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1. Introduction

In the present paper we are mainly concerned with infinite Markov particle
systems (X:, P.) with singular immigration associated with absorbing Brownian
motion (w’(¢), PY) in a half space H=R*' X (0, o), starting from xEM". Here
M'=M"(H) is the spece of all o-finite counting measures ©&E >,0x, on H. It is
constructed out of infinitely many independent absorbing Brownian particles
starting from points of the support of # and another independent particles which
‘immigrate uniformly from boundary at random time and move according to the
excursion law @°. The immigration part is obtained as the limit by putting the
starting points of independent absorbing Brownian particles which immigrate in H
at random times, close to the boundary with infinite mass. From this construction
the generator £ of this process should be expressed as the sum of no immigration
part £° and immigration part £’. That is, for some suitable functional F(z) of
integer-valued discrete measures £,

d
ofoF(ﬂ):%El(/l, DEF (5 ),
£ () =4, DaF (1t *eamad,

where 7 =dX is the Lebesgue measure on R%! £, is a kind of differential
operator defined as

DGy ; x)=13pg%[c(ﬂ+ Sxuimy— 6x ;5 xx(h))— G(u; x)]

with xx(h)=(x1, ***, X& + K, Xr+1, -+, Xa), and D2=D ro D« for k=1, 2, -+, d. Note
that if G(uz; x)=F(u), then

DaF (', ) =Hm T F (e S — 8 — F (1))
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We first formulate this operator and give the martingale characterization for
(X, Py). To treat this process as a diffusion, we introduce a subspace M5 (p>d)
of M" with weak topology so that X; can be continuous in it. Moreover we
investigate Holder continuity of the sample paths. It is very interesting that the
exponent of Holder continuity changes from 1/4 to 1/2 according to the starting
point .

By using this process we can construct an equilibrium process with immigration
(X:, P), which is a stationary Markov particle system with immigration associated
with (w°(¢), PY) in H and the Lebesgue measure m(dx)=dx on H. This process
is also constructed by using a Kuznetsov measure &Qn, which is a stationary o-finite
Markov measure with the same transition law as the absorbing Brownian motion
in H. This measure is defined as the integration of the time-shift of excursion law
Q" with respect to the time in R™.

On the other hand for Brownian motion (w(¢), Px) in R® F. Spitzer [16]
showed that, in case of d=3, if B is a compact set with a positive capacity C(B),
then

Pn(0< Ts<t)=tC(B)+t 4(27)**C(B)*+ o(J/t )

as —00, where Pm=/dex and T3 is the first hitting time for B (note that, in case
of d =4 the second term is log ¢ C(B)?/(4x)? which is given by R.K. Getoor [3],
and in case of d =5 it is /Px(0< Ts< o) dx <oo, which is also given in [16]).

This result can be applied to an equilibrium process (X:, P) introduced by Shiga
and Takahashi [17], which is a stationary Markov particle system associated with
the Lebesgue measure m(dx)=dx on R®. Let X;(N/) denote the number of
paticles of the euilibrium process hitting B during the time interval (0, ¢), where
NE={0< Tp<t}. By the subadditive ergodic theorem [10], it holds that X(N?¥)/
t—C(B) P-as. and in L'(P) as t—oc. Furtheremore

X(NA)—tC(B) _, {N(MB, c(B)  ifd=s3,
Jt N(0, C(B)) if d=4

in law as t—o0, where M2=4C(B)?/(27)*? and N(u, v) is the Gaussian distribu-
tion with mean # and variance v.

So secondly we consider a hitting rate for Brownian excursions and give the
asymptotic behavior under @». For a fixed compact set B in H, let

os(w)=inf{t >0: w(t)= B}.

If the capacity C°(B) associated with (w°(t), P%, m) is positive, then
Qn(0<0s<t)=1tC*(B)+ f(¢)

with f(¢)=v2t/m+a(B)+0(1) (d=1), @(B)log t +o(log t) (d=2), O(1) (d =3)
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as t—oo, where a(B), ®(B) are certain constants. By applying the result to the
equilibrium process with immigration, we derive limit theorems for it (see §3.1).

Now we define infinite Markov particle systems (X:, P.) with immigration
starting from u associated with absorbing Brownian motion in a half spece H.

Fix an extra point A& H and set Hs=H U{4}. Let W° be the set of all
mappings w® from [0, ) to H, such that w°: [0, {(w®))—H is continuous and
w(t)=4 if t = &(w®) for a certain constant &(w°) >0. Let (w%t), P?) be absorb-
ing Brownian motion starting from x in H with the transition semi-group (Pf). We
use the same symbol P and P¢ for the probability and the semi-group, for it is
convenient and there is no possibility of confusion. Let W’ be the set of all
mappings w’ from [0, ) to Hys such that w’: (a(w”), B(w"))—H is continuous
and w'(t)=4 if t&E(a(w?’), B(w")) for a certain non empty open interval (a(w’),
B(w’)). Set W=W°U W'. For »>0, u>0, let

vr(u)= /2:7&13[—2”—:] <=%—a% A, v)‘vzo),

where p¥u, v) is the transition density of absorbing Brownian motion on (0, ),
and

vr(dx)=vr(xa)dx on H.

Then v-P?=v,+s holds for » >0, s=0, thus v=(vr)r>0 is an entrance law for (P?).
Moreover we define the following o-finite measure on W :

0__13 0
Q —lgmjl.{ur(dx)Px

Then Q° is supported on {¢=0} (see [7]) and governs excursions starting uniform-
ly from boundary of H. Q° is called the Brownian excursion law. Let the
following be given :

£ is the space of o-finite measures ®=270w,, wrE W,
Xi(w)=w(t)|s for 0ELQ,
F=0(Xs:5<0), Fi=0(Xs:5<1).

We define a probability measure P, for &M’ as follows : For w= 210w, 82, let
@° (resp. w') denote 2, u.cwOuwn (1€SP. 20 wew Own), and set 2°={w’EQ : =R}
and Q'={0'EQ: wEQ)},

X{(w)=aw"(¢)|x: the no immigration part,
X w)=w'(¢)|s: the immigration part.

Hence X:=X{+ X/ and we can identify
Q=00 Q2'=0°0 Q"

So we set
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P.=P.® P’
where
P;?:g)lP,?,, if ﬂ=n§8x,,, xnEH
and

P’ is the ’/0‘ 6_s(Q°)ds-Poisson measure,

i.e., the distribution of the Poisson random measure with intensity l 0-s(Q")ds.

Then it satisfies that
Eufexp(—(Xose, f>)|3s]=exp[—<xs,. V- ‘Wi, l—e‘f>a’r]

for positive measurable functions f on H, where
Vif(x)=—log Eifexp(—f(w’(t))]=—log{l1— P{(1—e™")(x)}.

Under P, {X.} is an #’-valued Markov process starting from z with immigration
from boundary. Each particles dies when it reaches boundary of H, and infinitely
many particles are born from the boundary. Thus (X:, Py) is called the infinite
Markov particle system with singular immigration associated with (w°(t), P3, Q°).
Note that X/ can be also defined as the following :

t
X!= ﬁ ﬁv Buce-sxN(dsdw)| |

where
NYw; dsdw)=#{n: a(w.)Eds, wa(-—alw.))<E dw) if a)zgl&u,..

Then N°(dsdw) is a Poisson random measure with intensity dsQ°(dw). Let m(dx)
=dx be the Lebesgue measure on H and /I» be the m-Poisson measure on (', i.
e., the distribution of the Poisson random measure with intensity #. Define

P= [MT,(du)P..
Then (X, P) is a stationary Markov process such that
t
E[exp{—<X,, f>}]=exp[—<m, 1—e“"f>—£ {yr, l—e'f>]
=exp[—<{m, —e D]

This process is also defined by using a stationary o-finite measure @». We extend
W to the set of all maps w : R— H, such that there is a nonempty open interval
(a(w), B(w)) on which w is H-valued and continuous, with w(¢)=4 if t <a(w)
or t=B(w), and a constant map [4], i.e., [4](¢)=4 for all . We use the same
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notation W for this set.

Qn= [ 0.:(Q"ds.

Then (w(¢), Qn) is a sationary Markov process with the same transition probabil-
ity (P{) as absorbing Brownian motion. Qn is called the Kuznetsov measure
associated with (w°(t), P, m). If we restrict the time interval to [0, o), then P
can be also defined as the Qn-Poisson measure on 2. (X P) is called the
equilibrium process with immigration associated with (w°(¢), P%, m) or (w(?), @m).

In §2 we give a martingale characterization for (X:, P.) (cf. [8], [11]) and
consider Holder continuity of sample paths.

In §3 we give asymptotic behavior of hitting rates for Brownian excursions and
their applications to the equilibrium process with immigration. We first investigate
asymptotic behavior of Qn(0<05<t) as t—°° and limit theorems for the equilib-
rium process with immigration associated with (w(¢), @»). We also consider some
asymptotic behaviors corresponding to Py and @° (See §3.3). Moreover since the
excursion law Q° governs excursions starting uniformly from the boundary of H,
we also discuss the non-uniform case and give some results (see §3.4).

A notion of Kuznetsov measures is introduced by S.E. Kuznetsov [12] and
recently studied by many authors in relation with capacity theory, e.g., Fitzsim-
mons and Maisonneuve [2], Getoor [5], and Getoor Steffens [7]. They treat the
Kuznetsuv measures in more general situation, thus we give definitions of infinite
Markov particle systems with immigration and equilibrium processes with immi-
gration in the general situation (see §2.2). We can also consider the same probrem
as Spitzer for the general Kuznetsov measure and give the first term of the
asymptotic for it (see §3.2).

2. Martingale Problems and Hélder Continuity

In this section we consider the infinite Markov particle system (X¢, P.) with
immigration starting at a counting measure /, associated with absorbing Brownian
motion (w°(¢), PY) in the half space H and the Lebesgue measure 7(dx)=dx on
H. We give martingale caracterization of (X, P.) and investigate the Holder
continuity of sample paths.

