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1. Introduction

Chemical reactions that take place in a bounded domain are often described
by some reaction-diffusion systems with linear boundary conditions. Such kinds of
reaction-diffution systems have been investigated by many reseachers, e.g., Rothe
[16], Feng [4], Hoshino-Yamada [5], and others (see also Ruan [17, Theorem 5.
1]). On the other hand interfacial reactions, i.e., chemical reactions that take place
on the interface between two phases (as oil and water), are often described by
systems of diffusion equations with coupled, nonlinear boundary conditions. Also
some important interfacial reactions in chemical engineering are described by
elliptic-parabolic systems with coupled, nonlinear boundary conditions. Unfortu-
nately it is difficult to deal with coupled, nonlinear boundary conditions by
standard techniques. In fact, not so many fundamental theories are known concern-
ing parabolic systems with non-monotonous, coupled, nonlinear boundary condi-
tions. Recently, surmounting these difficulties, several mathematicians have inves-
tigated some systems of 1-dimensional diffusion equations with nonlinear bound-
ary conditions that are related to interfacial reactions (see Yamada-Yotsutani [19],
Shinomiya [18], Nagasawa [15], Iida-Yamada-Yotsutani [7], [8], [9], Iida-
Yamada-Yanagida-Yotsutani [11], Iida-Ninomiya [6]; see also [17] and the
references therein). As for elliptic-parabolic systems related to interfacial reactions,
however, there seems to have been no investigations except Yotsutani [21], in
which the existence and uniqueness of solutions are shown. The present paper is
a first trial to construct a fundamental theory on asymptotic behavior of solutions
to such an elliptic-parabolic system with coupled, nonlinear boundary conditions.

Let 7, 71 be given numbers with 0<7,<# <1, and put

Q={xER’; |x|<n), Li={xER?; |xl=n),
=(xER*; n<lxl<n),  L=(xER*; |xl=n),
Q={(xER*; n<lx|<1}, L={x€R*; |x|=1},

2=00U8:U L
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Q,

(parabolic)

Fig.1 Domain 2

(see Fig. 1). We will consider an elliptic-parabolic system in a cylindrical domain
2x%(0, ) :

dxu—a(|x|)u=0, (x, 2)E82,%x(0, ),
dxw*=0, dxw*=0, (x, 2)E 8« X (0, ),
A —b(|x])v:=0, dew— c(|x])w==0, (x, 2)E 2% (0, ),

where 4 denotes Laplacian with respect to x=(x1, x2). The coefficient a(|x|) is
positive in £ and vanishes on I5; the coefficients 5(|x|), c(|x|) are positive in £
and vanishes on I1U I The unknown functions %, v*, w*, v and w are related
to one another by the following boundary conditions. Let v; be the outward
normal unit vector on a circle I and 8/dv; the derivative in the direction of v; (J
=0, 1, 2). On I3X(0, o) we impose

*
aa“,jo =—noR(u, v*, w*),

*
——0=R(u, V¥, w¥), %=moR(u, v¥, w¥),

where R(u, v*, w*) is a nonlinear function and 7, %o are positive constants. On
I71%x(0, o) we impose

v¥*=v, w¥*=w,
ov* —m ov ow* — ow
o1 You’ o1 Yon’

where m, and 7. are positive constants. On 13X (0, ©©) we impose homogeneous
Neumann conditions :
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v _ a_wzo
oV > e ’
At 2=0 we impose
u(x, 0)=wuo(|x|)=0, TE D,
v(x, 0)=wo(|x]) =0, w(x, 0)=wo(|x[)=0, xEQ,

where uo, vo and wo are given radially symmetric functions.

.~ reaction

aqueous phase

organic phase

Fig.2 Chemical situation

This boundary value problem was proposed by Yoshizuka-Kondo-Nakashio
[20] as a chemical model. It describes some interfacial reactions that take place in
a membrane extractor using a hollow fiber (see Fig. 2). In their model, # denotes
the concentration of the metallic reactant A in the aqueous solution flowing
through £, (0, ) ; v (resp. w) denotes that of the organic reactant B (resp. the
product AB:) in the organic solution flowing through £ X (0, ) ; v* (resp. w*)
denotes that of B (resp. AB:) permeating through the hollow fiber £2s X (0, 0).
Since the hollow fiber is hydrophobic, the interface between the aqueous and
organic phases in £ X (0, o) is the inner surface of the fiber (15X (0, ©)). Thus a
chemical reaction such as A+2B2ADB; takes place only on the interface oX
(0, ). 1In order to see the essential effect of the interfacial reaction on the
extraction of A by B from the aqueous phase, they considered a simple situation :
the reaction has attained a stationary state ; the streams through £ X (0, o) and £
%X (0, c©) have become laminar flow. In this situation they derived the boundary
value problem stated above. In their model a(7»), b(7), c(») and R(u, v, w) are
given by
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a(r)=alré—7r?),

b(r)= bo{l —r2—(1- rf)%},

(1.1 c(r)=co{1—rz—(1—7’12)1{2—§::1—},

u’’—w
R(u, v, w)—m,
where ao, bo, Co, S1, S2 are positive constants and »=|x| (cf. [20]).
If we restrict our attention to solutions that are radially symmetric with respect
to x, then the boundary value problem is reduced to the following system on [0, 1]
X [0, o) for u(r, z) (0<7<n), v*(7, 2) and w*(7, 2) (P<r<n), v(r, z) and
w(r, z2) (n<r<1):

