satisfied. If a function ve H*P(Q,R>) is a solution of the problem

) {div(a -Vv)=0 inQ,
oa-Vv-n)+(1—ajp=0 on 09,

then it follows that v=0 in Q.

Proof. First, by Theorem 4.1, one may assume that
ve C°(Q,R3).
Further we remark that the condition
oa@a-Vv-n)+(1—ap=0 on 0Q
includes the condition
v=0 on the set {xedQ; a(x)=0}.

Hence it follows from an application of Green’s formula (3.1) that
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-
Vv'a~Vvdx—f v[a-Vv-n]da
(2] N

"

e-a-edx—f v[a-Vv-n]da
{a#0}

e-a-edx+-[ <1—_z>llvnlda
azoy\ &

Q

»

Q
»

o

where e is the strain tensor associated with the function v.
tensor a is uniformly pointwise stable, it follows that

Hence we have

and so

e-a-edx,
Q

1
—e-a-e>nlel>
5 nlell

022'1J lell? dx,
Q

e=0 in Q.

This implies that

577

But, since the elasticity

O=oaa Vv-m)+(1—ap=a(@a- e n)+(1—op=(1—a) on 0Q.

Thus, if we let

we find that

w={xedQ; ux)<1},

v=0 on w.

Furthermore condition (A) tells us that the open set w is non-empty.
Therefore we can make use of the first Korn inequality (Theorem 3.7) to

obtain that
(5.1)

v=0 in Q.

Indeed, we have

02211J [Iellzdx22;1c(w)<f Ilv]lzdx-l-j IIVvllzdx>,
(9] (23 (o]
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which proves assertion (5.1). O

6. Existence theorem for problem ()

The next existence theorem for problem (}) asserts that the operator <7, is
surjective:

Theorem 6.1. Let l<p<oo and s>1/p+1. If conditions (4) and (H')
are satisfied, then, for any fe H*~>?(Q,R®) and any ¢ € B}, ' ~'/""P(0Q,R?), the problem

) {div(a V) =f inQ,

oa-Ve-n)+(1—app=¢ on 0Q

has a solution ve H>P(Q, R3).

Proof. We associate with problem (}) a continuous linear operator
o =(A,B,): H*"(QR*) - H*~ *P(QR%) x B}, ' ~'/PP(0Q,R3).
Then, by Theorem 3.4, we know that
ind «/,=ind 7,

But Theorem 5.1 tells us that the operator 7, (or equivalently the operator 7))
is injective. Hence, in order to prove the surjectivity, it suffices to show the
following:

Proposition 6.2. ind 7 ,=0.

Proof. (1) First we replace the operator 4 by the operator A —AI with 1>0,
and consider instead of problem (}) the following boundary value problem:

{(A —Au=f in Q,

(M Bu=oBu+(1—-ou=¢ on Q.

We associate with problem (), a continuous linear operator
oA () =(A—ALB,): H*P(QR) — H*~*P(Q,R*) x B, ' ~1/»P(0Q,R?).

We remark that the operator .o/ (1) coincides with the operator &/, when A=0.

We reduce the study of problem (f), to that of a 3x3 matirx-valued
pseudo-differential operator on the boundary, just as in the proof of Theorem 4.1.

We can prove that Theorem 3.1 remains valid for the operator A —1I. More
precisely we have the following results:

(a) The displacement boundary value problem
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{(A —Aw=0 in€Q,
w=gp on 0Q

has a unique solution w in H"“P(Q,R>) for any peB'~'PP(OQR?) (t€R).
(b) The Possion operator

P()): B~ 1PP(3Q,R3) — H'P(Q,R?),

defined by w=2(1)¢, is an isomorphism of the space B'~!PP(9Q,R3) onto the
space MA—ALtp)={ue H""(Q,R*);(A—ADu=0 in Q} for all teR; and its inverse
is the trace operator on the boundary 0Q.

Let T,(1) be a 3 x3 matrix-valued, classical pseudo-differential operator of
first order on the boundary 0Q defined by the formula

T,()=B,2(A)=all(A)+(1 —a)l, A>0,
where

(e =BPNp=a VPN n|s.
We introduce a densely defined, closed linear operator
T [(A): B~ YPP(0Q R3) — B~ VPP(0Q R?)
as follows:
(®) The domain D(J (A)) of T ,(4) is the space
D(T (A)={pe B~ 'PHOQR%); T (A)pe B~ '/PP(0Q,R%)}.
(B T De=T e, g€ D(T (4)).
We remark that the operator 7 () coincides with the operator J, when 1=0.
Then we can obtain the following results:

(i) The null space N(oZ (1) of o/ (A) has finite dimension if and only if the
null space N(7 JA)) of 7 ,(4) has finite demension, and we have

dim N(oZ (2) = dim N(T ().