2.1. Results
First we define some spaces of functions and measures. Fix p>d. Set

gp(x)=1+[x[))7*"* and gp,0(x)=gp(x) ho(xa),

where %o(v) is a fixed C™-function in v >0 satisfying the following properties :
(a) 4o is non-decreasing and 0</%,<1,
(b) ho(v)=v for v<(0, 1/2] and Z=1 on [2, ).
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Then gp,o(x) satisfies that for x=(%, xa)E R X (0, ), gp.o( X, 04)=053gs,0( X, 0
+)=0 and 0ugro( X, 0+)=gs(%, 0+), where 0a=07/0xa.
Let C=C(H) be the space of all continuous functions in H.

FEC,=Cu(H) 2 fEC, |If/gsllw< 00.
FECpo=Cro(H) 2 FEC, |If/gpolo< 0.

The following function space Dp is stable under P; (see §2.3):

fED,=Dy(H) 2 fEC? f, 05/ E Cp, and other partial derivatives are in Cp.
We denote C.= C.(H) the space of all continuous functions with compact support
and CZ=CZ(H) the space of all C*-functions with compact support.

Let M'=M"(H) be the space of all counting measures on H.

HEMp=MH) 2 nEM', <pt, gp> <00,
/le./ﬂg):./%é(H) (__) #E-/%I) <#) gP,0><OO'

Then MpC MpCM". The topology of M» is defined by the weak topology with
respect to Cp,, i.€.,

it in Mp 2 pm, £7—<p, o for all fECpo as n—00.
This is equivalent to that {un, f>—<y, f> for all f€ C. and f=gp, as n—>0. Then
M35 is Polish, i.e., metrizable, complete and separable.
Now fix p>d. Set

Dpy={F(1)=0(p, 1>, -, <y, f>): OECHR"), |0 (x)|< C(A+]x])*,
i=0, 1, 2 for some C>0, k>0, and f;€Dp, j=1, 2, -, n},

and for F(u)=0(u, £, -, <y, f»))E Dp, pE M5, we define an operator £ by

L) =200, £, - <n )<ty Af>+p<m, -, 040}

o B O, £, <y Fd Kty Ty £,

ii=1
where 0;=0/0x:, m=dX is the (d —1)-dimensional Lebesgue measure, A is the
generator of (P?) and I'(f, g)=Afg—fAg—gAf, ie., Af=%df and I'(#, g)=
Vf-g for f, g D».

Moreover set 2= C([0, ©)—M}), which is a Polish space.

Theorem 1. Fix p>d and pEMb Then under P., {X:} is an Mo-valued
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Markov process having a continuous sample paths relative to the topology in M
and satisfies that
(i) Pu(Xo=p)=1,

t
(i) for each FED,, t>0 and k=1, F(X)), [ |£F(X)lds€LA(P.),

(i) for each FED, MI=F(X)—F(X)— [ £F(X)ds is a P
martingale. Moreover if a probability measure P.on 2 satisfies (i) and if A{f
is a local Pu.-martingale for any F(1)=<p, f> and {u, f>* with fE Dy, then Pu
=P, on Op.

REMARK 1. (i) When pEMb— Mp, £ F(1r) may not be well-defined because
of <u, I'(f:, f:)> being possibly infinite. But for all >0, A tofF(Xs)ds is
well-defined Pu-a.s..

(i) We can see that <X, g»>, ‘/O‘t<Xs, gp>dsE L'(Py) for all £ >0 (see §2.3).
Hence

P.({X;, g»» <0 for countable numbers of #)=1
and
P.({ X, gpy> <00 for dt-a.a.t)=1.
However we can show that for any time interval (a, b); 0<a<bd,
P.({ X, gp> <o for some t<(a, b))=1.
We shall prove this result in §2.4.

Theorem 2. Fix p>d. Set I'f=I(f, f)=|Vf} for fED,.

() If uEMp, then X, is locally (1/4—€)-Holder continuous in t<[0, o)
for all 0<e<1/4 under Py, i.e., for each y=1/4—¢, fEDy and T >0, there is
a constant C=C(y, f, T, v)>0 such that

Py<a)' |<Xt(a))—X~i>‘(CU), 2 SC>:1,

’ 0<|t—s|<9(), s, t€0, T} t—s 4

where 7(w) is an a.s. positive random variable.

(il) If nE€Mp, then X, is locally (1/2— €)-Hélder continuous in t<[0, o)
for all 0<e<1/2 under P..

(iii) Even if pEMp— M3, X: is locally (1/2— €)-Holder continuous in t<E
(0, o) for all 0<€<1/2 under P..

(v) If puSMp, then for fEDy such that {u, T'f>>0, <X, f> is not 1/
2-Holder continuous at t=0. Furthermore if & Dy such that K;={I'f=0}is a
compact subset in H, and if pEM} satisfies one of the following conditions :
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{a’=1 = p{x=a})=  for some a>0,
d=2= <y, I'f>>0, ie., u(Kf)=1,

then <Xz, 1>, t=0, is nowhere 1/2-Hélder continuous under P, i.e.,

{w: KXein(w)— Xi(w), IS C(0)Vh
for some t<€[0, ) and for all h<[0, u(w)]}

is a Pu-null set, where C(w) and u(w) are a.s. positive random variables.

When /.zE/m—/%Z, it seems to be difficult to completely determine the expo-
nent of Holder continuity at #=0. However we can give some sufficient conditions
for them. Set Se={|x:|<a, i=1, -+, d}NH.

Theorem 3. Let S Mh—Mb.
(1) Suppose that for some T >0,1<60<2,

@.1) Culs., PIY< [ %P?I(x) for all 0<t<T,

where g(t)=<n(t), 0<t<T means Ch(t)<g(t)<C'h(t), 0<t<T for some

positive constants C, C’ depending only on T, then X, is (3—6)/4—€)-Holder

continuous at t=0 for all 0< e<(3—6)/4, moreover for each fE D, such that

TF(0, 04+)>0, <X., 7> is not (3—8)/4-Hélder continuous at t=0 under P...
(ii) Suppose that for some T >0 and 1<8<2, >0 or =2, n>1,

dx
S1le xg(log ]./xd),]

then X, is (3—0)/4-Hélder continuous at t=0, moreover for each fE Dy such
that TF(0, 0+)>0, <Xz, 7> is not ((3—8)/4+ €)-Holder continuous at t=0 for
all €>0 under P..

(2.2) tlsyey PRI P1(x)  for all 0<t<T,

REMARK 2. In the later half of (ii) we can show the following:

) KX, £ —
lm};%ulj 1A (log 1/£) 7%

. X, .
hrrtllsoup t”“(lifg 1‘7;;?1,,_1),2 =00 Pu-as. if 0=2, >1.

co Puas. if 1<6<2, >0,

Here we give some examples of p=2,.:0x,EMp— M} which satisfy the
conditions (2.1), (2.2) : For simplicity let d=1.

(a) x2.=7"(0<7r<1)= #=11in (2.1),

(b) xn=n"?(p>1)= 0=1+1/p in (2.1),

(€) xn=n""(log n)™? (p>1, ¢>0 or p=2<gq) = O0=1+1/p, n=q/p in
(2.2).
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Now we can datermine the exponent of Holder continuity of sample paths of
the equilibrium process associated with absorbing Brownian motion in H, since
under P, X; has an innitial distribution 7.(du) and <{m, g»y <o for all p>d. Set
Dd+=Up>de, ./%Q+=mp>d/%§> and -Qd+=mp>d.9p=C([0, OO)_)./%{:H) Then we
have the following :

Corollary 1. (X, P) is an Mbi+-valued stationary Markov process having
continuous sample paths relative to the topology in MY+ with initial distribution
ITn(y). Furthermore X;, t =0 is locally (1/2—¢€)-Héder continuous for all 0< e
<1/2, and for each f < Da. such that K;={I'f=0} is compact in H,<X, />, t
>0 is nowhere 1/2-Hélder continuous.

2.2. Kuznetsov Measures and Infinite Markov Particle Systems with
Immigration

In this subsection we give a general theory of Kuznetsov measures according
to [2], [5] and [7], and define the infinite Markov particle systems with immigra-
tion induced by Kuznetsov measures. We also discuss the Markov property of
equilibrium processes with immigration.

Let S be a Lusin space, i.e., a Borel measurable subset of a separable metric
space, and fix a point A€ S. Set S,=SU{4}. Let (W°, F°, F%, w’(¢), PY), t=>
0, xS, be a Borel right process with transition semi-group (Pf)so. That is, (Pf)so
is a Borel right semi-group, W° is the set of all right-continuous paths w°:
[0, 00)=S4, O’ (s)=w(t +5), F'=0(w*(t) : t 20), Ft=0(w’(s) : 0<5<t) and
E(w®)=inf{t : w°(¢)=4} is the lifetime of w°®. Set P3=44.

Let W be the of all maps w: R—Ss such that there is a nonempty open
interval (e(w), f(w)) on which w is S-valued and right-continuous, with w(¢)=
4 if t<a(w) or t=p(w), and a constant map [4], i.e., [4](¢)=4 for all £. Set
G'=o(w(t): tER) and Gi=o0(w(s): —00<s<t). Moreover let 7:, tER, be
mappings from W to W?° defined by

w(s)={w(t+s) for >0 if ¢ >a(w),
& 4 for s>0 if ¢ <a(w).

Then the following hold: 7:=71°8: for tER. If a<t<p, then {ey:=pB0:.
Moreover 7: is §%+:|F +measurable for s>0, tER.

A family of o-finite measures £=(&:).cr on S is called an entrance rule if
EsP_s<E&, for s<t and EsP?-s1 & as s 1 t. Moreover £=(&:)cr is called an
entrance law if E=(&;),cr is an entrance rule and satisfies that £&sP?_s=&, for s<
t.

