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1. Introduction

Chemical reactions that take place in a bounded domain are often described
by some reaction-diffusion systems with linear boundary conditions. Such kinds of
reaction-diffution systems have been investigated by many reseachers, e.g., Rothe
[16], Feng [4], Hoshino-Yamada [5], and others (see also Ruan [17, Theorem 5.
l]). On the other hand interfacial reactions, i.e., chemical reactions that take place
on the interface between two phases (as oil and water), are often described by
systems of diffusion equations with coupled, nonlinear boundary conditions. Also
some important interfacial reactions in chemical engineering are described by
elliptic-parabolic systems with coupled, nonlinear boundary conditions. Unfortu-
nately it is difficult to deal with coupled, nonlinear boundary conditions by
standard techniques. In fact, not so many fundamental theories are known concern-
ing parabolic systems with non-monotonous, coupled, nonlinear boundary condi-
tions. Recently, surmounting these difficulties, several mathematicians have inves-
tigated some systems of 1 -dimensional diffusion equations with nonlinear bound-
ary conditions that are related to interfacial reactions (see Yamada-Yotsutani [19],
Shinomiya [18], Nagasawa [15], lida- Yamada-Yotsutani [7], [8], [9], lida-
Yamada-Yanagida-Yotsutani [ll], lida-Ninomiya [6] see also [17] and the
references therein). As for elliptic-parabolic systems related to interfacial reactions,
however, there seems to have been no investigations except Yotsutani [21], in
which the existence and uniqueness of solutions are shown. The present paper is
a first trial to construct a fundamental theory on asymptotic behavior of solutions
to such an elliptic-parabolic system with coupled, nonlinear boundary conditions.

Let ro, r\ be given numbers with 0<ro<n<l, and put

\x\<ro}9 Γ0

r0<x\<rι}, /ϊ
rι<\x\<l}9 Γ2={χt=R2 , \x\ =
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Fig. 1 Domain Ω

(see Fig. 1). We will consider an elliptic-parabolic system in a cylindrical domain

dxv-b(\x\)v*=Q9

(x,
(x,
(x,

, oo),

, oo),

where Δx denotes Laplacian with respect to x = (xι, Xz). The coefficient a(\x\) is
positive in Ωo and vanishes on Γo the coefficients έ(WX c(\x\) are positive in Ω\
and vanishes on /1UΓ2. The unknown functions u, v*, w*, v and w are related
to one another by the following boundary conditions. Let Vj be the outward

normal unit vector on a circle /} and d/dvj the derivative in the direction of Vj (j
= 0, 1, 2). On Γ0X(0, oo) We impose

, v*,

where /?(w, v*, w*) is a nonlinear function and mo, ^o are positive constants. On
Γi X (0, oo) We impose

dv* dv dw* dw

where mi and n\ are positive constants. On Γ2 X (0, oo) we impose homogeneous

Neumann conditions :
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At z=Q we impose

u(x, 0) = wo(kl)>0,

v(x, 0) = tfo(M)^0, w(x, 0) =

where Uo, VQ and Wo are given radially symmetric functions.

AB2

organic phase

Fig. 2 Chemical situation

This boundary value problem was proposed by Yoshizuka-Kondo-Nakashio

[20] as a chemical model. It describes some interfacial reactions that take place in

a membrane extractor using a hollow fiber (see Fig. 2). In their model, u denotes

the concentration of the metallic reactant A in the aqueous solution flowing

through Ωo X (0, oo) v (resp. w) denotes that of the organic reactant B (resp. the

product AB2) in the organic solution flowing through Ax(0, °°) v* (resp. w*)

denotes that of B (resp. AB2) permeating through the hollow fiber Ω* X (0, oo).

Since the hollow fiber is hydrophobic, the interface between the aqueous and
organic phases in ώx(0, oo) is the inner surface of the fiber (/oX(0, oo)). Thus a

chemical reaction such as A + 2B+±AB2 takes place only on the interface / o X

(0, oo). in order to see the essential effect of the interfacial reaction on the

extraction of A by B from the aqueous phase, they considered a simple situation :

the reaction has attained a stationary state the streams through Ωo X (0, oo) and Ω\

X (0, oo) have become laminar flow. In this situation they derived the boundary

value problem stated above. In their model a(r\ b(r), c(r) and R(u, v, w) are

given by
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(1.1)

log n J '

i, v, w)—
uv —w

where #o, bo, Co, Si, 82 are positive constants and r = \x\ (cf. [20]).

If we restrict our attention to solutions that are radially symmetric with respect

to x, then the boundary value problem is reduced to the following system on [0, 1]

x[0, oo) for u(r, z) (0<r<r0), v*(r, z) and w*(r, z) (r0<r<n), v(r, z) and

w(r, z) '

(EP)

JL
r(

VΪ = W?r + -WΪ = 0,

-- Wr

(r,

(r,

(r,

r0)x(0, oo),

, n)x(0, oo),

Q, z)= o, z)

= R(u(r0, z), v*(r0, z}, w*(n, z)},
v*(n, z) = v(rι, z), w*(r\9 z) = w(n, z},
v*(r\, z) = mιvr(r\J z\ w?(n, z} = n\wr(r\, z\

, oo),

oo),

oo),

',D.

As to this system, Yotsutani [21] has shown the existence and uniqueness of a

nonnegative global solution in the framework of Sobolev spaces. Moreover it can

be shown that the solution is actually of class C°° up to the boundary by developing

the method of [21]. The detail will be announced in lida-Yamada-Yotsutani [lθ].

The aim of the present paper is to investigate the asymptotic behavior of the

solution as £—>°°. From chemical viewpoint, it is expected that the reaction

approaches a chemical equilibrium as z increases. We will show that the solution

to (EP) actually converges to an equilibrium as £—»oo an(j will give the rates of the

convergence.

The nonlinear parts of our boundary conditions are essentially in the same

form as those of the boundary conditions that are treated in the recent works ([19],

[7], [ll]) by a group including the author. However, our system (EP) is quite
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different from theirs in the following sense : in their 3-component parabolic system
for u, v and w, u is explicitly associated with v and w by nonlinear boundary
conditions in our 5-component elliptic-parabolic system for u, v*, w*, v and w,
u is only implicitly related to v and w through v* and w* (see Fig. 1). Therefore
we must solve the elliptic equations for v* and w* with nonlinearly coupled
boundary conditions in order to understand the interaction among u, v and w.

This fact makes our analysis more complicated than theirs. Fortunately the
equations for v* and w* can be solved explicitly. Hence (EP) is reduced to a
parabolic system for u, v and w with nonlinear boundary conditions (see §3).
Nevertheless, this system is not easy to analyze. The main difficulties come from the
following facts : the nonlinear terms in the reduced boundary conditions are much

more complicated than those of the original boundary conditions comparison

principle dose not hold the principal eigenvalue of the linearized operator at an
equilibrium is always zero. To overcome such difficulties we employ some devices
such as to make use of the fact that R(u, v, w) is "component-wise monotonous"
in respective components (see (R. 2) of §2), to introduce a Lyapunov function
fitting in with the nonlinearity peculiar to chemical reactions, to construct infinite
number of energy inequalities systematically, and to take advantage of "mass-
conservation" law (see Proposition 2.2).

The organization of this paper is as follows. In the next section we state our

main results with the assumptions for a(r\ b(r\ c(r) and R(u, v, w). In §3 we
reduce the elliptic-parabolic system (EP) to a parabolic system (P). This reduction

is the basis of the whole argument in the subsequent sections. In §4 we give

fundamental lemmas that are useful throughout the paper. In §5 we give a
Lyapunov function together with several energy functionals and derive differential

inequalities for them. Those inequalities imply the uniform convergence on Ω of

the solution to an equilibrium. We devote §6 to the spectral analysis for the
linearized operator. Applying the results of §6, we seek the optimal rate of the

uniform convergence of the solution in §7. Moreover, in §§8 and 9 we give the
optimal rates of decay for all derivatives of the solution by constructing infinite
number of energy inequalities.

NOTATION
Let i be one of the subscripts 0, * and 1. Throughout the paper we denote

by Cr(Ωί) (resp. Lp

r(Ωi), •••, etc.) the subspace of radially symmetric functions that

belong to Ck(Ωί) (resp. Lp(Ωί), •••, etc.). We also use some weighted ZΛspaces.

For a nonnegative function ω^L\(Ωi), L2τ(Ωί ώ) is the Hubert space of radially

symmetric functions φ on Ωi satisfying

f
where
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(±b, F0) = (0, r0), (r*, r*) = Oo, n), Ui, rι) = (n, 1).

We use the following symbols to represent various norms of a radially symmetric
function φ on Ωi :

IIΛHI*..*: =esssup|ί6(r)|,
r<<r< r,

f /V, ϊ 1/2

IIA .HMU.: = {]r_φ(r)2ω(r}rdr\ .

When we use high order differential operators, we sometimes abbreviate them as

where ^ is a positive integer.