(ii) The range R(o/ () of o7 (A) is closed if and only if the range R(Z (1))
of 7 (A) is closed; and R(s/(4)) has finite codimension if and only if R(7 (A))
has finite codimension, and we have

codim R(& (1)) =codim R(T (1))

(ili) The operator .o7,(1) is a Fredholm operator if and only if the operator
T (4) is a Fredholm operator, and we have

ind o (1) =ind 7 (A).
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(2) In order to study problem (});, we shall make use of a method essentially
due to Agmon [1] (see [12, Section 8.4], [10]).
We introduce an auxiliary variable y of the unit circle

S=R/2nZ,

and replace the parameter —AI by the second-order differential operator

That is, we replace the operator 4 —AI by the operator

o 0%
A=4A+—1,
oy?
and consider instead of problem (1), the following boundary value problem:
@ Aii=(A+Z:ha=f inQxsS,
Bii=oBi+(l —o)i=¢ ondQ x S.
Then we have the following results:
(8) The displacement boundary value problem

{Zﬁ:ﬂ inQxsS,
wW=¢ ondQ xS

has a unique solution w in H"?(Qx S,R*) for any e B~ 1PP(0Q x S,R%) (teR).
(b) The Poission operator

P B~ P2(0Q x S,R? — H"P(Q x S,R%),

defined by w=2¢, is an isomorphism of the space B'~ 1rr(3Q x S,R*) onto the
space N(A,tp)={icH""QxS,R*;did=0 in QxS} for all teR; and its
inverse is the trace operator on the boundary 0Q x S.

We let

T,:C2(0Q x S,R? — C2(0Q x S,R%)
¢— B Pp.
Then the operator T, can be decomposed as follows:
T,=all +(1-a)l,
where

Op=BPs=a-VPp-n|y,s.
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The operator [T is a 3 x 3 matrix-valued, classical pseudo-differential operator of first
order on 0Q x S, and its complete symbol g,(x',&,y,n) is given by the following:
P1(xLE vy ) +Po(x,E y.n)+terms of order< —1,
where (cf. inequality (4.2))

(6.1) Pr(XEym =0 /IEP+n2 T on T*oQxS).

Thus we find that the operator T,=oall +(1—o)l is a 3 x3 matrix-valued,
classical pseudo-differential operator of first order on dQx S and its complete
symbol #x',&,y,n) is given by the following (cf. formula (4.1)):

(6.2) "8y = alx)p (x",8 .y ) + [(1 — 2l DI+ a(x)po(x',',y:m)]

+terms of order< —1.

Then, by virtue of formulas (6.2) and (6.1), it is easy to verify that the operator
T, satisfies all the conditions of a matrix-valued version of [7, Theorem 22.1.3]
with u=0, p=1and §=1/2, just as in Lemma 4.2. Hence there exists a parametrix
S, in the Hormander class L9 ,,,(0Q x S,R*) for the operator T

a

Therefore we obtain the following result, analogous to Lemma 4.2:

Lemma 6.3. If condition (H') is satisfied, then we have for all se R
e P'(0QxS), T, peB"(0Qx S,R?) = pe BP(0Q x S,R3).
Furthermore, for any t<s, there exists a constant C,,>0 such that
(6.3) 1Blp < Co I TPl +1Blr.p)-
We introduce a densely defined, closed linear operator
T, B~ UPP0Q x S,R?) — B~ VPP(0Q x S,R?)

as follows:
(& The domain D(J,) of &, is the space
D(T )={$pe B PPoQ x S,R); T,peB PPOQx S,R%)}.

B 7T.p=T.p peDT ).

Then we have the following fundamental relationship between the operators
g, and 7 (J), just as in [13, Proposition 6.2]:

Proposition 6.4. Ifind , is finite, then there exists a finite subset K of Z such
that the operator T () is bijective for all X =I* satisfying le Z\K.
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(3) We show that if condition (H') is satisfied, then we have
(6.4) ind 7 ,=dim N(J",) — codim R(J ) < 0.

Now estimate (6.3) gives that
(6.5) 1Bls— 170 < CAT Pl 1jpp+ Il ) PEDIT ),

where t<s—1/p. But it follows from an application of Rellich’s theorem that
the injection B*~/PP(9Q x S,R?) — B"?(0Q x S,R%) is compact for t<s—1/p. Thus,
applying the well-known Peetre lemma (see [12, Theorem 3.7.6]) to our situation,
we obtain that the range R(7,) is closed in B*~'/PP(9Q x S,R%) and

(6.6) dim M7 ,) < 0.

Similarly, by formula (6.2), one can easily verify that the adjoint T* also satisfies
all the conditions of a matrix-valued version of [7, Theorem 22.1.3] with u=0,
p=1 and 6=1/2. This implies that estimate (6.5) remains valid for the adjoint
operator J * of 7 ,:

kl’l —-s+ l/p,pS Ct(lg';¢| -s+1/p.p’ + |¢|t,p')’ ‘I’ € D(i:)’

where t<—s+1/p and p'=p/(p—1), the exponent conjugate to p. Hence we
have by the closed range theorem and Peetre’s lemma

6.7) codim R(J ) =dim N(J ¥) < o0,

since the injection B~ 'PP(5Q x S,R%) — B*P(0Q x S,R%) is compact for <
—s+1/p.