The following result by Kuznestov [12] is well-known (see [2], [5] and [7]):
For an entrance rule £=(&;) there exists a unique o-finite measure Q¢(dw) on W
not charging [4] such that for —co< i<ty <+ <t,< 400
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Qe(a< t, w(th)Edn, w(t)Edys, -+, w(tn)E dyn, tn<RB)
:Etl(dyl)P?Z—tl(yly dyz)"'P?n—tn-l(yn—l, dYn)

In particular (w(#), §¢, Q) is Markov in the sense that if /ER and VEF°, then
QE( V°7’t|§?)=P3;(t)(V) on {(Z<t}.

DEFINITION 1. Q: is called the Kuznetsov measure associated with (w°(¢), P2,

£).

If £&,=m a o-finite measure on S for all /& R then we write & » for e, and
then Qn is stationary, i.e., @u[f(w(¢))]=m(f). We denote the class of excessive
(resp. invariant, purely excessive) measures by Exc (resp. Inv, Pur). That is, for
a o-finite measure

meE Exc if mP?<m for all >0,
m& Inv if mP!=m for all >0,
m&E Pur if m& Exe and lim,-.mP?=0.

mE Exc may be deconmposed uniquely as m=m;+ m,p, where m.E Inv and m,
€ Pur. If m& Pur, then there exists a unique entrance law v=(V¢)¢>0 such that

m=fwytdt.
0

From now on we fix mE& Exc (may be infinite) and also m:, 7, v=_Vt)¢>0,
which are uniquely determined by 7z as above. Then there are Kuznetsov measures

Qm, Qmia Qmp, and QOE v on W,
which satisfy that
Qn=Qn;t Qn,

and

Qno= [ 0. (@ ds= [ 0.(Q"ds.
In [7] it is shown that @%(@=0)=0.

Now we consider the infinite Markov particle systems induced by Kuznetsov
measures. We restrict the time interval to [0, ©) and the following are defined by

the same way as in case of absorbing Brownian motion (see §1): z= 2,10, M’
=M'(S), 0=220u.ER (W EW), Xe(@)=w(t)|s, F, F ¢, P.=P2® P, II(dy)

and PE/Hm(dﬂ)Pu. Then (X, P.) is an M'-valued stationary Markov process

with a stationary measure [In.
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DeriNITION 2. (i) (X:, P.) is called the infinite Markov particle system
associated with (w°(t), PS). In particular if Q°%0, then (X, P.) is called the
infinite Markov particle system with immigration associated with (w°(¢), Ps, Q°).

(i) (X, P) is called the equilibrium process associated with (w°(t), P2, m)
or (w(t), Qn). In particular if mE Exc\Inv, then (X, P) is called the equilibrium
process with immigration associated with (w°(t), P%, m) or (w(t), Qn).

REMARK 3. (i) P is also defined as the @n-Poisson measure Ilo,, i.e, P=
I, in the sense of finite-dimensional distributions.

(ii) When m&E Inv, we can identify Qm=P3z<=/m(dx)P§3>, so the definition
of equilibrium processes is the same as in [17] by T. Shiga and Y. Takahashi.

The Markov property of P. and the identification of P=1ly, can be proved
similarly to [17].

2.3. Proofs
Before proceeding the proofs we give two fundamental properties of the
transition semi-group (Pf) of absorbing Brownian motion in H. Note that P{ is

given by P?f(x)=fP?(x, dy)f(y) with P{(x, dy)=p¥x, y)dy and

pUx, ¥)=0:(x1, y1) - De(xa-1, Ya-1)pUx4, Va),

where for u#, vER,

pe(u, v)= J%r?exp[— (v;tu)z]

and for u, v>0,
pWu, v)=p(u, v)—p:(u, —v)

- oo {552l 5]

- / "V tE [_M]
o P 2t

The following first claim is easily obtained from the proof of Proposition 2.3 in
[8]: Let p>d. If f€Cp, £=0 and limxi-=|x|?f(x)=1 exists, then

(2.3) &% sgoplxl”P?f(x):l.

The second is that if /€ C? and f(%, 0+)=0, then

PYf () =xadu PRA)E, 0+)+ 5P )7, 6xa)
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for some 8<(0, 1). This follows from that P?f(-, 0+)=0if £ >0 and fELY(H,
dx), and that 03(P?f)=PY(df) if FEC?%; f(+,04+)=0. Thus we also see that D,
is stable under P, i.e., PX(Dp)C Dp.

From these fact we get the following :

(2.4) supgs 'PP gl <0,
(2.5) supllgah P gp.oll- < o0

and for all s>0, P2gr& Cp,o, hence

(2.6) sup 956 PEgple < 0.

Proof of Theorem 1.
(i) is trivial. The integrabilities in (ii) are reduced to the following : For each
7, k=0 and ¢ >0,

@.7) <X, 90", Bl ([ X 00050, a3 |<c0.

Lemma 1. Let p>d. Fix t>0, €>0. Then, for each k=0,

sup

0<a<e

—l_@i_v( )
9p,0 aak t\agp

< oo,

Proof. This is deduced to (2.6) by computing (3*/da*) Vi(ags). [ ]

From this lemma it is easy to see that if #E (5, then the Laplace transform

pi(a; f)=Euexp(—alX:, )]
=exp[—<ﬂ, Vt(af)>—£<ur, 1~e‘“f>dr]

is C* at a=0+ if £+ >0 and fED,. Hence the first claim follows. For instance,
we have for f, g€ Dy,

EXX., f>=u, PIF>+ /0 “r, Fodr,
E.[{X:, fXX:, l=ELX:, YELX:, ¢
t
+<p, PX(fg)— PfP2g> + ﬁ vr, fodr.

More generally we can give the explicit formula of E.[<X, /i>**<X:, f=>]. Butit’s
too tedious to describe it. By using the formula one can easily see the following :

Proposition 1. For all 0<t<---<t, and f;,€D,; f:20, i=1, 2, -, n,
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< Xo,, £y X, 1< [, PRS-+ CO Rk, PLSD
+ O T TT gty PR +e+ C¥A 3, PS>+ CHP,

{1¥i27¥ 11,12
where C{”, k=1, ---, n are positive constants, independent of {t:}.
Proof. 1In case of hi=-=1¢,=1 it is easily obtained. Then by using the

Markov property we can get the general case, of course by induction on #. W
To show the second claim in (2.7), we need the following lemma :

Lemma 2. Let pE M5 For each T >0, there exists a constant Cr>0 such
that

Cu, Plgpy<Cr/Vt  (0<t<T).

Proof. For simplicity we only consider the case of d=1. Suppose that <{g,
gn,0> <o, It is clear that for all € >0, sup¢<s, 1ie,oPfgp> <0 by (2.3) and it is easy

to see that
VE o [2
< /&
tz?lol<8se x Ptgp(x)— T
The general cases d =2 can be proved by a similar way. |

Hence by (2.5) and Proposition 1 we have (2.7). Thus (ii) in Theorem 1 is proved.
Moreover it is easily seen that

Lemma 3. Let M5 Fix T>0. For each k>1,

E[( [«x., gp>du>k]£ Catt?  (0<t<T).

This lemma is used to show the Holder continuity of X: later.

REMARK 4. When pEM5— M5, it holds that

¢ < oo szls
E{£<X%gﬁﬁm]{:q> it k22

On the other hand if #E M}, then for each 7 >0 and £>1, supo=,<r<g, PPgs> is
finite because of (2.4). Thus Cr=supo<<7Eu[{X:, g»>*] is finite and it holds that

E{( [«x., gp>du>k]£tk'l [Bl<X, 9")du
<Crt*  (0<t<T).
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Next we show the martingale property (iii) in Theorem 1.
Lemma 4.

(i) sup QEI%VJ“ <o for each fE Dy,
(i1) 0§USDT<W, gp,0> <0 for each T >0.

Proof. Since for #=1—e™ and I'f=I'(¥, f)=|" I,

2. PAR [ AP .. 1
2t VI=1=p% <_1—P?h_AV‘f 21“1/4)

and [[1—Ph| ' <expl[||lf|l-]<oo, (i) is deduced to (2.4). (ii) follows from
supr>o/;1yvr(y)dy=1/2 and [wy“’ur(y)dyS/lmw(y)dyél/m. [ |
Let f€D,. Since
imdyr, 1= e~/ >=5<, 3f(+, 0+ ),
if uE M}, then
Lo ()=, Af =BT +5<, 3uf (-, 04D e
—lim B e "] —e ),

When pEMp, £e (1) may not be well-defined. However it holds that Pu(Xy
E M} for du-a.a. u>0)=1 as mentioned in Remark 1. Hence by Lemma 4, nothing
that

1 7 —
lim<v, f”):{ 5 <, 0af(+, 0+)>  (n=1),
710 0 (nzz)’
if uEMb and FE Dy, then we can get

%E#[F(XMXS] =Eu £ F(X.)| Xs] for du-a.a.u>s, P.-as.

Therefore from this equation and by using the Markov property we can see that for
each FED, and 0<s<¢,

Eﬂ[F(Xt)—F(Xs)— i tofF(Xu)duyst:O.

That is, (iii) in Theorem 1 holds. In particular, we have
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Lemma 5. For each fE Dy,
M) =X, =X, = [ £, P(Xu)du
—( Xy YKo, = [ <X Afydu—t<im, 3f(-, 04)
is a square integrable P.-martingale with quadratic variation

<<M(f)>>t=/0t<xu, IF>du.

Now we prove that X; is continuous relative to the topology in /(5. We use
an approximation by finite particle systems. Set H,={xEH : |x|<n, xa=1/n} for
n>=1. Then u(H,)<oo whenever uEM». Fix T >0 and for each n>1, we set

Wo={w:0<a(w)< T, Bw)—a(w)=1/n, |w(a(w)+)|<n},
QW=Qnlw, and @Q2=Q-; £>1/n)

Then Q% =/6-s(Q%ds and Q¥ (W)= Twvi({|x|<n})<co (note that Q(a=0)=
0). Now for each =1, we define

XP(w)= 2 Suet 2 Owe if ©=2x0uw.
k:wi(0)EH, kwinE W,

Then under P., X{™ is a finite Markov particle system, that is, Pu.(X™(W)< o)
=1 and

Eu[exp(—{ Xoss, f>)|73]=exp[—<Xs‘”), v “Qn 1—e-fr>dr].