2. Main results

Throughout the paper we assume the following conditions on a(r\ b(r\ c(r)
and R(u, v, w) :

on [0, r0),
(A. 1) &(k|)eC°°(^iX b(r)>0 on (n, 1),

Icd^DeC-CώiX c(r)>0 on (n, 1).

(A. 2) There exists a constant do>0 such that

lim / ^r)

Wo>0, lim / fe(rL0 >0, lim / c(rL0 >0.r-r0-o(r0— r) ° ' r->π+o(r — n) ° r-π+o(r — n) °

(R. 1) There exist an open subset 0 of Λ3 and a positive function S(w, #,
C°°(0) such that

D/ N UV-W ~κ(u, v, w)=-^7 - r on Ό,
' ' ' S(u, v, w)

where δs is a positive number and /, ra, n are positive integers.

r)ΐ? n>7?
(R. 2) - - ( w , v, tt>)^0, - < « , y, ^)^0 for every (w, y, w)e[0, oo)3.

(R. 3) There exists a positive constant Cg such that

t-M2*-1/?^, ι;, w), -υ2p~lR(u, v, w), w2p-lR(u, v, w)}



NONLINEAR ELLIPTIC-PARABOLIC SYSTEM 105

for all (w, v, , oo)3 and , oo).

Clearly the functions a(r), b(r\ c(r) and R(u, v, w) given by (1.1) satisfy
these conditions. For the boundary data (uo, Vo, Wo) we put

fro n ri
uw'. = uQardr+ - / wocrdr,

Jo Ho Jn

vw'. = — ~ Vobrdr-\ — - Wocrdr.
mo Jn Ho Jn

For the subsequent arguments, we summarize fundamental facts. The following
two propositions are essentially obtained in [21] (see also [lθ]).

Proposition 2.1. In addition to (A.I), (A. 2), (R.I), (R. 2) and (R. 3),
assume that (uo, Vo, WQ) satisfies

, r0),
ι, 1),

in (0, r0),
in (r\, 1).

Then the boundary value problem (EP) has a unique nonnegative solution(u, v*,
w*, v, ^)eC°°([0, r0]x(0, c»))xCββ([ro, rι]x(0, ^))2

satisfying the boundary condition at z=0 in L2-sense, i.e.,

Moreover the solution is bounded uniformly with respect to z and its positivity is
determined by that of Muw, MVw in the following way :

on [0, r0]x(0, oo), ̂ *>0, w*>0 on [r0, n]x(0, oo),
'>0, w>0 on [n, l]x(0, oo) if MUw>0 and M™>0;
on [0, r0]x(0, oo), v* = w* = Q on [r0, n]x(0, oo),

u=Q on [0, r0]x(0, oo), ̂ *>0, W*Ξ() on [r0, n]x(0, oo),

u=0 on [0, r0]x(0, oo), V* = W*=Q on [ro> n]x(0, oo),

v = w = Q on [n, l]x(0, oo) if MUw = § and MVw = 0.

The solution satisfies the law of "mass-conservation." Precisely the following
holds.

Proposition 2.2. Let (u, z;*, w*, v, w) be a solution to (EP). Then (u, v,
w} satisfies
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(M)

Γr° % C^
I u(r, z)a(r)rdr-\ -- / w(r, z)c(r)rdr=MUw,

Jo HQ Jr\

-^w(r, z)c(r)rdr=MυuHo Jr\

for , oo).

Consider an "equilibrium" for (EP), i.e., a solution that is independent of z.

It is easy to see that an equilibrium for (EP) should be a set (&«, ίλ», #;«, v™, Woo)

of constant functions if it exists. As for the equilibrium to which the solution of

(EP) converges as £— »oo, we should take Proposition 2.2 and the nonnegativity of

the solution into consideration. Then the constants Uoo, v«> and Woo should satisfy

0, zλ»>0, wλ»

O, VθO, Wθθ)=Q,

——-

m\

We can see the following by Theorem 2 in [7].

Proposition 2.3. Suppose that (A. 1) and (R. 1) hold. Then, for each pair

(Muw, Mvw) of nonnegatίve numbers, there exists a unique solution (u^ zλ», w^)

to (EPoo). More precisely,

if MUw>0 and MVw>§\

^w^^Q if MUw>0 and MVw = G :

=0 if MUw=ΰ and MVw>Qm,

if Muw = 0 and MVw=0.

Now let us consider the asymptotic behavior of solutions as z—*°o. When MUw

= 0 or Mvw~0, we can easily obtain the asymptotic behavior from Proposition 2.

1. For instance, we briefly explain the case Muw = 0<MVw. Since u = Q, w^ = 0 and
w = Q, v* and v satisfies
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(r, *)€Ξ(r0, n)x(0, oo),

(r, *)e(n, l)x(0, oo) ;

, oo),
0*(n, 2) = t;(n, z\ Vr(r\9 z) = mιvr(rι, z\ £<Ξ(0, co)9

Vr(l, Z) = Q, ZG(Q, Oθ);

, 1).

Hence

v*(r, z) = v(ny z) for (r, z)^[r0, n]x(0, co),

and t; satisfies a linear diffusion equation with homogeneous Neumann boundary
condition. Then the standard Energy Method leads us to

1 1 Γ1 II
v( , z) — fΓΓM - / Vobrdrll =O(exp( — λ+z)) as ̂ -^oo?| |c?| |l,Λι^rι ||oo,Λι

where λ+ is the least positive eigenvalue for

\-Vrr — -vr=λb(r)v in (ri, 1),

Ur(n) = Vr(l) = 0.

For this reason, here and hereafter we will consider only the case MUw>Q and

Theorem A. In addition to (A. 1), (A. 2), (R. 1), (R. 2) and (R. 3), assume
that Muw>0 and MVw>Q hold. Let (u, v*, w*, v, w] be the solution to (EP) and
(UK, foo, Woo) the solution to (EPro). Then

u( , z) - >Uoo uniformly on Ωo\
v*( , z) - »zλx>, w*( , z) - >Woo uniformly on Ω*\ as z - >co.
v( , z) - >Voo, w( , z) - >Woo uniformly on Ω\\

To investigate the behavior of solutions near the equilibrium we will study the
linearization of (EP) at (««, υ*>, w^ Voo, Woo) from spectral analysis. For (u, v, w)

we set

(2.1) RL(u, v, w} = Ru

with

7-»00 UJ\ / \ 7-»oθ UJΛ. f \ 7-joθ OI\. ( \

R%=-~—(Uoo, Voo, Woo), RV=-—(Uoo, Voo, Woo), Rw=~ϊ - (#00, V*>, Woo).-~j—oo, oo, oo, V - β — o o , oo, oo, w~ϊ -
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We introduce an eigenvalue problem associated with the linearization of (EP) at

(uoo, Vo°, Woo, Voo, Woo). It is a linear boundary value problem for a set (u, v*, w*,

v, w) of radially symmetric functions u on Ωo, v* and w* on ώ*, v and w on Ω\

with a parameter λ :

(EV)

— Urr -- Ur =

— Vrr -- Vr = ~ W*r -- W* = 0

— Vrr -- Vr =

Wr(0) = 0,

, ~ Wrr --

in (0, r0),

in (r0, n\

in (ri, 1)

, v*(r0),

We say that a number λ is an eigenvalue for (EV) when there exists a set (u, v*,
w*, υ, w)=^(Q, 0, 0, 0, 0) of radially symmetric functions satisfying (EV). We will

prove the following proposition in §6.

Proposition 2.4. In addition to (A. 1) and (R. 1), assume that MUw>G and
Mvw>Q hold. Then there exist countably many eigenvalues for (EV). They are
all nonnegative, and the set of them has no accumulation points.

As will be seen in §6, an eigenvalue zero for (EV) always appears. This fact
seems to make our analysis complicated. But we can get rid of this difficulty by
virtue of Proposition 2.2. Indeed, in an appropriate Hubert space, the solution
moves in the direction normal to the eigenspace corresponding to the eigenvalue
zero (see §§6, 7). Thus the least positive eigenvalue for (EV) plays an important
role in the local behavior of solutions near the equilibrium.

Theorem B. Under the same assumption as that of Theorem A, the
solution (u, v*, w*, v, w) to (EP) satisfies

where λ+ is the least positive eigenvalue for (EV).

Moreover the solution converges in a much stronger sense than in Theorems A
and B.



NONLINEAR ELLIPTIC-PARABOLIC SYSTEM 109

Theorem C. Under the same assumption as that of Theorem A, the
derivatives of the solution to (EP) decay like

\\DlrDίu( , zϊll^ + llD'rDίv*^, z)\\»,0. + \\D'rDiw*(-, z)\\-.Ω.
λ+*)) as z - >cx>,

where λ+ is the least positive eigenvalue for (EV) and ί, j are arbitrary non-
negative integers with (i, /)%(0, 0).

REMARK. It also holds that

(2.2) \\DίDiDKu -tι*>)\\~.Ω0=0(εxv(-λ+z)) as z - »oo

where

x = (xι,X2)ZΞΆ', DP=-j^ (p=l, 2).