Therefore assertion (6.4) follows from assertions (6.6) and (6.7).

(4) By assertion (6.4), we can apply Proposition 6.4 to obtain that the operator
T (1?): B~ 1Pp(0Q,R3) — BS~1PP(5Q,R3) is bijective if /e Z\K for some finite subset
K of Z. 1In particular we have

(6.8) ind 7 (A)=0 if do=P, [leZ\K.

But one can find a 3 x 3 matrix-valued, classical pseudo-differential operator K(4,) of
order —1 on dQ such that (taking 1=0)

T,=T,(Ao)+ K(Ao).
Furthermore Rellich’s theorem tells us that the operator
K(Lo): BS~1/PP(0Q,R3) — BS~1/PP(9Q,R?)
is compact. Hence we have

(6.9) ind 7, =ind 7 ,(1,).



BOUNDARY VALUE PROBLEMS 583

Therefore Proposition 6.2 follows by combining assertions (6.8) and (6.9).

(]
The proof of Theorem 6.1 is now complete. O

7. Proof of theorems

This final seciton is devoted to the proof of Main Theorem, Theorem 1 and
Theorem 2. Main Theorem follows from an application of the inverse mapping
theorem. In the proof of Theorems 1 and 2, we calculate explicitly the first
elasticity tensor A, and verify condition (H) in Main Theorem.

7.1 Proof of main theorem. We recall that the linearization of problem (*)
is problem (%) or problem (}) as is shown in Section 2. But Theorem 2.1 (the

existence and uniqueness theorem for problem (1)) tells us that:

The Fréchet derivative F'(@) of the map F at $=1,, is an algebraic and topological
isomorphism of HP(Q,R?) onto H*~*P(Q,R? x B}~ 1/PP(0Q,R3).

Therefore Main Theorem follows immediately from an application of the
inverse mapping theorem (see [11, Chapter 4, Theorem 1.2]). |

7.2 Proof of theorem 1. The stored energy function for the Hencky-Nadai
elasto-plastic material has the form

2

3 (F) K 3
W(X,F):ZJT g({)df+5<kz Fkk—B) )
0 =1

We have only to verify condition (H). First it follows that the first
Piola-Kirchhoff stress tensor is given by the formula

~ 2 3
P,-IJ(X,F)=<K—§g(F(F))>( Z Fy.— 3) 0,;+g(T(F)F;;+ Fj;—26,)),
k=1
and the first elasticity tensor is given by the formula
2
Aiﬂm(XaF) =g(F(F))(5i15jm + 6im6ﬂ) + <K—§g(F(F))> 6ij61m
16 , s
+38 (TF)E(F)2,m(F),

where
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. 1 1/ 3
Eij(F)=—(Fij+Fji)——< Z Fkkak> 5ij~
2 3=

Thus we find that the elasticity tensor A evaluated at ¢ =1, is equal to the following:

2
Aijlm(X) =8(0)(041 jon + 00 1) + (K— 38(0)) 0i101m

But it is easy to verify (see [11, Chapter 4, Proposition 3.13]) that the elasticity
tensor A is uniformly pointwise stable if and only if g(0)>0 and K>0.
Therefore we have proved that condition (G) implies condition (H). O

7.3 Proof of theorem 2. The stored energy function for the St.Venant-
Kirchhoff isotropic material has the form

W(X,F)= MX)(Z CulF)— 3) ”(;Y) (CfF)—8,)™

i,j=1
We verify condition (H). First it follows that the second Piola-Kirchhoff
stress tensor is given by

S%C)=202 (,)= [“X ’( ) ck,,—s) (X)]éij+#(X)Cij,

and the second elasticity tensor is given by

Sy ALX)
ulm(X C) - aC,m(X C) -

/t(X )

5lm (5t151m + 6lm5ﬂ)

Then we know (see [11, Chapter 3, Proposition 4.5]) that the first elasticity tensor
is given by the following formula:

3
A X, F)=2 Y Coipm X, F)F F iy + S X, F)y

ab=1

3
= 2 (UX)3,10um+ HX)NOa m + amOb ) FiaF s

ab=1
A
+ ([ (;Y )< Y, CulF)— 3) wXx )] 8 im+ HX)C p)) Sy

Thus it follows that the elasticity tensor A evaluated at $=1I, is equal to the
following:

A jin(X) = HX NG 1S o+ Sin6 )+ AX)5 16 e



BOUNDARY VALUE PROBLEMS 585

But it is easy to verify (see [11, Chapter 4, Proposition 3.13]) that if condition
(M) is satisfied, then the elasticity tensor A is uniformly pointwise stable. This
proves that condition (M) implies condition (H). O
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