Clearly X{™ is continuous relative to the topology in Mpand X (w) converges to
X:(w) as n—o for every w and t=0. Fix f€D, and let M{”=M"(f), M.=
M.(f) be the martingale part of X{™, X, respectively defined as in Lemma 5. By
Doob’s maximal inequality and Lebesgue’s dominated convergence theorem we see
that

E,‘[s;g;)lMt‘"’—Mt""’lz]£4E#[|M§”)—M§’"’|2]
—0 (n, m—oo).

Hence there is a continuous process M, =M(f) such that lim-=sup,« TIM}""’:AZI
=(), Pu-a.s. for some suitable subsequence {M{"*}%-1. This implies P.(M;= M, for
all t< T)=1, that is, M, is continuous. This implies the continuity of X; in /5.

Finally we prove the uniqueness of P on £ for the martingale problem.

Lemma 6. If fEC?, then VifEC”NDy for every t=0, p>d, and the
following hold : For each t =0,

(i) %th is continuous in t with respect to the norm |/ gp,o|w,
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(ii) I'Vif is continuous in t with respect to the norm |*/gs|e.

Proof. Set h=1—e 7€ C?. Since AhEC?,

0
Dy BAD oy 1 pifsen<on

(i) is reduced to the continuity of PYf for fECY, i.e., |(PYf— 1)/ gpol—0 (£—0).
To prove this it suffices to show that, for each fE€ C,,
supllgs,s P2l < 00,
however it is not difficult. (ii) is reduced to the following: For each f€ C?,
ICPEf = Phf) [gs.olle, 1(0:P2F — 0:P8S)/ gpoll—0  i=1, 2, -, d (t—1).

The second follows from the continuity of the transition semi-group (P¢)iso of
Brownian motion in R?. Because if we extend f to on R? by setting /=0 on H°,
then

PY(0:/)(x) for 1% d,
Pi(0af)(x)+ P(04 f )(x)  for i=d,

where f (x)=f(X, —xa). One can more easily see that [[(Pf — F)/ go|«—0 (t—0)
for each f€ C.(R?). [ |

a,-P?f(x)z{

Let P. be a probability measure on 2, under which Xo=s as. and F(X:)
—F(Xo)—[;tofF(Xs)ds is a local martingale for F(u)=<X:, />, {X:, />* (f&€

t ~
D). We first assume that <X, gn.0>, j; (X5, gpydsE L*(Py) for each ¢ >0 and that

the above local martingale is a martingale. Then by using Lemma 6 carefully and
nothing {vr-s, 1—e">=<v,, Vr_sf>r=0, we see that for each fEC? and T >0,

Ko, Vi =Ko, Vaf = [ <X, TVr-of>ds— [ vrs, 1= e ">ds
is a square integrable continuous ﬁy-martingale with quadratic variation
[ <X, rVr-opras
in 0<¢<T. Hence by using Ito’s formula we see that
exp[—(Xt, VT-J>+/Ot<ur_r, l—e‘f>dr]
is a ﬁ;‘-martingale. Thus by taking 7 =¢ we have

B [exp(—<(X., f>)|f7s]=exp[—<Xs, VeoP>= [ v, 1—e-f>du].
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Therefore ﬁ,u=Pp in the sense of finite-dimensional distributions, hence it holds
on £, because £ is Polish. In case of a local martingale by using a localization
method we can also show P.=P. on £.

Proof of Theorem 2.

We first show that X;, £ =0 is locally y-Hélder continuous under Py in each
cases of (i) puEMp, y<=(0, 1/4) and (ii) u=Mb, y<(0, 1/2). We apply the
following lemma which can be easily proved (cf. Theorem 2.2.8 in [9]):

Lemma 7. Fix T>0. Suppose that for each fED,, there are some
constants a, b, C>0 such that

E[KX:— X5, P11 C(t—3s)'"*  for all 0<s<t<T.
Then X:, 0<t<T is locally (b/ a— €)-Hélder continuous for every e=(0, b/a) in

the sense of (i) in Theorem 2.

Now fix #E M5 Then for each £>1, T >0 and fE D, there is a constant Cr=
Cr(f)>0 such that

(2.8) E.[{X.— Xs, /]S Cr(t—s)*?

for all 0<s<t<T. In fact, for any fixed fED, and $=0, N&(f)=M:vs(f)
— Ms(f) is a continuous (F ¢)-martingale with quadratic variation K N*(f)> =<
M(f)>tvs— < M(f)>s. Hence by the martingale moment inequality and Lemma
3 we have

EJ{M.(F)— M{(f)}*]1< CLEJ{KM(f)>:— K< M(f)>}*]
=c;Ey[<s<Xu, Ff>a’u> ]
< Cr(t—s)*? for 0<s<t<T.

Furthermore by |Af|< Cgp,0c and Remark 4 we have
t 2k
B ( [<Xu 1Afbdu) " |<Crlt=9  for 0=5<t<T.

Therefore inequality (2.8) holds. Moreover if #E M}, then it can be seen that
E,u[<Xt_Xs, f>2k]$ CT(t _S)‘z

for all 0<s<¢t<T.

Next we show (iii). Let #EMp—Mp. Since for each » >0, P(X,EMP)=1, it
holds that, by (i) in Theorem 2, X, £ =0 is locally (1/2— €)-Holder continuous for
every €€(0, 1/2) under Px,(w) for Pu-a.a.w. Thus letting # | 0, the claim follows.

Finally we prove (iv). It suffices to consider the martingale part M:(f)=<X,
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(X, f>— A ‘€<, F(X)ds. First let £EA0h and fix fE Dy such that <z, I

>0. We also fix /o0& Cp, such that 0<f,<If and <y, fo> >0. By the continuity
of (X, fo> there exist a.s. positive random variables C, u such that KM (f)>:>

t
[;(Xs, foods=Ct for all 0<¢<wu, Psas. By the time change for martingale,

M.(f)=B«u)» holds a.s., where B: is a standard one-dimensional Brownian
motion. Since B:, ¢=0 is nowhere 1/2-Hélder continuous, <X, /> is not 1/
2-Holder continuous at $=0. Next fix f€D, such that K=K,={If=0} is
compact in H. We also fix /o0& Cp,0 such that 0<fo<If and f0>0 on K°. Let u
E M5 such that p({x =>a})=o0 for some ¢>0 if d=1, and that x(K°)>1 if d >2.
Then <y, fo> >0 for every d =1, more strongly we have

Lemma 8. Under the above conditions, it holds that

Ir(ﬁ))‘foglsfr(Xt, f>>0  Pu-a.s. for each T >0.

Proof. Recall that X;=X?+ X{and P.=P2® P’ (see §1). For a>0, set H,
={xs>a}. Since

E’[exp(—XZ(Ha))]Zexp[A't@r, l—e'l”">dr]

and v-(H,)=o0 if and only if d >2 for each 7 >0, it holds that P{( X H,) =)
=1 for every t >0, a>0 if d >2. Moreover if #E M}p such that ©(H,)=0o0 for some
a>0,

P.(X.(H)=co for all t=0)=1.

Because for each fixed 7 >0, PAXYH)=0)=(Q=1P2)((< T)=I1:21P(|Br|>
Znya) < cizo P(|Br| = @) =0, where (B, P) is a standard one-dimensional Brow-
nian motion and X, is d-th coordinate of x.. By a similar way it can be easily
seen that for each integer #>0, P.(X2(H)=n)=0. Thus P.(X.(H)=00 for all ¢
<T)=P.(X¥H)=o)=1. Since T >0 is arbitrary, the above equation holds.
Therefore under the given assumption on x, we have

P.(X,(H)=co for all t>0)=1'li12 P.X.(H)=0o0 for all t=1/n)
=Lipg E.[Px,(X.(H)=co for all t=0)]
=1.

On the other hand Pu.(X.(K)<co for all t=0)=1 by the M }-continuity of X;.
Now if Ir(f)=0, then by the continuity of <X, /o> and <{g, /o> >0 we can find a

number ¢E€(0, 7] such that <X, fo>=0, i.e., X¢e(K)=X:(H). These facts imply
that Pu(I($)=0)=0. [ |



PARTICLE SYSTEMS WITH SINGULAR IMMIGRATION 163

REMARK 5. When d =1, the condition on ¢ in Lemma 8 can not be weakened
to the same as in d >2. For example if # is finite or £=2,:10x, with x,=n" (p
>1), then Pu(X:(H)=0)>0 for each ¢>0, which implies P.(I7(fo))=0)>0 for
every T >0.

In virtue of this lemma, we see that <X, /> is nowhere 1/2-Hélder continuous in
tE€[0, ).

Proof of Theorem 3. _
We shall prove (i). Suppose that #& Ms— M} satisfies the condition (2.1) with
T>0,1<0<2. Then for each a>0, there exists a small 0< 7"<1 such that

(2.9) u, PPgpy=<{p, Plsyy
X(ﬂlsl, P>
v{t“"‘”’z (1<6<2),
“llog 1/t (6=1),

for all 0<¢<T’. 1In fact by (2.3) we see that sup.{uls;, P’g»> and sup:{x,
PY(gpls)> are finite for each a>0. By (2.1),

s, Pgoy=<pls,, P>
= [ por(a)

x8
 (Vdua (% 2 _y_z]
—.é xgl it Xp[ 2t dy.

when 1< 0<2, the right hand side is equal to

ﬁ\/%lldy(yl—e_nexp[__g_;}xl)'l/ﬁ(ﬁv)l_oexp[_%z]dv

=m0,

When 6=1, the asymptotic log(1/#) is similarly obtained. Hence by the same way
as in the proof of Theorem 2, we can show the ((3— 8)/4— €)-Hélder continuity at
t=0 for every e=(0, (3—0)/4).