In fact, as shown in §9, it holds that

\[DS(u-i4*>)]\i=0(exp(-λ+z)) as z - >oo (f>

where |[ ]|ι denotes the usual norm in a Sobolev space H*(Ωo). Needless to say,
Theorems B and C imply the corresponding result for v* (w*, v or w) to (2.2).

In what follows, the symbols C Co, Ci, ••• Co,o, Co.i, " , Cι,o, Ci.i, •••, etc.
denote positive constants that are independent of z unless otherwise stated. For
simplicity, we sometimes denote several different constants by one of them if there
is no confusion.

3. Reduction to a parabolic system

In this section we only impose (R. 1) and (R. 2).

Lemma 3.1. Let dv and dw be given positive numbers. For any (u, v, w}
e[0, °o)3 there exists a unique pair (v*, w*)^[Q, °°)2 such that

(u, v*, w*),
R(uy v*, w*).

Moreover the implicit functions v* = β(u, v, w) and w* = γ(u, v, w) defined by
this relation are of class C°°([0, °o)3).

Proof. Let u, v and w be any nonnegative numbers. The given relation is

equivalent to
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V , W V* , W*
~——Ί Γ-

dv dw dv dw

For this reason, we eliminate w* and consider the following equation for v*

F(v*): = v*-

It is easy to see from (R. 1) and (R. 2) that

vRu9 0, w+v}<^

) v+^-w, θ)>0,
Cίw I

>1 for ̂

Thus the equation F(^*) = 0 has a unique solution 0*e[0, v + dvw/dw]. Conse-
quently there exists a unique pair (v*, w*)^[Q, °°)2 satisfying the given relation.
The regularity of 0 and 7 is shown by Implicit Function Theorem. D

Let us introduce a function J(u, v, w} that plays an essential role in the
reduction of (EP) to a parabolic system :

J(u, v, w}: =l + dv--(u, θv + (l-θ)v*, θw + (l- θ}w*}dθ
(31)
^ ' •! ^D

where Λ, rfα, are the constants in Lemma 3.1 and v* = β(u, v, w), w* = γ(u, v, w}.

Lemma 3.2. The function J(u, v, w) satisfies the following for (u, v, w)€Ξ

(i) J(u, v,
(ii) R(u, v*, w*)=J(u, υ, w}~lR(u, υ, w),

where v* = β(u, v, w) and w* = γ(u, v, w}.

Proof. Since u, v, w, v* and w* are nonnegative, (i) follows from (R. 2) and
(3.1). Observe that

R(u, v, w)=R(u, v*, w*)+ Γ-jfiR(u, v* + θ(v-v*l w* + θ(w-w*})dθ
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=R(u, v*, w*} + ( υ - υ * } ( u , θv + (l-θ)v*, θw + (l- θ}w*}dθ

-K θv + (l-θ)υ*, θw + (l-θ)w*)dθ.

The right-hand side equals J(u, v, w)R(u, v*, w*) by virtue of Lemma 3.1. Thus
we get (ii). D

Here and hereafter we set

(3.2) dv = morolog(rι/ro), dw = norQ Iog(rι/r0).

Now we are ready to reduce the elliptic-parabolic system (EP) to a parabolic system

(P)

Proposition 3.3. Let (u, v*, w*, v, w) be a solution to (EP). Then the
following relation holds between (v*, w*) and (u, v, w} :

v*(r0, z) = β(u(r0, z\ v(n, z\ w(n, z)\

*(ro, *) = r(

Moreover, (v*, w*} satisfies

cv*(r, z) = v*(n, z) + moroR(u(ro, z\ ^*(r0, z\

^*(r, z)= w*(rQ, z)-n<>rvR(u(r^ z), ^*(r0, z\

,~ ~
(3 3) * = 0, z\ υ(n, z\

on [r0, n]x(0, oo)? and (u, v, w} does

(r)uz=Urr~\ ur for (r, ^)^(0, r0)x(0, °o),

b(r}Vz=Vrr~\ Vr, c(r}wz=Wrr^ Wr far (r, z}<^(n, l) X (0, Oθ)

(P) \ v(n, z)

= R(u(rQ, z\ v(rι, z\ w(n, z)}
J(u(n, z\ v(ny z), w(r\, z)}'

fr(l, z) = Wr(l, z) = 0 far Z^(Q, 00)

u(r, ϋ) = uo(r) for r^(0, r0),
.v(r, ϋ) = vo(r), w(r, ϋ) = Wo(r) for re(n, 1).

Conversely, let (u, v, w) be a solution to (P), and let (v*, w*) be defined by (3.
3) and (3.4). Then (u, v*, w*, v, w} satisfies (EP).
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Proof. Suppose that (u, v*, w*, v, w) is a solution to (EP). A radially
symmetric solution v*( , z) of the 2-dimensional Laplace equation satisfies (rvf)r
=0 for 2^(0, °°). Hence we have

(3.5) r v f ( r , z) = mQr0R(u(rQl z\ v*(r0, z), w*(r0, z)), (r, z)^[n, n]x(0, oo),

which implies the first equality of (3.4). We also see that

}=R(u(r0, z\ v*(r0, z\ w*(n, z))

by (3.5). Similarly we can derive the corresponding results for w*. Since v(r\, z)
= v*(rι, z) and w(r\, z) = w*(rι, z\ we obtain (3.3) from (3.2) and (3.4) by virtue
of Lemma 3.1. Then Lemma 3.2 leads us to

•Dί ( \ */ \ */ \\R(u(rϋ, z), v*(r0, z), w*(r«, *»=
O, z), v(rι, z\ w(r\, z)}

Thus (u, v, w} satisfies (P). The converse is easily verified. D

The following lemmas will be useful when we derive several estimates for
derivatives of solutions.

Lemma 3.4. Let k be a positive integer. For a function (u, v, w) = (u(z),
v(z\ u;U))€ΞC*([l, oo); [0, oo)3

v*(z): =β(u(z\ v(z\ w(z)\ w*(z): =γ(u(z\ v(z\ w(z)\

Suppose that (d/dz}ju, (d/dz}jv and (dl dz)jw are bounded on [1, oo) (0</<
k-1). Then it holds that

dkυ*
dzk

dkw*
dzk

dju
dz1

djυ
dzj

djw
dzj on [1,

where Bh is a positive constant independent of z.

Proof. We have

dv* = dβ du | dβ dv | dβ dw
dz du dz dv dz dw dz '

Differentiate both the sides k — \ times with respect to z by using Leibniz' formula.
Then we get

=

 hπl(k- 1\ ί dj I dβ \ dk~Ju i d* ( dβ \ d^υ . dj ( dβ \ dk'Jw }
M j )\ dzj I du ) dz"-J ^ dz1 1 dv ) dzk~j "*" dzj V dw I dzk~J J '

d"v
dzk

Since ^eC"([0, c»)3), the derivatives (d/dz}j(dβ/du), (d/dz)J(d/3/dv} and (d/
dzy(dβ/dw) (0<,j<,k-l) are bounded on [1, oo). Thus
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dkv*
dzh M

j=ι\

dju
dzj

djv
dzj

djw
dzj

We can obtain a similar inequality for w*(z). D

Lemma 3.5. Let k be a positive integer and let u(z), v(z), w(z), v*(z),
w*(z) be the functions that satisfy the conditions in Lemma 3.4. Then it holds
that

, υ*,
dju
dzj

djv
dzj

djw
dzj ) on [1, oo),

where Bk is a positive constant independent of z.

Proof. An application of Leibniz' formula to

d π/ * *\ dR
—j-R(u, v*, w )=-*—dz ' ' du

dw

*
, v*,

(u, v*, w

du <dR,
>—i—I—~—(u.

dz dv
*\dw*

dz

leads us to

dzk
j

. V . W )=' ' y

It follows from Lemma 3.1 that

w ^dv*

. _ .

which implies the boundedness of f* and ^* on [1, oo). Thus, with the aid of
Lemma 3.4, we see that

are bounded on [1, oo). Consequently we obtain

dh

dz1 -R(u, υ*, w*)
k /

•5
d}u
dz1

d'v*
dzj

djw*
dz1 ),

Applying Lemma 3.4 to the right-hand side of this inequality, we can obtain the
conclusion. D
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Corollary 3.6. Let k be an integer with k>2 and let u(z\ υ(z\ w(z\
v*(z\ w*(z) be the functions that satisfy the conditions in Lemma 3.4. Then it
holds that

v*9

dhu
dzk

dkv
dzk

dhw
dzk on [1, oo),

where Bk is a positive constant independent of z.

4. Lemmas

In this section we prepare fundamental lemmas that will be used in the proofs
of Theorems later.

Lemma 4.1. For a positive integer ko, let (pk(z)}^k^k0, (j)k(z)}ι<k<k»
{Qk(z)}^k^^ {<[k(z)}Q*k*h-ι be sequences of nonnegative functions of class
Cl[\, oo) and let SQ(Z) be a nonnegative function of class C[l, °°). Suppose that

(A?=2, —, £o),

(*=1, 2, -, fe)

/or 2^[l, °°), wλere η is a positive constant. Then

For the proof see [8, Lemma 3.2].