On the other hand the non-Hdélder continuity is proved in the following
manner : When 6=1, we’ve already shown the non 1/2-Hdlder continuity. So it
is enough to consider the case 1< #<2. Fix fE€D, such that I'¥(0, 0+)>0 and
let M:=M.(f) be the martingale part of <X:, f>. By the same way as in the proof
of Proposition 1 if 0<s<u, then for fo=I7, we have

Ey[(Xs, f0><Xu, f0>]=E,u<Xu, f0>+ V(S, u)
with

V(s, u)=<p, PXfoPs-sfo)—(Pefo)(Pifo>)
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+ f “r, WPY-sfdr A B X, £ [ <or, fdr.
0 0
Hence for all 0<¢< T,
E <MY~ (B M> )P =2 / fo Vs, wdsdu
<C [ <u PUAP-of)>dsdu
<C't A “Cu, POTF>ds
= C,l(E,u<<M>>t,

where C, C’ are constants, independent of 0<¢< 7. Moreover by (2.9) and [/ >
¢ on S. for some constants @, ¢ >0, we have

t
E.<M> o< A <, Ps,>ds

=m0,

Therefore for some Cr >0,

KM>:

— ~— £(6-1)/2 —
E.<M>, =t (—0as t10).

2
_t
]gCTE,,<<M>>t

1

5

Thus for a sequence #»=1/2", we have

KM tn

Llﬂm;‘:l Pp-a.s..
Hence it is easily seen that
.. LM>,
hrrtll %nf-——~E#<<M>>t >0 Pu-as..

Now by

M| __|Beus] (KM>.\"?
1M >\ 150

and the well-known result

lim sup ft—t =00 P.-as.,

tio

it holds that
(2.10) lin}l%up—tl(#;),ﬁ=00 Peu-as..

Hence M:(f) is not (3— 8)/4-Holder continuous at ¢=0, so is not <X, .
Next we show (ii). Suppose that uE M}, — M} satisfies the condition (2.2) with
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T>0,1<80<2and 7>0(1<8<2) or >1(8=2). Then for 0< a<1, there exists
0< T7<1 such that

(2.11) S, PPgpy=<<{p, Pfls,y
= plsq, PI1D
v{t“""”’z(log 1/t)7" (1<6<2, n>0),
it %(log 1/¢)~"~V (=2, p>1),

for all 0<¢<7"’. In fact in this case for a small 0<a<1,

CHlsay P’DA/ xd(logxld/xd)" /deexp[ 2t ]dy

Let p=1/(6—1), g=7/(6—1) and set x=z""(log 2)™?. We have p>1, ¢>0or p
=1<gq and

____plogzt+g
dx— Z"“(log Z)q+1 d.

<—x"*"V*(log 1/x)¥*dz,

that is, x~%(log 1/x)~"dx><—dz. Hence for some b>1; a=b"*(log b)7¢,

z-P(logz)-9 2

$tlso P ?Dx/:dzl xt exp[ 2t ]dy

If vt =z7%(log 2)79, then 2= h(t)<t "V (log 1/t)"¥?=¢""D2(log 1/t)"". We
divide the integral area of z at /4(¢). Note that 2&(b, (¢)) if and only if z~*(log
2)"?>yt. Thus it easy to see that

L h(t) 2-P(logz)-9 _y“z] -
Jt_./b dz'/o- exp[ T dv=<h(t)

and

_1_ o fz—P(logz)‘q [_LZ] v_l_ ) dz
ﬂ_/;(t)dz 0 €Xp 2t dyAJT/»:(:)zp(log Z)q
- 1 [ —Le“p‘l)”dv.

TVt Jogney v
If p>1, ¢>0, ie., 1<8<2, >0, then the right hand side is equal to or less than

T 08 T i< 0 W) (1

=n(t)
If p=1<gq, i.e.,, =2, n=¢g>1, then the right hand side is equal to

x/l— losh(g)?:l‘;/’\t 1/2(1()g h(t)) (g-1)

=t (log 1/£)",
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Therefore (2.11) holds. Now nothing that
(t9-2(log 1/t) =<t~0~D%(logl /£)""
and
(V£ (log 1/¢)77V) <t™"(log 1/¢)"77,

we have the following : For each 0<a <1, there exists a constant 0< 7’'<1 such
that

f’< P >dsvft< P> ds
o K, sdp ~—~ o K, s1Sq

= £ s PY1>ds

v{t‘s“”’z(log 1/8)7" (1<6<2, p>0),
“#%(log 1/¢)~7V (6=2, n>1).

We shall show that for each fE D5,
(2.12) lim sup %a%?, =0,

which implies the (3— #)/4-Hélder continuity of X, at #=0. We first consider the
case 1< <2, »>0. For simplicity of notations we set M:=M.(f), y=(3—0)/4.
Fix an integer N =1 such that N, >1. By a martingale moment inequality we have

Pu(sup|Mi| = ) <SS B[ <M >1]
) Cr tZNr
=& log 17617
for all € >0 and small # >0, where C, C’ are independent of (¢, ¢). For each fixed
k, n=1, set t=1/2" and e€=t"/k. Then the right hand side is equal to
C'k*"n " (log 2)™™. This is the general term of a convergent series. Hence by
Borel-Cantelli’s lemma, for P.-a.a. w, it holds that for each 2>1, there is an
integer-valued random variable N(w) such that if #>N(w), then sup.<,-|Ms(w)| <
27"k that is,

Ms(w) <2_7.

SE(Z‘"‘P,Z‘”] s7 -

Therefore the equation (2.12) follows. The case of §=2, 7>1 can be proved by
the same way.

We can show the equations in Remark 2 by the same way as the proof of (2.
10). These imply the non-Hdélder continuity in (ii) of Theorem 3..

Corollary 1 immediately follows from Theorem 1 and Theorem 2.
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The proofs are complete.

2.4. Further Remarks

In this subsection we give some more properties of X{ and X{. Also we shall
prove the unboundedness of <X, g»>.

(a) The results of Theorem 1, Theorem 2 (except the later half in (iv)) and
Theorem 3 are also valid for the infinite Markov particle system X? with no
immigration. Of course all terms related to the immigration part are deleted.
Moreover if we assume #({xs=a})=0o0 for some @¢>0 and each d =1, then the
same result as the later half in (iv) of Theorem 2 is also valid, because this
guarantee PA(X?(H)=oco for all #>0)=1, and hence Lemma 8 holds.

(b) For any (short) time interval, infinitely many particles are born and die,
ie., for all 0<s<t, P/(X(s<a<p<t)=co0)=1. In fact, in case of d=1. Since

Qn(s<a< t)=[”Q°(s£a+u< Hdu=(t—35)Q*(W)=c0,

we see that the number of particles which are born in the time interval [s, ¢) is
infinite, i.e., P’ X (s<a<t)=o0)=1. Moreover

Quis=a<t<B)= [ 'Qu(u)e H)du= 2T~ <o

implies that the number of particles which are born after time s and survive until
time ¢ is finite. Thus our claim follows. In general case (d >2), restrict on {|w(a
+)| < n}.

To prove the unboundedness of <X, g»> mentioned in (ii) of Remark 1, it
suffices to show the following result: Let d=1.

Theorem 4. For any T >0, P'(X{((0, 1))=c0 for some t<(0, T))=1.

Let Wo= W N{a=0} be the totality of excursions in H=(0, ). X/((0, 1)) can
be expressed as

N.=N%D,) with D.={(s, w)E[0, ©)X Wp: w(t—s)E(0, 1), 0<s< ¢}.

For each fixed £=1, we define a smaller process Sk, as follows: Let ax,=1/2*, tf
=j/4* (j=1, 2, -*) and

g =NV*)
with

VE={(s, w):s€[0, a2), w(ai—s), w2ai—s)E[ax, 2ax),
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w(Bdi—s)=4, ta(w)>B(w)},

where z.(w) is the passage time to @ >0 of w. For each j>1, if tf<¢<tf1, then
set
EE=NUVE) with VFE=6%,(V*)

(@)
(note that £f is undefined for 0< ¢ < t%). It holds that £f=£*. In particular, if we

set ££==~EL then {&F:/=1, 2, ---, k=1, 2, ---} are independent.
REMARK 6. &* denotes the number of particles which are born during the time
interval [0, %), stay in [a@x, 2as) at time points a%, 2a% and die during the time

interval (243, 343], and also which never hit 2ax.

Now for each =1, set Si,:=2n-x& Clearly if ¢t = t(=a3=1/4%), then Si,.<
N:. Hence to prove Theorem 4 it is enough to show the following proposition :

Proposition 2. For each k, i=1, P'(Sx:=0 for some t#<t<tf.)=1.

Proof. We define a random variable U#* for each %, 1=1 as follows: Set

Homaxeh
and
L={=1,2, -, i: 4= Uk,
Ji=4*+[4L-3)U(4L—2)U(4—1) U4L).
Also define

U¥'=Up'+maxé&st.
Jje1
If we have I, J., UF*™", then set

In+l:{jejﬂ : Iff-'—n: UI:H-L{},
]"+1:4k+ﬂ +[(4In+1_3) U (41n+1 _2) U (4In+1 - 1) U4In+1]

and

U:+2,z — U}f“'l + maxf?f“"“.
J€Jn+1

So we define

U¥i=lim U}

n-—oo

We can show the following two claims :

Claim 1. A.=E’'€*=C/2* for all k=1 (C=E’'">0).
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Claim 2. For each %, i>1, P/ (U}F?)=oo=1.
Obviously Claim 2 implies Proposition 2.
Proof of Claim 1. Let V& denote the s-section of V*.
Mn=EN(V9= [ dsQ( V)
H 2ar
=/: dsfa Q" w(asi—s)Edy; at—s< 2as)
2ar
[ P (wr @) Edye; @< T PAES @by £< Toas)
. A
3 2a ar
= f du [ hdyllim / Ay () p%***(x, y1)
0 ar 710 J0
2ar
L aye g’iza"(yl, yz)Pyz(Togdi, T< Tzdle)
2ar 2ar
= j; . av /; . Ava i’ (01, ¥2)
% a
/: dutim [ drvr(Op(x, ) Pl Tv< dh, To< Tral)
2 2
=a} /; dz /; dzps™(arz1, arze)
% ar
/: dulip} £ dxve(x) p%**(x,a121) Parzod To< a%, To< Tiay),

where p¥°(x, ¥) denotes the transition density for Brownian motion absorbed at 0
and 5>0 (x, y>0). Note that

222 (x, M(=PAw(t)=y; t<To)=PB:=y; t<ToAT5))
=n§_mﬁ3(x, y+2nb)

and

= 2
PThedt; To<Ts)= ‘/%ngm(x+2nb)exp[—w#)—].