Lemma 4.2. For a positive integer ko, let {pk(z)}^k<k» be a sequence of
nonnegative functions of class Cl[z, oo) and let (qh(z)}^k<kn [Pk(z)}^k^k0 be
sequences of nonnegative functions of class C[z, oo). Suppose that
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p : =sup{pk(z)

1 1 5

, oo)

for k = Q, 1, ••-, &o, w/zere λ £s a positive constant. Then

as z - >oo (k=Q, 1, — , A?o).

Λ € Ξ ( 0 , λ) is #« appropriate constant such that λ/λ depends only on p".
Moreover, if pk(z)^L1(z, °°) (^ = 0, 1, ••-, ^o), then we can choose λ as λ .

For the proof see [11, Lemmas 3.2, 3.3].

Lemma 4.3. Set ί = 0 or z — 1. Lei # function ωtΞL\(Ωi) be positive almost
everywhere in Ωt. Then, for any β>0 there exists a positive number Ke such that

for all

Proof. We will show the inequalities for i = Q (the proof for i = l is easier).
Fix any number 5^(0, ro/2). For p, p'^(0, ro] we have

Applying Schwarz' inequality to the right-hand side, we get

p II rp
u(p) <2u(p') +2 log-^H / u\rdr .

P \\Jρ'

Multiply both the sides by ω(ρ')p' and integrate them with respect to p' over [p
— £, p] for pe(r0/2, r0]. Then we get

u(p)2 I ωrdr<2\\u\\{Ά]ω+2 log p * / ωrdr\ur\2,Ω<>.
Jp-8 p— 0 Jp-S

Hence

u(ρ)2<— ||^||2.a;fl,+21og ^

where

Γp

c§ : = min / ωrdr>0.
8<.p<^roJp-S

In particular, we get the first inequality in this lemma by putting
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P = r0 and e=21og
TQ

Similarly we can derive

;ωCs

Consequently we have

o/2

Observing that

ro/2 Q+d Γro/2 Cp+δ 1

rs j /-r /To/2 j /T s ro/2+δ j /T0/2

— / — / pdpdr+ / — / pdpdr+ / — / pdpdr,
Jo r7o Λ rJr-δ Λo/2 rΛ-*

we can find a positive constant C satisfying

τo/2

p Jr0/2 p—

for 5^(0, ro/2). Thus we obtain the second inequality in this lemma by putting
e=2Cδ. D

Lemma 4.4. SW i = Q or i — \. Let u be a radially symmetric function on Ωi.
Suppose that

Then u^H2

r(Ωί}^Clr(Ωi}. Moreover, if z'=0, then

(4.1) ur(pf<\^\Δu\2rdr, pe[0, r0]

ϊ/ /=! β«rf // Mr(l) = 0, ίAβ/2

(4.2) ur(p?<ί-\Δu\2rdr, pe[n, 1].

Proof. For simplicity we define _rz and r z (z' = 0, 1) by

(ro, F0) = (0, r0), (n, Fι)=(rι, 1).

Since u and zίw belong to L2ι0c(Ωi), the regularity theory for elliptic equations
leads us to the fact u(\x\)^H2

oc(Ωί), which yields rur(r)^Ll(p^) p") with _£*
p"< Fz. On the other hand, we have (rur)r = rAu^Ll(r^ί1 r, ). Hence



NONLINEAR ELLIPTIC-PARABOLIC SYSTEM 117

)= I rΔudr, Ti<p< p< r,
J p

In view of ΔuSΞL^Ωi), we can derive from this equality that

l(°> r°J if ί=0,

Consider the case i=l under the condition ur(ϊ) = Q. Letting jδ" tend to 1 and
using Schwarz' inequality, we get

P2ur(p)2< frdr
J p_

which implies (4.2).
Now we consider the case / = 0. We will show (4.1) and

(4.4) limur(r)=Q.

Observing rur(r}^Ll(§, ro), we can see that rur(r) is abosolutely continuous on
[0, ro] and satisfies

lim rur(r)=η,

(4.5) Γ~*° ΓP ΓP
pur(p)=η+ / (rur)rdr = η+ / rΔudr, p^(0, ro]

Jo Jo

for a number η. Suppose that η>0. Then we have

for some δe(0, ro). Since w(r)^C1(0, ro], we see that

- P - , Q<e<p<δ.

The right-hand side of the inequality tends to °o as e— >0. This contradicts the fact
w^//"?oc(β))cC(βb). Similarly η<0 implies contradiction. Therefore (4.5) is
rewritten as

pUr(ρ) = Jo rΔudr, p^(0, r0].

By virtue of Schwarz' inequality, we have

P2ur(p)2= Γrdr fP\Δu\2rdr=-^- Γ\Δu\2rdr, p<Ξ(0, r0],Jo Jo Z Jo

which implies (4.1) and (4.4).
To conclude the proof, we verify the regularity of u in both the cases i = Q, 1.
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It follows from (4.3) and (4.4) that u^ Cl

r(Ωi). Moreover, the boundary values of
u(\x\) on dΩί equal a constant or two constants. Thus we can see that u^Hr(Ωi)
by the regularity theory for elliptic boundary value problems. D

Lemma 4.5. Let I be a closed interval in R with /BO Ω an open subset
of R2 with smooth boundary F(ξ) a sufficiently smooth function on I with F(0)
=0; u(x, z) a sufficiently smooth function from βx[l, °°) to / ; ko a non-
negative integer.

(i) Suppose that D%u (0<k<ko) are bounded on J2x[l, oo). Then

holds for a positive constant L that is independent of z but dependent on
ko.

(ii) Let io be an integer with zΌ>2. Suppose that \[Dίu( , z)]\t0,a
ko) are bounded on [1, oo). Then

holds for a positive constant N that is independent of z but dependent on
io and ko.

Here |[ ]|I,Λ denotes the usual norm in a Sobolev space Hl(Ω).

Proof. According to the convention, we use the following abbreviation for
differential operators with respect to x = (xι, #2) :

_
dx \3x

where a\ and 0.2 are nonnegative integers. We also abbreviate |[ ]|ί,Λ to |[ ]|ί.
(i) Seeing that F(0) = 0, we have

||F(«)||2= [UF'(ξ)dξ\ < sup \FW\\\ul.
•/O ||2 l^l^supjul

Moreover we have

)DSu}=gDiF \a\ = l, 0<k<ko.

Hence the uniform boundedness of DzU leads us to
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\[DiF(u)]\ι^CkΣ\[Dίu]\ι, 0<k<ko.

(ii) Since H2(Ω)(^C(Ω\ Dίu (0<k<ko) are bounded on Ωx[l, oo). Then
the argument in (i) is still valid, so it suffices to show that

(4.6) \\DSDSF(u)

for all a with 2<\a\<io. In the case | f f | = 2, setting a=βjrγ with |^| = |/| = 1, we
have

which implies

.;=0

Recall the fact H\Ω)<^L\Ω\ Then the boundedness of |[Z)ίw]|2 leads us to (4.
6) with |tf | = 2. For /Ό^3 we will show (4.6) with 3<|βf|</0 by induction. Let i
be an integer with 3<z'<zΌ, and suppose that (4.6) holds for all a with \a\ = i — \.
In this case we may further assume the same inequality where F(u) is replaced with
F'(u). Setting a=(a\, 02), β = (β\, βώ and r=(/ι, 72) with

we have

j=0

+ Σ Σ (k}caMDs

xDiF'(u)DΪ-sDΪ-Ju
j=0 Q<δ<a-β-γ\J /

J=0\J

%(k

j=o\j

Here Caβrs is a positive integer determined only by a, β, γ and δ. Besides
Dβ

x

+sDίF'(u), D*MF'(u}, DΪD^u and Da

χ-
β-rDίF'(u} are bounded on Ωx

[I, oo), because #''"(£) CC"'°-2(.Q) and |5|<z0-3. Hence
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Since \a— γ\ = i — 1, the assumption in the induction leads us to (4.6) with a\ = i.
Thus we complete the proof. D

In the same manner we can prove the following lemma.

Lemma 4.6. Let JC be a closed subset of R3 with JSf B(0, 0, 0) Ω an open
subset of R2 with smooth boundary F(ξ, η, ζ) a sufficiently smooth function on

JC with F(0, 0 0)=0 u(x, z), v(x, z) and w(x, z) sufficiently smooth functions
on Ωx[I, oo) with (u(x, z), v(x, z), w(x, z))^X on Ωx[l, oo); ko a non-
negative integer.

(i) Suppose that Dίu, D%v and DzW (0<k<ko) are bounded on Ωx
[1, oo). Then

ko

k=0

<LΣ{|U?M , z)]\ι.Ω + \[D!v( , z)]\ι.0 + \[Diw( , z)]\ι.0], zG[l, oo)
=0

holds for a positive constant L that is independent of z but dependent on

(ii) Let io be an integer with z'o>2. Suppose that \[Dίu( , z)]\io,a9

\[DSv( , z)]\ίo,Ω and \[Dϊw( , z)]\ίo,Ω (0<k<ko) are bounded on [1, oo).
Then

Σ\[D!F(u( , z), K , z\

holds for a positive constant N that is independent of z but dependent on
zΌ and ko.

Here |[ ] | f f Λ denotes the usual norm in a Sobolev space H*(Ω).

Finally we give a lemma that is useful when we derive the uniform bounded-
ness of derivatives of solutions from their ZΛboundedness. Only here we use (A.

2).

Lemma 4.7. Let u = u(ry z) be a function of class Cx([l, oo) C[0, r0])Π
C([l, oo) C2[0, r0]) and v = v(r, z\ w = w(r, z) functions of class C([l, oo)
C[n, 1])Π C([l, oo) C2[n, 1]). In addition to (A. 1) and (A. 2), assume that (u,
v, w) satisfies
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(4.7)

Ur,

Vr, -- Wr,

wr(0, *)=0,
0r(l, *)=M>r(l, *)
\Ur(r0, z)\ + \Vr(rι,

<x{\u(rQ, z)\ + \v(rι,
z)\

(r, *)e(0, r0)x[l, oo),

(r, *)e(n, l)x[l, oo);

, oo),

, oo),

and

where x is a positive constant independent of z. Then

α positive constant CK that is independent of z but dependent on
^o, ||z;( , l)||α>fβl, lk( , DIUfit, ^ and K.

Yamada and Yotsutani showed a similar fact to this lemma in [19, proposi-
tion 8.l], where the inequality corresponding to the last one in (4.7) has no
constant term in the right-hand side. In our case we can not omit a constant term
in the right-hand side because of later necessity. However, we can prove this lemma
in a similar manner to their proof. The idea of the proof is based on Alikakos [2,
Theorem 3.1], which is an application of an iteration technique due to Moser [12],
[13] and [14].

5. Proof of Theorem A

For functions w(r)eC[0, r0] and v(r\ w(r)^C[n, 1] we use the abbrevia-
tion U=(u, v, w) and define energy functionals :

E(U \ 0)0, (ύ\,

where

Cϋo>0 a.e. in

O)ι, cϋ2^Lτ\Ωι)ί ci^iX), 6^2^*0 a.e. in Ωι.

Additionally if u, v and w are all positive functions, we use the energy functional
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-\-nWoo—- φ{ \crdr,
HoJri \WooJ

where

f *

(note that ^oo>0, Voo>Q and Woo>0 cf. Proposition 2.3). It is easy to see that

(5.1) Φ(U) = Q if and only if U = (u00, v~, Woo).

REMARK. Rothe [16] employed a Lyapunov function that resembles Ψ. He
investigated the asymptotic behavior of solutions to a reaction-diffusion system
with homogeneous Neumann boundary conditions. His system is a mathematical
model that describes chemical reactions not on the boundary but in the domain.

The following energy estimates play an essential role.

PropositionS.l. The solution U=(u(r, z\ v(r, z), w(r, z)) to (P) satisfies

(5.2) -j^Ψ(U} + eE(DrU} + e{u(rQ, z)lv(n, z)m-w(rl9 zY}2<^

', /, g, ti) + 2E(DzU', af, bg, ch) =

-E(D,U\ a, b, c} + E(DrDzU}<N,E(DzU\ af, bg, ch\

E(DXU\ a, b, c}<Nl{E(DzU\ af, bg, cti) + E(DrDzU}}

for z^(Q, oo). Here e, N\ are positive constants that are independent of z, and

f(r)=f\(t)t log^dt, re(0, n\

g(r)= Γb(t)t logout, h(r}= Γc(t)t log-f Λ, r^(n, 1),
Jr\ T\ Jri T\

DrU = (Ur, Vr, Wr\ DzU = (uz, Vz, Wz}.

We prove Theorem A by using this proposition, whose proof is given later.

Proof of Theorem A. We will show that the solution U= U(z) = (u( , z),
v( , z), w( , z)} to (P) converges to the equilibrium U00=(u00, v«>, w<»}. Combining
the inequalities in Proposition 5.1, we can derive

(5.3) ~{u(rQ, z)Lv(n, z)m-w(n, z)n
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limE(DzU; a, b, c)=Q

123

(use, for instance, Lemma 4.1 with ko=1). Since u, v and w satisfy diffusion

equations, Lemma 4.4 yields

J a,b, c).

Thus we obtain from (5.4) that

(5.5) Hm{|M , z)\\~ + \\vr( , *)||O. + ||M;Γ( , *)U=0.

Therefore the family {u( , z)}z>\ is uniformly bounded and equi-continuous on [0,
r0], so are the families {#(•, z)}&\ and (w( , z)}Λ*ι on [n, 1]. On account of (5.

3), there exists a sequence {zj} 3=1,2,3,- such that

limzj=oo and Iim{u(r0, z^)lv(r\, Zj)m — w(rι, zj)n}2=Q.
j^OO J-+00

By Ascoli-Arzela's theorem we can choose a subsequence from {zj} (denoting it by
{zj} again) such that

Here it follows from (5.5) and Proposition 2.2 that u, v, w are nonegative
constant functions satisfying

Mil U λ -\\C\\i ΪV=Muw,
Ho

-T i n\ i\b\\v +—L\c\ιw=Mvw.
ffl>V rΪQ

Recalling Proposition 2.3, we see that (ΰ, 17, w}=U*>. Hence

which implies

lim

Moreover we see by (5.2) that Ψ(U(z)) monotonically decreases. Thus we obtain

(5.6) lim φ(U(z))=Q.
Z^oo

Since {U(z)},*ι is uniformly bounded and equi-continuous, the facts (5.1) and (5.
6) lead us to

(5.7)
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Finally we show the convergence of z;* and w*. Using Lemma 3.2 and (3.3),
we obtain from (5.7) that

(5.8) HmR(u(r0, z), v*(r0, z), ,
ooy Voo, Wo

=0.

which, combined with Lemma 3.1, implies

lim v*(ro, z) = v00, lim w*(ro, z) = w<x>.

Letting z tend to °° in (3.4), we complete the proof. D

In order to prove Proposition 5.1, we prepare some differential (in)equalities.

Lemma 5.2. The solution U=(u, v, w} to (P) satisfies

.
dz o U W o Λ i V

ro{log

Ho Λi W

\ΛΛ R(u(rQy z\ v(rι, z), .. x.., „,,
J(u(r0, z\ v(n, z), w(n, z}}

We can prove this lemma in the same way as the calculation of dΨ(u, u00)/
dz in [7, p. 493].

Lemma 5.3. The solution (u, v, w) to (P) satisfies

1 d II ||2 i II ||? 1 || 112

9 fjy I

λ. (Z I

~o~||t> r||2,

-I- || ||

Proof. Observe that

Moreover r f r / a is bounded near r = 0. Accordingly we have

1 d I, ,,2 / ΓO ,,
y^lkrlk/^^ UzrTUrfdr

rr0 /"r0

= — / Uz(rUr)rfdr~ I UzTUrfrdr
JQ Jo
rr0 rr0 f

= — I Uzrauzfdr— I rauzTUr-^—
Jo Jo ra
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/To /To /

= — / ulafrdr— / (rur)rrur-^Jo Jo ra

Similarly the facts

Vr(l, *)=,<n)=0, Hm =0, ^ r=

=0, =i

and the boundedness of rgr/b, rhr/ c near r = l lead us to the equalities for v and
w. D

Lemma 5.4. Γ/ze solution U to (P) satisfies

-E(DXU\ a, b, ό) + E(DτD*U)<NιE(DxU\ af, bg, ch\

Proof. Differentiate equations for u in (P) with respect to z. Thereby we
have

1 d I , ||2 Γ° , rΓθ ( X ,
~o~~T~\\Uχ\\2;a= I uzrauzzdr= / uz(ruzr)rdr

L UZ JO JO

= — Uz(ro, z)rQ-^R(u(ro, z}, ^*(r0, z\ w*(r0, z))-\\uzr\\2

(in the last equality we have used (ii) of Lemma 3.2). After similar calculations for
v and w, we see that

\ a, 6,

—j^R(u(ro, z\ ^*(r0, z\ w*(r0, z)}.

In view of Lemma 3.5, the right-hand side is bounded from above by

C{uz(r0, z)2 + Vz(rι, z)2+wz(n, z)2}

on (0, oo). Thus we arrive at the conclusion by using Lemma 4.3. D
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Proof of Proposition 5.1. The last inequality immediately follows from
Lemma 4.3, so it suffices to show (5.2). Observe that

(\ogχ-\ogy}(χ-y)>x(χ-y)2 for x, y^(0, xo],

where x = l/Xo. In particular, by choosing

#o=max{sup u(ro, Z)ISUΌ v(n, z)m, sup w(r\, ^)w

z>0 z>Q z>Q

we obtain that

(log u(n, zYv(n, *) -log w(n, *)1 ' ' ' o, z), v(rι, z), w(r\, z))
-wCn, z)*}2_ _

S(u(r0, z), v(n, z\ w(r\, z))J(u(r0, z}, v(n, z), w(n, z))

for z^(0, oo). Here we have used the positivity of S and /. Consequently we can
derive (5.2) from Lemma 5.2, because U is positive and uniformly bounded. D

6. Eigenvalue problem

In this section we will show that the eigenvalues for (EV) are nonnegative and
will characterize the least positive eigenvalue by a quadratic form.