By using the scaling properties ; for any a >0,
1
vars(ay)=zvs(y) and  P(ay, az) =¥y, 2),
we can get

Igk 2 2 0,2 v ! 0,2
E‘’s =dk[ d21[ dzpv’ (31, 22)./0‘ a’vlslflo'l/o‘ dyws(V) 5 (v, 21) Po( To<1, To< T3)
=akE’5°.

Proof of Claim 2. We shall show that for each 4, =1 and m>0, P'(U¥'<
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m)=0 by mathematical induction.
(1) For each &, i=1, P (U¥'=0)=0.

In fact if UF =0, then £57"=0 for all #>0, 4”<;<4"({+1). But the sum of these
expectations is given as Z(Ax+44s+1+4°Ak42+ ) and this is infinity by Claim 1.
Hence the probability of this event is 0.

(2) If we assume that P'U¥*<m—1)=0 for all &, 1>1, then
P Ui,*"'sm)zmioP’(S"=mk)iP’(U;";“lism—mk)
i=1[ 4\ m

+ng(]’.>mzzlpf(5k=mk>fpf<sksmk—1>f—fP’(Um'sm—mk)
=P'(&*=0) P (U <m)
:PI(ék:())iPI(Ek+l=0)41‘P1( U::lzzig m)
gPI(EkZO)iPI(Ek-H20)“"'P1(§k+n=0)4"i—’0 (n—)OO)

by Claim 1. This implies P'(U#*<m)=0 for all &, i>1.

(3) From the above results (1) and (2) we have Claim 2. [ |

3. Asymptotic Behavior of Hitting Rates for Brownian Excursions ; Appli-
cations to Equilibrium Processes

In this section we consider the Kuznetsov measure @»(dw) and the canonical
process {w(#)}:er associated with absorbing Brownian motion (w°(¢), PY) in the
half space H and the Lebesgue measure 7(dx)=dx on H. We give the asymptotic
behavior of Qn(0<0s<t) as t—© for the hitting time os(w)=inf{¢ >0: w(t)E
B}(=o0 if {+}=#0) of a compact subset B in H. Moreover by applying the result
to the equilibrium process with immigration (X, P) associated with (w(¢), @n),
we also give limit theorems for it.

3.1. Main Results

Let B be a compact subset of A and 7s(dx) be the capacitary measure of B,
that is, 7z is supported by 0B and satisfies that

PYT3<0)= / 9°(x, v)ms(dy),
with the potential kernel

9(x, y)=’£mz>‘3(x, v)dt,
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where p¥(x, v) is the transition density of (w°(#), P%). The capacity is defined by
CB)=ms(1)= [ _ms().

Moreover if we set 7s(w)=inf{tER : w(t)E B}(=0 if {-}=0), then
CUB)=Qn(0< 3<1)=Q(15<0)=Q"(05< )

(see §3.3).
We shall use a symbol Q°[-] as the integral by the measure Q°.
Our main result is the following :

Theorem 5. Let B be a compact subset of H with a positive capacity. Then
it holds that

Qn(0<0s<t)=1C(B)+ (1)

JE-Zprcro) i d=L,
=47 .
f log t ®(B)+o(logt ) if d=2,

o) if d=3

with

as 1—oo, where
b=inf{x: x=B} and c=sup{x:xEB} if d=1

and

0B =+ [ o) @u®(0s) <00l = [ zara(aw))

n
with w=(w®, w®) if d=2.

ReMARK 7. If d =1, then ¢°(x, v)=2(x A ), ms(dx)=20,(dx)/(2b) and C°*(B)
=1/(20).

Let ({X:}:cr, P) be the equilibrium process associated with (w(#), Qn). Set
Nf={we W :0<o0s(w)<t}. Then X(N?) is the number of particles hitting B
during time interval [0, £). Now we have the following result :

Theorem 6. Let B be a compact subset of H with a positive capacity. Then
B
XN . cvB)  Poas. and in L(P)

as t—o0, Moreover
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X(NH—1C(B) _, {NW, CAB)  if d=1,
Jt N(, C(B)) if d=2

in law as t—oo,
3.2. Kuznetsov Measures and Capacity Theory

In this subsection we consider the asymptotic of @»(0<75<¢) in more general
situation and give the first term of the asymptotic.

The situation is the same as in §2.2. That is, S is a Lusin space, Ss=SU{4}(4
&ES), (W, F°, F, w'(t), PP), t=0, xS, is a Borel right process with transition
semi-group (P?).» and let W be the set of all maps w : R—Ss such that w is
S-valued right continuous on some (a(w), A(w)) and w(¢)=4 for t&(a(w),

B(w)).
We fix mE Exe. It is decomposed uniquely as m=m;+ m,< Inv® Pur.
Moreover there exists a unique entrance law v=(v¢)¢>0 such that

mPZ_Z;w)/tdt.

Then there are Kuznetsov measures

Qn, Qn, Qn, and Q():QU on W,

which satisfy that
Qn=QntQnp, and  Qmy= [ 0-(Q0ds= [ 6@

Note that @ is supported on {¢=—00} and Q° is supported on {a=0}.

Let B be a Borel subset in S. Recall that rs(w)=inf{tER : w(¢)E B} and
note that zz°s=1z—s for all SER. According to [7] B is co-transient if Qn(7s
=—00)=(, and for such B we define the following co-capacities :

C(B)=Qn(0< 5<1),
Ci(B)=@Qn(0< 13<1),
C?(B)=Qu,(0< 13<1).

Then
C(B)=CB)+C?(B) and C?(B)=Q%(zz<)

The last equation is due to
S+t
Qmp(0< < t)=’/‘Rde; QO(TBE du)
=/ QO(TBEdu)fu ds
R u—-t
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= tQO( < OO)
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Now recall os(w)=inf{¢ >0: w(¢)E B} and note that under °, =05 and
18°0-s=08°0-s=0s+s for s=0, but in general 7z°fs=05z°0s for s>0. We have

the following result :

Theorem 7. If B is a co-transient set with a positive and finite co-capacity,

then

Qn(0<05<t)=tC(B)+o(t)  as t—oo.

Proof. One can easily see that
Qm(0£0'3< l’)=Qm.-(O£GB< t)+ Qmp(OSO'B< t),
Qn(0=<05<t)=PpTs<t)

and
o t
Qmp(0s03<t)=£ Q°(0sGBoas<t)ds+£ QRQU(—s<os<t—s)ds
0 t
=/0 dsﬁus(dx)PS(dB<t)+[ Qa5< t —s)ds
=P (Ts< t)+ [ ‘005 < 5)ds.
That is,
3.1) Qm(OsaB<t)=P&(TB<t)+f@°(ag<s)ds.

By Spitzer’s formula ([7])
lim L P(T5< 1)=C(B),
and clearly

lim—l—j;th(o‘B< $)ds=Q"(0s< 00)=Q"(1z< )= C?(B).

oo 1§

Therefore our claim follows.

REMARK 8. According to [7] the capacity of B is defined by C(B)=Qn(0<
As<1), where Az=sup{tER : w(t)E B}(=—c0 if {-}=0) is the last exit time of B
for w(¢). For a Borel set B in S, B is transient if Qu(Az=00)=0. If B is both
transient and co-transient, then C(B)=C(B). Let Ls(w®)=sup{t>0: w’(¢)E
B}(=0 if {-}=0) be the last exit time for w°. B is strongly transient if Pp(Lz>
£)=0, where £(w°) is the life time of w®. If (w°, P2) and (%°, P?) are transient
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standard processes in weak duality relative to an excessive measure 7 and if B is
strongly transient with finite capacity, then there is a measure

ng(dx)zltig]itP,?(0<LB£t)m(dx)=ltilrg1itPf3(TB£t, Tyoe=00)m(dx) on S

such that PS(TB<w)m(dx)=/G°(y, dx)ms(dy), where Gy, dx)=£wdtﬁ?(y,
dx) [4]. Moreover Qn(Az=Edt, w(As—)E dy)=dtrs(dy) and hence Qn(0<Az<1)

=n3(1). If B is strongly co-transient then Qn(tsE dt, w(rs)E dy)=dt7s(dy) and
Qn(0< 13<1)=75(1) hold [6].