Lemma 6.1. In addition to (A. 1) and (R. 1), assume that MUW>G and Mυw

>0 hold. Then

->00 θR f \ \ A
ΐU=-fa(Uoo, Voo, Woo)>Q,

γ»=dRj w )>0
v dv ' °°'

?W=^ (Uoo, Voo, Woo)<0.
dw '

Proof. By Proposition 2.3 we have

&00>0, #00 >0, ^00 >0.

Combined with R(UOO, v™, Woo) = Q, the identity

no 7 ί-l m -^—(Uoo, Voo, Woo)oR / \_ luίo v™ p/ \ ou
dU °°' °°' °° S(Uoo, Voo, Woo) °°' °°' °° S(Uoo, Voo, Woo)

implies #~>0. Similarly we get R?>0 and Rw<0. D

In the following lemmas dυ and dw denote the positive constants defined by (3.

2).
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Lemma 6.2. For any (u, v, w)^R3 there exists a unique pair (v*,
such that

RL(u, v*, w*).

Proof. It suffices to solve the linear equation

dυRw \fv*\ίυ-dvRSuίl + dvRv dυ

\-dwRv l-

(recall the definition (2.1) of RL}. We see by Lemma 6.1 that

1 + dvRv dvRw poo j τ?°° \ ι .v ~ dwKw > l

so that the above linear equation is uniquely solved. D

We denote v*9 w* corresponding to u, v, w in this lemma by

v* = βL(u, v, w\ w* = γL(u, v, w}.

For simplicity we put

/oo : =j(Uco, Voo, Woo).

Lemma 6.3. It holds that

(i) /oo = 1 + dυRv ~ dwRw > 1,
(ii) RL(u, v*, w*}=J~lRL(u, v, w) for (u, v, w)<ΞR3,

where v* = /3L(u, v, w) and w* = γL(u, v, w).

Proof. Since R(u00j Voo, Woo) = Q, we can see by Lemma 3.1 that

Voo=β(Uoo, Voo, Woo), Woo=γ(Uoo, Voo, Woo).

Thus the definition (3.1) o f / implies the equality in (i). The inequality in (i) is
derived from Lemma 6.1.

Recalling (2.1), we see that

RL(u, v9 w) = RL(u, v*, w*)

v* + θ(v-v*), w* + θ(w-w*))dθ

= RL(u, v*,

The right-hand side is equal to JooRL(u, v*, w*) by virtue of Lemma 6.2.
Consequently we obtain (ii). D
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Using Lemmas 6.2 and 6.3, we can reduce (EV) to an eigenvalue problem for
u, v and w in the same way as the proof of Proposition 3.3 :

Proposition 6.4. Suppose that a set (u, v*, w*, v, w) of smooth and
radially symmetric functions u on ΩQ, v* and w* on Ω*, v and w on Ω\ satisfies
(EV) for a parameter λ. Then (u, v, w} satisfies

in (0, r0),

(EV)'

, ~ Wrr -- Wr~ n

wr(0)=0,

(6.1)

for the same λ. Moreover (v*, w*) is represented by (u, v, w} as

), v*(ro), w*(ro))log—,
" r0'

), f*(r0), ^*(r0))log-— (9« [r0,

Conversely, suppose that a set (u, v, w) of smooth and radially symmetric
functions u on Ωo, v and w on Ω\ satisfies (EV)f for a parameter λ. Then (u, v*,
w*, v, w), where v* and w* are defined by (6.1), satisfies (EV) for the same λ.

We will formulate (EV)' as an eigenvalue problem for a linear operator in
L2r(β) a) X L2τ(Ωι b) X L2r(Ωι c\ Define a linear operator £ with its definition
domain D(£) by

D(£): ={U=(u, v, i ; c)

; c\

£U '• =-
), v(n\ w(n}}\

for u=(u> v'
By Lemma 4.4 we can see that D(£) is well defined and that

X
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Clearly λ is an eigenvalue of £ if and only if there exists a (u, v, w)φ(θ, 0, 0)
satisfying (EV)' for λ. Thus the set of the eigenvalues for (EV) coincides with that
of <£. Moreover the linearization of (P) at (u*>, ίλ», w^ can be represented by the
abstract form

Consequently it is important for us to analyze the spectrum of £.
A remarkable point among properties of £ is the fact that £ is self-adjoint in

L^jQb a) X L2τ(Ωι b) X L2j(Ω\ c) equipped with an appropriate inner product.
We will show this fact.

Let us construct a symmetric bilinear from associated with £. For (u, v, w]

ϊΞD(£) and (u'9 v', wOeCK Qo)xCKώι)2 we have

/ ] — - — r-^-\urardr — —\ (rur)ru'dr= — [ruru']o0 + rurUrdrJo ( ar } Jo Jo
Γr° Y

= I uru'rrdr+-f-RL(u(ro), v(n),
•/O Joo

Γ wrw'rrdr-^RL

Jn HijooCT

Recall the definition (2.1) of RL. Then these three identities lead us to

(62)
=Ru f^Uru'rrdr+^^Rv Γ υrv'rrdr +—(- R$) Γ wrw'rrdrJo mo Jri no Jτι

+^LRL(u(rΰ), v(n\ w(n))RL(u'(r0), v'(n), w'(n)).
J<°

Seeing both the sides, we introduce the following symmetric bilinear forms :

<U, U'>: =Ru Γ'uu'ardr+^-R? Γvv'brdr+^
Jo Mo Jn Ho

for U=(u, υ, w\ U'=(u', v', w')&L%Ά β)xL 2 XA; ^)xL 2 XA; c)

Q(U, U') : =Ru ΓΛUτu'rrdr+—RZ Γ Vrv'rrdr+^-(-R^) Γ wrw'rrdr
Jo nio Jri Ho Jri

+j^RL(u(ro), v(n\ w(n})RL(u'(r0\ v'(n), w'(n))

for U=(u, v, w), U'=(u', υ', w'^HXΆΪxHXΆ)2.

In view of Lemma 6.1, we can define a Hubert space 3€> by L2^Ωo ', a) X L2^Ω\ b)
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xL2τ(Ωι c) equipped with an inner product < , •>. We denote by || HI I the norm
in 36 and abbreviate Q(U, U) to Q(U\ i.e.,

(6.3) \\\U\\\2=Rΐ\\ut*,a+^

for U=(uy v, w}^36 and

e(W)=/?ϊ||wr||i.ί^
fflΰ flθ

(6 4) +^RL(u(r*\ v(n\ w(n)Y
Joo

>0

for U=(u, v, w)^Hϊ(Ά)xHϊ(Ά)2. Clearly the identity (6.2) also holds for (u'9
vr, w')e(Hi(Q>)r\Cr(&))xH}(&)2. Thus we have obtained the following
lemma.

Lemma 6.5. The identity

holds for U*ΞD(£\ U'^(Hϊ(Ά)nCr(&))xHϊ(Ά)2.

Lemma 6.6. The operator £ is self-adjoint and positive semidefinίte in X.
It has a compact resolvent in X.

Proof. Fix an arbitrary element 3 of 36. We see by Lemma 4.3 that < , •>
+ ζ?( , •) is an inner product equivalent to the usual inner product in Hl(Ωo)X

. Hence Riesz' theorem leads us to the fact : there exists a unique element
such that

U'} = <3, Ur> for all U'GHϊ(Ά)xHϊ(&γ.

By virtue of Lemma 4.4, we can show U^D(£)in the standard manner for elliptic
boundary value problems. Thus, with the aid of Lemma 6.5, we get

i.e., the range of /+ £ coincides with 36. On the other hand Lemma 6.5 yields

<£U, U'> = <U

Consequently £ is self-adjoint and positive semidefihite. We can derive the
compactness of resolvents for £ by a standard argument about elliptic differential
operators in a bounded domain. D
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By virtue of this lemma, the spectrum of £ consists of countably many
nonnegative eigenvalues and has no accumulation points. We can see that dim Ker
£ = 2 by the following lemma.

Lemma 6.7. Zero is an eigenvalue of £ and the corresponding eigenspace
consists of constant functions. More precisely,

Ker £ = {sΦι + tΦ2\ s,

with

° -
Proof. We have only to see that U=(u, υ, w)^Ker £ if and only if U is

a constant satisfying RL(u, v, w) = 0. D

On the basis of Lemmas 6.6 and 6.7 we denote the eigenvalues of £ by

j=i,2,3,- with

Since £ is self- adjoint, we have

/y 9 / 9 / \
. 2y | . | 2 * = , ±er i n

Seeing that

<U, Φι>= Γ'uardr+—Γwcrdr }
-70 noJn I x

rl rl \ for 2/=(w, v,
<U, Φ2>=— υbrdr+^ wcrdrl

Mo Jn HQ Jn J

we can easily obtain the following.

Lemma 6.8. For U =(u, v, w)^X the following holds : U -LKer £ in W> if
and only if (u, v, w) satisfies

(Mo) Γ°uardr+— Γwcrdr=— Γvbrdr+— Γwcrdr=Q.
Jo w o Λ i moΛi w o Λ i

Now we are ready to characterize λ+ by Q( ) and ||| | | l

Proposition 6.9. The eigenvalues for (EV) are all nonnegative and the set
of them has no accumulation points. The least positive eigenvalue λ+ is represent-
ed as
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λ+=iΐlf{~ 9 U satisfies (Mo)}.

Proof. Since the set of the eigenvalues for (EV) coincides with that of Jέ, it
suffices to show the latter part. Observe that we can choose < , •> + (?(•, •) as an
inner product in Hϊ(Ωo) X Hr(Ωι)2. Then, by a standard argument about self-
adjoint operators, we can derive

inf U<=(HΪ(&)XHΪ(Ά)2)\Q, U satisfies (Mo)
I 1 1 1 LL ( I )

=inf

(
=inf|

n

n

(see, e.g., Courant-Hilbert [3]). D

7. Proof of Theorem B

As an application of the preceding section, we get the positivity of <?(•)•

Lemma 7.1. // U=(u, v, w}^Hl

r(Ά}xHl

r(Ωι}2 satisfies (Mo), then

λ+\\\U\\\2<Q(U\(7.1)
(7.2)

where K is a positive constant independent of U.

Proof. Proposition 6.9 implies (7.1). We can show (7.2) by using (7.1) and
Lemma 4.3. D

Let (u, v, w) be the solution to (P). Throughout this section we use the
following abbreviations :

' u : = u — UK, v : =v —
U(z): =(u( ,z\ υ( ,z
DgU(z): =(ϊiz( ,z\ Vz(

w : =w —

Since (u, v, w} satisfies (M) for all 2€Ξ[0, oo)5 we have
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(7.3)

Γr° n\ Cl

/ uardrλ / wcrdr
Jo Ho Jn

fro n ri
= / uardrλ / wcrdr — MUw=G,

Jo Ho Jri

-^ Γ vbrdr +-̂  Γ wcrdr
moJn HoJn

=-^- Γ vbrdr + — Γ wcrdr - Mυw=0.
Mo Jri Ho Jri

Hence U(z) satisfies (Mo) for all z^[Q, oo). Moreover, by differentiating (7.3) with
respect to z, we can see that DzU(z) also satisfies (Mo) for all z^(Q, oo). These
facts play an essential role in the proof of Theorem B.

Proposition 7.2. There exists a positive constant N such that

(7.4)
<NQ(U(z)){\ΰ(n, z)\ + \v(n, z)\+\w(n, z)\},

<NQ(D2U(z)){\u(r0, z)\ + \ v(n, , z)\}

for ^e(0, oo).

Proof. Since ||?/(,ε)||<» is bounded on (0, oo), it follows from R(u«,, v«,,
=0 that

(7.5)
R(u(n, z), υ(r\, z), w(n, z)) τ-ir>Li ~ι \ ~/ \ ~r

=

(7.7)

where R(z) is a function of class C°°(0, oo) satisfying

(7.6) \R(z)\<>C{u(ro, z)2+ v(n, z)2+w(n, z)2},

— Ί2('y\<lCΛ(\?ί('V~ -τ\\ Λ-\ rί ( <r <y\\-4-\ ίrι( is yM\j\ \z) -̂  L X \ | z* \ ' o , z)\ t i v \r\, z)\ i i w\r\, z)\]
z

for £^(0, °°)
We will show the first inequality of (7.4). Multiplying both the sides of

a(r}uz=Urr + r~lUr(=r~l(rur)r} by ru and integrating them from 0 to r0, we
have

1 d CTQ fr° Γr°
-7j-—j~ uardr= I uauzrdr= / u(rur)rdrΔ az Jo Jo Jo

ι Γr°
K°— /

Jo
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__ ~/ N R(U(TQ, z), v(r\y z), w(r\, z)} Γ r°-2
u ° J(u(n, z), v(r\, z\ w(n, z)) Jo

= ~ ϊt(ro, z)-γ-RL(ϊί(rQ, z}, v(r\, z), w(r\, z}}— u(r0, z)roR(z)

— I u2

rrdr.
Jo

Accordingly,

1 d \\~\\2 i || rr 112 i ^0_ ~ / ^J?L(?7(^n y\ ?> (<y y\ ίTi(^ 7\\
( A \ f Q y Z)ι\ V ^ V ' O , Z)ι V \Ti, /c/, W\ri, ZJJ

= — rQu(ro, z)R(z).

Similarly we can derive

^n, z)RL(ΰ(r0, z\ v(n, z), w(n,

v(n, z)R(z),nil
*~ II? i II — 112 72θ^*0 —/ \ τ->// —/ \ ~ / \ — ί \\^ I l z c + H^rp γ—w(rι, z)R (u(r0, z), v(n, z), w\r\, z})

w(n, z)R(z).
riΊ

Summing up these three equalities, we get

^=-roRL(u(ro, z\ v(n, z), ίv(n, z)}R(z)

(recall (6.3) and (6.4)). Since U(z) satisfies (Mo), (7.2) holds with U = U(z). Thus,
with the aid of (7.6), we obtain the first inequality of (7.4).

After the differentiation of equations in (P) with respect to z, similar calcula-
tion yields

In view of (7.7) and (7.2), we obtain the second inequality of (7.4). D

Lemma 7.3. There exists a number 6^(0, Λ+) such that

\\l6(z)\\00=O(exD(-λ+z+ez)) as z - »oo.

Proof. The inequality (7.1) holds with U = U(z) and with U=DzU(z],
because U(z) and DzU(z) satisfy (Mo). Then Theorem A and (7.4) lead us to
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as z—»°o

with some ε<0 (use, for instance, Lemma 4.2 with ko=l). Now it suffices to show
that

(7.8)

Applying Lemmas 4.3 and 4.4 to the right-hand side of

fro

u(r, z)= u(rQ, z)~ jr ur(p, z)dρ,

we get

Moreover u satisfies a diffusion equation. Thus we have

\\U\\~<C\\U\\2.,a+\\UZ\\2 a}.

We can derive similar inequalities for v and w. Consequently we obtain (7.8) and
complete the proof. D

Lemma 7.4. ||&(*)||co=O(exp(-λ+*)) as z - >oo.

Proof. We have only to repeat the argument in the proof of Lemma 7.3, using
the fact

as

in place of Theorem A. D

Proof of Theorem B. Using (ii) of Lemma 3.2 and (3.3), we can rewrite (7.5)
as

R(u(r0, z), v*(r0, z), w*(r0, z))=J~1RL(u(r0, z), v(n, z), w(n,

which, combined with (7.6) and Lemma 7.4, implies

(7.9) R(u(r0, z), v*(rQ, z), w*(n, z)) = 0(exp(-λ+z)) as

Hence Lemma 3.1 and (3.3) lead us to

v*(r0, z} — υ«>= v(r\, z) — dvR(u(rQ, z\ v*(n, z), w*(rQ

= 0(exp( — λ+z)) as

Consequently, using (3.4), we obtain from (7.9) that

\\v*( , z) — tΌo||oo=0(exp( — λ+z)) as
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Similarly we can derive the corresponding result for w* so that the proof is

completed. D

8. Proof of Theorem C-(i) L°°-decay of derivatives

In this section we prove that all derivatives of solution converge to 0 uniformly
for r as £—»oo. Using it, we will derive the rates of their convergence in the

succeeding section. First we give some energy estimates for derivatives of solutions.
Here again we use the abbreviation and the energy functionals in §5.

Proposition 8.1. Let k be an integer with k>2. The solution U = (u, υ, w]
to (P) satisfies

k

z-
lU', f, g, ti) + 2E(Dk

zU; af, bg, cti)=

E(Dk

zU\ a, b, c}<Nk{E(Dk

zU', af, bg, cti) + E(DrD
k

zU}}

for £^(0, oo). Here Nk is a positive constant that is independent of z f,g and
h are the weight functions that are given in Proposition 5.1

Dk

zU=(Dk

zu, Dlv, Dtw), DrDk

zU=(DrDk

zu, DrD
k

zv, DrDϊw).

Proof. The inequality immediately follows from Lemma 4.3. To obtain the
equality, differentiate (P) k — \ times with respect to z. Then the same calculation
for DZ~

1U as the proof of Lemma 5.3 leads us to the equality. D

Proposition 8.2. Let k be an integer with k>2. Suppose that DJ

zu(ro, •)>
Dίυ(rι, •), Dίw(n, •) (0</<&-l) are bounded on [1, oo) for the solution U=
(u, v, w) to (P). Then U satisfies

—j-E(DzU a, b,

(8.D dZ

 k

^NkCΣE(DiU; af, bg, ch)+'ΣE(DrDiU)}

for z€=[l, oo). Here Nk is a positive constant that is independent of z.