3.3. Proof of Main Results

Recall that H={x4>0}, m(dx)=dx on H, (w°(¢), P?) is absorbing Brownian
motion in H, (P?).s is its transition semi-group. Q° is a Brownian excursion law,
Qn is a Kuznetsov measure associated with (w°(¢), P%, m), and v,(dx)=v,(x4)dx
with

ve(u)=—=2 exp[—i]
y2nr? 2r
for » >0, #>0. Here we give some useful results for the entrance law :

if n=1,

[ B e n
lrl{l(;l/; vr(dxa)=0, 21}{?£ xd)/r(dXd)'_{O >0

for all €>0, and

[l )z, 9)= [ vrldra) e, v)=vree(3a),

where vr(dxa)=v-(xa)dxa on (0, ).
Note that the facts in Remark 8 and that w° is symmetric relative to 7, i.e., w°
=u". For each compact subset B of H, it is strongly transient, it holds that

C(B)=m5(1)=Qn(0< 15<1) = Q(75< 0) = Q°(05 < ©)
and this is finite (cf. Theorem 6.5.3 in [14]). We can show m(1)=Q°(05< )
directly. In fact, since f}/??(x, Yvr(dx)=vr+:(va) and K vr(va)dr =1, we have
Q% o< c0)=lim , ., Hur(dx)P,?( T:<00)=lim , ., aB7rB(a’y)/I;g°(x, Vv (dx)=
75(1). Moreover we see that

ms(dy)= s(dy)= Qnlw(ts)Edy : 0< 15<1]
=/O‘wQ°[w(rB)Edy 1s< rg<s+1]ds+/;1Q°[w(rB)Edy s 3<l—s]ds
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=Q(w(s)Edy : 3<0].

By a simple computation one can get
t
A Q(05<5)ds=1Q(05<0)— Q"[a5 N\t : 95< 0].

Thus by the equation (3.1), nothing that m& Pur, we have
(3.2) Qn(0<05<1)=1tC*(B)+ Pu(Ts<t)— Q[os At : 05<0].

Now Theorem 5 can be proved as follows: First we consider the one-
dimensional case. In this case our claim is immediately obtained by the following
proposition :

Proposition 3. Let d=1 and B be a non-empty compact subset of H=
(0, ©). Set b=inf B and c=sup B. Then

0( Ty < t):,/z—;—§+c+o(1)
as t—, and

QO[O'B :08< OO] :%.

Proof. It is easy to see that
00 0 b o c o oo
l Px(TB<t)dx=£ Px(Tb<t)dx+fb Px(TB<t)dx+/; PAT.<t)dx.

When ¢#—o0, the first term of the right hand side goes to

b _[tx , b
[:Px"(Tb<OO)dx—£ 7dx—7

and the second term goes to
c
[ PUTs<0)dr=c—b.

The last term is equal to

’

/O‘Px(To<t)dx=‘£ 9P(B, >x)dr—= 2;

where (B;, Px) is Brownian motion in R. Hence the first claim follows. To prove
the second claim we need some well-known results (cf. [9]). If 0<x<b, then

of ,—ATs . — —~ATs . — Siﬂh(x«/ﬁ)
Ex[e : Tb<OO] Ex[e T < To] —_smh(bm)
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and

PYTy<0)=PTy< To)=x/b.
Thus for all 0< e<5 it holds that

. (e _ JA
O —ATs . — NA
lulfro]./o‘ vuldr)Ex ™™ Tp <] V2 sinh(6+22)

o fiea)’

and

lim f *uldi) PY Ty < ) =1/(2b).
uli0JO
(]
Now since /1_1(1—6_""”)2/1‘2/(; e Mdv/ op as A1 0 we have

Q05 05 < 0] =lim Q"1 — ¢~ : Gy< o]

b
=1im%lim V(@) EY1— e~ - Ty< o]
ALO ui0JO
11 ! odETo >‘1}
_l}f?A{zb <b[18 av
_b
6"
Therefore our claim follows. |

We proceed with the proof of Theorem 5 in the higher dimensional case (d >
2). 1In this case we use a technique which is a kind of approximation by the
capacitary measure. We further decompose the equation (3.2) to

Q0 05<t)—tC(B)
=Py Te<t)—tQUt <5< 0)— Q05 : 05< t].

Moreover
PXTa< D)= [[ax [ ma(dy) [ 92w, )ds+PUTa<t, Too,<o0),

Qo(tgo‘B<OO)=Q0(0300t<00)—-Q0(0'B< t, 0‘306t<00)

and
Qo5 : 0s< t]=luigl./ﬂuu(dx)ﬁBmg(dy)j:tsﬁg(x, v)ds+g(¢)

with
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t
9(t)=Q[ o5 : 05< t]_ljf?,[;””(dx)ﬁa’“(dy% sps(x, y)ds.
The second equality is shown as follows :
t
PUTs< )~ [[ax [ molay) [ '8, 5)ds
t
= [1 dx{sz(TB<t)— £ ,7(dy) £ pilx, y)ds}
— [[ax{ [ mulay) ["#x, y)ds— Pt < Ty<oo)}

= de{P,‘z( Tgo0; <00)— P(t < Tp< o)}
:P&(T3<t, TB°6t<OO).

Furthermore we see that

[ax [ zay) [ $ix, )as
=/;Bm;(dy)_/:dslwdrﬁlur(dx)p%(x, y)

:/;BHB(dY)_LtdS'/Smyu(yd)du
:-/;BEB(dy){t-/;qu(yd)du"‘/Otu)/u(yd)du},

QO(aBoH,<oo)=Lyt(dx)P£( Ts< o)
=.[Hm(dx)AB7rs(dy)£wﬁ2(x, v)ds
= [ malay) ["ds [ veldnpiea, va)
= [}, 7o) [ vilva)du

(Z\/%f”ydﬁs(a’y)Jr 0<+/F>)

and

tim [ vld) [ 7dy) [ "oz, v)ds
= /a Bm;(dy) ﬁ tSVs(yd)dS

(zﬁfasyd”‘?(dy) - ﬁByims(a’y) + o(l))

Therefore we have

Qn(0<05< t)—tC%B)
=Pp(Ts<t, Tpo0;<0)+1Q%(05< ¢, 05°0: <0)—g(t).
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Now we can prove that

(3.3) Pi(Ts<t, Tso0:<0)=0(1),

. . _(@(B)+0(1) if d=2,
(3.4) 1Q (GB<ty ()} 0t<oo)_{0(l/m if d>3
and

_(—logt ®(B)+o(logt) if d=2,
(3-5) g(t)_{o(l) if d>3

as {—0, Hence our claim follows.
To prove the above equations (3.3), (3.4) and (3.5) we need several lemmas.

Lemma9. For each h>0, ChEAydPS( Ts< h)dy is finite and it holds that

1< Ta<t+0)<Cu/ 2 QUt<0s< t+h)sch—-+__21ﬂt3

for all t>0.

Proof. Since w’(¢) is bounded on a finite time interval, for each ¢ >0, there
is a bounded set K; in H such that for all x& B, PYw’(s)E K, for all s€[0, ¢])
>1/2. Hence for each x€ H, PAw*(t)€K,) > PAw*(t)EK:, Te<t)=EY Pdocrs
(W(t—=$)EK)|s=15: Te<t]=PUTs<1)/2, that is, PA Ts<t)<2PAw’(t)EKs).
Therefore

Cr<2 [ xaPUw (W)E Kn)dx

=2./;1dxxd[(h p(x, v)dy

=2 [{ dy A "k at(a, Vo) da

=2/1;h Yady < 0

and
PY(t<Ty<t+h)< [ PUTso0,<h)dx

— [[ax [ avpix, v) P Ts< )
— [ayPXTo< 1) [ dxatica, ya)

. ya 1 22
= [ P T8<h>[yd—,/—zm exp[‘w]dz
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S,/%LMPB(TK h)dy.

On the other hand
QU(t<os<t+h)<Q%0s°6:<h)
- fH ve(de) PA Ts< 1)

sﬁ L xaPYA Ts< h)dx. n

REMARK 9. From this lemma we see that Py(7<t)=0(/f) as t—0,

Lemma 10.

S(T;%’T for all t>0,

7z, 9)ds

4 1
= (Zﬁ)izjstd/z +O< td/2+1> as t—o,

where the O(t~%*"V)-constant is bounded whenever (x, y) is bounded.

Proof. Since

© o >~ 512 (xa+ya)2/(2s)
[p‘é(x, y)ds=/t ds(Zﬂs)‘d/zexp[—-lf—yL]j(’ " e *dz,

28 Xa=ya)2/(2s)

where ¥ =(x1, -, xa-1)E R*™, our first claim immediately follows. Moreover by
using Taylor’s formula

exp[_ﬁzi_?_z]=l_<ﬁ;_szﬁ+z>e-a

2s

’

where 6 >0 depends on (s, 2, x, ¥), we see that

OS@#%)jt—m"—l px, v)ds

o0 (xa+ya)2/28) [ | ¥ — 7|2
s[ a’s(27rs)“‘”2/( (Jx—zsll—+z>dz

Xd—Ya)2/(2s)

=7 gy (o 2 "

Using these lemmas we can prove the following:

Lemma 11. Let d=2.
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Pa(Ts<t, TB°0t<oo)={
O(1/4t) if d=3

and

0 oy [ OBV t+o1/t) if d=2,
Q (O'B<t, 0g°6: < )—{O(I/ﬁs_) i >3

as (—o,

Proof. We first prove the two-dimensional case.
Po(Te<t, Tgoh;<0)
< [ @PATs<[]-1, Tpo0i<c0)+ [ dxPU[1]-1< Ts<1)
— [[dx [ PAw (D)€ dy : Ta<[1]~1)PXTs<0)+ O(1/JT) by Lemma 9
[¢]1-1
= [ m(a) [ax [ [T dPA AT dv: Te<s) [ Po(v, d)e'(y, 2)
+0(1/Vt)
[t1-1 -
=/;B7r3(dz)'[idx/;e”£ dsPAw(Tz)Edv : ngs)/;_sp?l(v, z)du
+0(1/V1).
By Lemma 10 the first term is equal or less than
[¢]—-1
%faBﬂB(a’z)zZde/;E”vzﬁ dsPAw(Ts)Edv : Ts<s) s
2 [t]—-1 32 e
£C7C°(B)de/0- P(tT+sds) (c=sup{x2>0: xE0B})

=< cp) [ar{ T2 [ [t]_l(%—i)P,?( Ty ds))
—Cop{ L=, [ P Te )}

Now by using Lemma 9 the first term and the second term are equal to O(1/V7)
and O(log ¢/4/t) as t—o0, respectively. In fact,

[¢]-1 s o [¢]-1
[P Ted) < E TR Pk-1= To< k)

[¢

oA Z+%7F)
o[ "% J_f <)
O(Jt log t).
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Therefore
Py?;(TB<t, T3°(9t<00)=0(10g t/m if d=2.
Moreover

Q0(05<t, 0306t<00)
=Q%os<[t]—1, 05°0:<0)+ Q([t]—1<08<t, 05° ;< 0)

= liwﬁw(dx)ﬁBrrB(dz)AEaB./O.mgldsP,?(wo( Ts)Edv : Tsﬁs)li U v,
2)du
+0(1/Vt%).

Thus
Q%os<t, 030Ht<OO)—%ﬁBZMB(dz)ﬁBsz"(wO(GB)Edv cop<[t]—1)
=tim [vla) [ mlad) [ [ dPAwATEdv: Ty<s)
X (_/:,sp%(v, z2)du— Z:TZ;Z>+ O(#)

Since by Lemma 10

J- o ==zl =) ol )

as t—oo0, Hence we have
|Q%(05<t, 05°0:<0)— D(B)/t|

c? . el-1/ 1 1
£7C°(B)13{?Luu(dx)/)- < s ~—t>P3( T:Eds)

(¢]1-1
+C ljmﬁyu(dx)l (t—=8) 2P TsEds)+ 0<it>’

where C is a finite constant. By using Lemma 9 we can also see that the first term
is equal to O(log ¢/v/t*) and the second term is to O(1/v/#*) as t—o0. Thus

Q%0s5< t, 0go0<0)=0(B)/t+0(1/t) if d=2.

In the higher dimensional cases (d =>3) by a similar way our claim immediately
follows. In fact, by using Lemma 10 it is easy to see that

[)‘[t]_l((l‘ —§)"2— =42 PO Ty ds) = O(%)

and

ljmﬁyu(dx)j)'[t]_l((t_s)—d/z_t*d/z)Pg( Ts<E ds)=O< \/11,‘_3)
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as {—co. From this we can get

P(Ts<t, Ty 0:<0)=0(1/Vt)
and

Q(05< ¢, 0o, <0)=0(1//)

as $—0, [ |

From this lemma the equations (3.3) and (3.4) are obtained.
Note that in the above computations we also have the following result :

Theorem 8. Let B be a compact subset of H with a positive capacity. Then
—btcto1) if d=1,

/2t 2
Pf’iz(TB<t)= — Zxdﬂg(dx)‘f'
T '/I; —Lxﬁm;(dx)+o(1) if d=2

and
o(1/¢) if d=1,
Qo(tggs<oo)+{ D) O(B)/t+0(1/t) if d=2,
v%/xd”'g(dx)*{o(1/\/t—3) if d=3
as (—o,

Note that if d=1, then /I;Zxdrrg(a'x):l by Remark 7, and that Q%(0s<
t)—>C%B) as t—co. And if d =2, then

W Ts<t)= ﬂg(a’x)_/o.tds/:uu(xd)a’u+P%( Ts<t, Tgo8;<0),

Q(t<op<o0)= ﬂB(dx)[mVu(Xd)du_Qo(O-B< t, o< 0).

We prove the equation (3.5). It is enough to show that for all 2>0

_h AN
e tj(3)+o(t) fd=2
O(m)

as {—0oo. This can be proved by a similar way to the proof of Lemma 11. Since

if d=3

t
PATs< )= [ ms(ay) [ $x, )ds=PUTs<t, Tyo6,<o0),
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we have
g(t+n)—g(2)
. t+h
—tim [} EA Ty 1< o<t + 11 [ molay) [ st 9]

. t+h
<lim L uu(dx){(t+h)P§(t£ Te<t+h)—t £ Bms(dy) /, pUx, y)ds}
. t+h
=¢ li}{r()l'/l;uu(dx){Pg(té Ts<t+h)—£3ng(dy)/t Px, y)dS}
+ lim L vl dx)PAt< Ts< t+ 1)

=t li{?[{uu(dx){P,?(Tg<t+h, TB°(9t+h<OO)—P£(TB<t, TB°6t<oo)}

+hQ(t<os<t+h)
=t{Q0(03<t+h, O'B°6t+h<oo)_QO(GB<t, 0'50(9t<00)}
+hQ(t<os<t+h)
h h g
B —_L‘_Q(B)+O<_t> if d—2,
h .
O</t—3> if d=3

as t—c0 by Lemma 9 and Lemma 11. A lower estimate is given by the same way :

g(t+n)—g(2)
>H{QU0s<t+h, 05°04n<00)— Q(05< t, G5° 6, < )}
— h{Q%(05° 6 < 00) — Q(05° Br+n < 0)}
__?Q(B)JFO(L;) if d=2,

- 0(/;_3) if d>3

as t—o0, Therefore the equation (3.5) follows.

Finally we prove Theorem 6. Recall NF={0<05<1¢}. The first claim follows
by the subadditive ergodic theorem [10] and E[X(N?#)]= Qn(N¥). For the second
claim it is enough to show that if

Qn(NE)=tC\+Vt Co+0o(J/t)
as t—oo, where C1>0 and C.=0, then

By __
E exp[iz%]—»exp[i@z-—cél—zz]

as t—00. However this can be easily obtained by using the following formula:

E expliz{X, F>]=exp{ﬁ/(1—ei‘F‘w’)Qm(dw)}
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for all L'-functions F(w) on (W, Qn). In fact, as t—c0,

~ [, (1-exo 1] )Qutatw)— 2 CivizCa— % .

3.4. Further Results

The Brownian excursion law @° can be also defined by the following: For x
=(x, xa)ER* X (0, ©)=H,

Q.=lim [ “v(dx)Pt and Q= dxQ:.

So in this final subsection we change the Lebesgue measure d¥ on R*'=0H, the
boundary of H, to an arbitrary o-finite measure #(dX) and consider the same
problem as above. Let p¥* P(¥, %) denote the transition density of the (d
—1)-dimensional Brownian motion. Define

Q= [ mdx)Q=lim [ (d) P
where vi(dx)=vi(x)dx with
v)= [ pE(F, 2)ud)vnea)
Then v*=(v¥)r»o is an entrance law for (P?),s, i.e., ViP?=V¥... Moreover set
m"(dx)=/;wdru’r‘(dx) and QmuZ/::b’—s(Qﬁ)dS,
Note that m"(dx)=m"(x)dx with

m#(JC):_/(;mU/}‘(x)dVZ 1(-’2(7‘5){32 Xd RH( If — §|2+x3 )dlzﬂ(dj"),

where I' is gamma function. Then m“& Pur and Qn- is the Kuznetsov measure
associated with (w°(¢), PY, m*). For this measure m”, we have the hollowing :
The transition density p¥(x, y)=p¥x, v)/m"(x), the capacity measure 75(dx)=
m*(x)ns(dx), the capacity C™(B)=n"(1), the co-capacitary measure 75(dx)=
Quiw(rs)Edx : 0< 13<1)= QN w(0s)E dx : 05<) and the co-capacity C™(dx)
= Qn(0< 13<1)= QU 05<0). In this case w® is not symmetric relative to 7*, thus
in general C™(B)=C™(B).

Now fix a compact subset B of H with positive co-capacity. By the same
computation as in §3.3, we can get

Qu(0<0s<t)—tC™(B)

=Pou(Tp<t)—tQUt <0< 0)— QY 05 : 05< t]
=Ppl(Ts<t, Tso0:<00)+ tQU 05° 0 <) —gu(t),
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where

9t = Qg : 0 < t]~1im [ v¥(ax) [ 7alay) [["$ix, ).

We only consider the case that £(dX )= Sxu-u(dx*)dx*"* for a certain &
=1, 2, ==, d and a certain fixed point x*""(0)&R*'. Then we have the follow-
ing:

(k=1) __ (k=1)((\)|2 2
Uf(x):(zﬂ)kj/czdruk/zexl)[_ |x er (0)| +xd]

and

I'(k/2
m”(x)z Srk{z) {]x(k—l)_x(kjff)(o)'z_i_xa}k/z.

Note that if £=1, then vi=v, and m*(x)=1. So it suffices to consider the case of
2<k<d. In this case it can be seen that

o(ﬁ’-gt—"‘) (h=d=2),
%ﬂ(TB< t, T305t<00)=

0(1/t) (k=2, d=3),
O(1/t*?) (3<k<d)
and
0u.B)/t+0(1/¢)  (d=2),
QUos< ¢, O'B°(9t<oo):{0(1/\/t—3) (d=3),
0(1/t?) (d =4).

More exactly when d =4, we have

o/t+*?)  (k<d—3),

0 o =
Qy(0‘3<t, OB 9t<00) {O(l/tdlz) (k:d—z, d—1, d).

Furthermore

(t)_{—log t0.(B)+o(logt) (d=2),
947 0(1) (d=3)

as {—o0, where

1

0uB)= [ xoms(d) Qi w(s) : 0 <o)

=L [ omt)y aptan) [ seri(ay).

Therefore we have the following result: For each 2<k<d,



186 S. HIRABA

Qu(0<03<t)=tC™(B)+ {18?-,1;@(3) +ollog £) ((a;=223)5

and Pa«(Ts<t) is equal to
log ¢ [[5 245z ma(d)+ O(1) (k=2),

fod{lx‘k‘“—x“"”(O)lz+x§}""’/27r3(dx)+0(1) (£=3)

27l.k/2

as f—00, Moreover since
o Zt—k/Z
Q050 0: < OO)='k(2_n,)k/7’/‘xd7TB(dx)

2t_k/2_1 k-1 k—1 2 2 —k[/2-2
—fod{lx‘ )— x*D(0) 2+ xZ} ms(dx) + O(¢t ),

we can get the asymptotic behavior of
Qi(t <5< )= Qi05° 0: <o0)— Qi05< t, 05° 0 <0).

However it is too tedious to describe it.
Of course we also apply the above result to the equilibrium process with
immigration and obtain a similar result to Theorem 6.
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