Proof. After differentiating (P) k times with respect to z, repeat the same
argument as the proof of Lemma 5.4. D

Let φ be a function of class C°°[rι, 1] satisfying
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<l on [n, 1],

l if

.
0 if

For the solution (u, v, w) to (P) we use the abbreviation

137

and introduce three functions

Gu(r, z) : = - , z ) v(n, z) *>(n, z»
J(u(r, z), v(n, z), w{r\, z))'

Γ (r „•). -.5(,Λ m0r0R(u(n, z), v(r, z), w(n,Gv(r, z) . -φ(r)

\ . / , uj

g » rι' g » w.r' * . (r, «)e[rlfro, z), v(r\, z), w(r, z))

We give a priori estimates for Sobolev norms of the solution to (P).

, oo).

Lemma 8.3. For any nonnegative integer i there exists a positive number Li
such that

\\2,Ω^ zt=[l, oo),
^e[l, oo),
^e[l, CXD)

|[ ]|t ,̂  denotes the usual norm in a Sobolev space H/o/ ^—0, 1, 2, •••

0=o, i).

Proof. Since

lGϋ(M, z)=Q9

the function D£v(\x\, z) of x satisfies

'ΛDiv=b(\x\)D!+1v in Ά9

, z}, w(n, z))

Dϊv=DΪGv on Γi,

on /2

for , °°). Hence we get
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by virtue of Agmon-Douglis-Nirenberg [l]. This a priori estimate yields the
conclusion for v. Similarly we obtain the estimates for u and w. D

Now we prove that

\\DrDJzU\\co,Ω0 + \\DrDJzV *|U,βί|( + || .Dr-Dî *!!*,,̂

(° 2) j_llnίnjΛ,ll . j_ll n»'nj-«ll >Q as

for all nonnegative integers 2, j with (i, /)%((), 0) by using Propositions 8.1, 8.2 and
Lemma 8.3.

Proof of (8.2). We divide the proof into three steps.
First we will show that

(8.3)

(8.4) lim(\\Dίu(', z)\\2;a+\\Dίv(', z)\\2.,b+\\Dίw( , z)|U=0
Z-*oo

for k = l, 2, 3, •••. We have already verified them for k = l (see (5.4)). Let us
consider the case k — 2. By virtue of (8.3) and Lemma 3.5 with k = l, we see that
(DzU, Dzv, Dzw] satisfies (4.7). Hence we can derive (8.3) with k=2 from (8.4)
with k = l by using Lemma 4.7. According to Proposition 8.2, we obtain (8.1) with
k = 2 from (8.3) with k<2. Consequently, as an application of Lemma 4.1, we can
derive (8.4) with k = 2 from Propositions 5.1, 8.1 and (8.1) with k = 2. For &>3,
repeat this argument with Lemma 3.5 replaced by Corollary 3.6. Then we can
inductively prove (8.3) and (8.4) for k = 3, 4, 5, ••-.

Next we will show the convergence of Sobolev norms of u, v and w :

(8.5) lim|[Diw( , z)]\i + \[Dίυ( , z)]\i + \[Diw( , z)]\* = 0
Z-*oo

for k=Q, 1, 2, i = l, 2, 3, ••-. Here we denote by |[ ]|, the usual norm in a
Sobolev space Hl(Ωj) (j = 0 or j = l). By Lemma 4.4 we have

which, together with Lemma 4.3, implies

Similar inequalities hold for v and w. Thus we obtain

|
(8.6)

Consequently we get (8.5) with 2 = 1 from (8.4) and Theorem A. Consider the case
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ί=2. Take

u(x, z)= u(\x\, z), v(x, z) = v(n, z), w(x, z)=w(n, z)

in Lemma 4.6. Then it follows from (8.3) that

, iw(n, z)\}.
j=0

As a result, we see by Lemma 4.3 that

o + \[D}v( , z)}\ι%0l + \[Dίw( , z)]\ι.0l}.

Combining this inequality with Lemma 8.3, we get

Similar a priori estimates hold for v and w. Thus we obtain

which implies (8.5) with i = 2. In the case i = 3, use the boundedness for the
//2-norms of D%u, Dίv, Dίίv instead of (8.3). Thereby we can similarly derive
(8.5) with z = 3. Repeating this argument, we can inductively derive (8.5) for / =
4, 5, 6, ••-. Consequently we obtain by Sobolev's lemma that

limQUmV , z)\\~+\\Di Dίv( , z)\\~+\\DiDϊw( , ί)|.)=0
Z-^oo

for all nonnegative integers z, k with (/, k)^(0t 0).
Finally we will show that

(8.8) lim(||zmV( , z)l.+lD'rDϊw*(', 2)||.)=0

for all nonnegative integers z, k with (z, ^)dF(0, 0). Differentiating (3.4) z times
with respect to r, we get

£&*(-, *)|co+|U#H;*( , 2)||oo<Cz |tf(^(n), *), ^*(r0, z), w*(rQ, *))|,
( ' ?(=((\ oo") 7 — 1 9 ^ •••x^^^\U, \~*jj y ^ — _L? ^j? Q?

Accordingly (5.8) yields (8.8) with z>l and k=Q. Differentiate (3.4) z times with
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respect to r and k times with respect to z. Then, using Lemmas 3.4 and 3.5, we

can derive

(8.10) <Citk{\Diu(r0) z)\ + \Dίv(rι, z)\ + \Dίw(rι, z)\}9

*G[1, oo); ι=0, 1, 2, •••; k = l, 2, 3, -.

Consequently we obtain (8.8) with z>0 and k>l. D

9. Proof of Theorem C-(ii) rates of decay

Let (Uj v, w) be the solution to (P). Throughout this section we use the
following abbreviation :

u : — u — Uoo, v \ —υ — Voo, w : =w — w<*>,
U ( z ) : =(u( , z\ ?( , z\ w( , z)\
Dk

zU(z}\ =(Dk

zu( , z}, Dk

zv( y z), Dίw( , z}\

\\DΪU(z)\\~: =||Z)ί«( , 2)|U

where k = l, 2, 3, •••. It is important that DΪU(z) (k = l, 2, 3, — ) satisfy (M0) for
all £^(0, oo). We can see this fact by differentiating (7.3) k times with respect to
z. Consequently the inequalities (7.1) and (7.2) hold with U=D£U(z) (k = l, 2,

3, •••).

Proposition 9.1. Let k be a positive integer. There exists a positive constant
Nk such that

(9.1)
<Nk{\Dk

zΰ(rϋ,

for 2e[l, oo).

Proof. Differentiate (7.5) and each equation of (P) k times with respect to z.
Then a similar argument to the proof of Proposition 7.2 leads us to

= -r0R
L(Dϊΰ(r0, z), Dϊv(n, z), Dϊw(rlt z))-^R(z).

Since ||Z>ί^(^)||oo (J = 0, 1, 2, •••) are bounded on [1, oo), we can easily derive

d" κ/

dz -R(z) 0, z)\2+\Dlv(n, z)\2+\Dίw(n, z)\2}, zf=[\, oo).
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Thus we obtain the conclusion with use of (7.2). D

Proof of Theorem C. We have obtained by Theorem A and (8.2) that

lim{\DSu(r0, z)\ + \Div(n, z)\ + \Diΰ)(rι, z)\}=Q (k=Q, 1, 2, •••).
Z-»oo

By similar arguments to the proofs of Lemmas 7.3 and 7.4, we can derive from (7.
1), (7.4) and (9.1) that

||Z)ί&U)||oo=O(exp(-λ+*)) as z-^^ (k=l, 2, 3, •••)

(use, for instance, Lemma 4.2). Accordingly we obtain from (8.6) that

)̂) as z-^™ (k = Q, 1, 2,

where |[ ]|ι denotes the usual norm in a Sobolev space Hl(Ωj) (J = 0 or / = !).
Recalling that |[β?ί?]|ί, \ [ D S v ] \ f and \[Dίίu]\i (i^2, &>0) are bounded for z£Ξ
[1, oo), we can show in the same manner as the proof of (8.7) that

J=0

for i>2 and k>0. Thus, by induction with respect to z, we can derive

eκΰ-+z as
(ί=2, 3, 4, - k=Q, 1, 2, •••).

Hence we see by Sobolev's lemma that

as 2-+oo

(i=l,2,3, •••; Λ=0, 1,2,-).

On the other hand, in view of (8.9) we get from (7.9) that

||/#t;*||.+||D&;*||.= 0(exp(-/l+2)) as 2-̂ 00 (/=!, 2, 3, -).

Moreover, it follows from (8.10) that

as z-^<χ>

(ί=0,l,2, ; Λ = l , 2 , 3 , -).

Thus we accomplish the proof. D
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