a(rYu=ur+Lur, (7, 2)€(0, 70)x(0, ),
vh Lot =wh+Lwr=o, (7, 2)E(r, 7)X (0, ),
b(?’)i)z Vrrt+— L 'l)r, C(?’)U)z Wrrt+— L wr, (7, 2)6(1"1, I)X(O, OO)’
u(0, 2)=0, z2E€(0, o),
(EP) —ur(7o, z)——l—vr(ro, z)———”iwr(ro, z)
= R(u(7, Z), v*(no, 2), w*(ro, 2)), z2&€(0, o),
v*(n, 2)=v(n, z), w*(n, 2)=w(n, 2), z€(0, o),
vi(n, 2)=mv(n, 2), wi(n, 2)=mw-(n, z), z€(0, ),
v-(1, 2)=w,(1, 2)=0, z2€(0, ©) ;
u(r, 0)=wuo(r)=0, r€(0, 7o),
(7, 0)=vo(7)=0, w(r, 0)=wo(7)=0, re(r, 1).

As to this system, Yotsutani [21] has shown the existence and uniqueness of a
nonnegative global solution in the framework of Sobolev spaces. Moreover it can
be shown that the solution is actually of class C* up to the boundary by developing
the method of [21]. The detail will be announced in lida-Yamada-Yotsutani [10].

The aim of the present paper is to investigate the asymptotic behavior of the
solution as z—c0. From chemical viewpoint, it is expected that the reaction
approaches a chemical equilibrium as z increases. We will show that the solution
to (EP) actually converges to an equilibrium as z—° and will give the rates of the
convergence.

The nonlinear parts of our boundary conditions are essentially in the same
form as those of the boundary conditions that are treated in the recent works ([19],
(7], [11]) by a group including the author. However, our system (EP) is quite
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different from theirs in the following sense : in their 3-component parabolic system
for #, v and w, u is explicitly associated with v and w by nonlinear boundary
conditions ; in our 5-component elliptic-parabolic system for #, v*, w*, v and w,
u is only implicitly related to v and w through v* and w™ (see Fig. 1). Therefore
we must solve the elliptic equations for »* and w* with nonlinearly coupled
boundary conditions in order to understand the interaction among %, v and w.
This fact makes our analysis more complicated than theirs. Fortunately the
equations for v* and w* can be solved explicitly. Hence (EP) is reduced to a
parabolic system for %, v and w with nonlinear boundary conditions (see §3).
Nevertheless, this system is not easy to analyze. The main difficulties come from the
following facts : the nonlinear terms in the reduced boundary conditions are much
more complicated than those of the original boundary conditions; comparison
principle dose not hold ; the principal eigenvalue of the linearized operator at an
equilibrium is always zero. To overcome such difficulties we employ some devices
such as to make use of the fact that R(«, v, w) is “component-wise monotonous”
in respective components (see (R.2) of §2), to introduce a Lyapunov function
fitting in with the nonlinearity peculiar to chemical reactions, to construct infinite
number of energy inequalities systematically, and to take advantage of “mass-
conservation” law (see Proposition 2.2).

The organization of this paper is as follows. In the next section we state our
main results with the assumptions for a(#»), b(7), c¢(#) and R(%, v, w). In §3 we
reduce the elliptic-parabolic system (EP) to a parabolic system (P). This reduction
is the basis of the whole argument in the subsequent sections. In §4 we give
fundamental lemmas that are useful throughout the paper. In §5 we give a
Lyapunov function together with several energy functionals and derive differential
inequalities for them. Those inequalities imply the uniform convergence on 2 of
the solution to an equilibrium. We devote §6 to the spectral analysis for the
linearized operator. Applying the results of §6, we seek the optimal rate of the
uniform convergence of the solution in §7. Moreover, in §§8 and 9 we give the
optimal rates of decay for all derivatives of the solution by constructing infinite
number of energy inequalities.

NOTATION

Let 7 be one of the subscripts 0, * and 1. Throughout the paper we denote
by CH2:) (resp. L¥(£:), -+, etc.) the subspace of radially symmetric functions that
belong to C*(£2;:) (resp. L*(£:), -+, etc.). We also use some weighted L’-spaces.
For a nonnegative function wE L)(£;), L¥L:; w) is the Hilbert space of radially
symmetric functions ¢ on £; satisfying

f:an(r)zw(r)rdr < oo,

where
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(20, 70)=(0, r), (2, 74)=(r0, M), (za, 71)=(1, 1).

We use the following symbols to represent various norms of a radially symmetric
function ¢ on £2::

I8o=Ndlea: ={ [ 16 Nrar}” a=p<eo)
|#le=lllw.0.: =ess sup|e(r)],

ri<r

[le: o= Bl : 2{/: ¢(7’)2w(7’)m’r}1/2

When we use high order differential operators, we sometimes abbreviate them as

pi=(). 2i=(5,).

where % is a positive integer.

2. Main results

Throughout the paper we assume the following conditions on a(7), b(#), ¢(r)
and R(u, v, w):

a(|x])E C=(2s), a(7)>0 on [0, 7),
(A. 1) {b6(x))eC=(2), b(»)>0 on (7, 1),
c(lx)e C=(2.), c(#)>0 on (1, 1).

(A.2) There exists a constant do>0 such that

a(r) : b(7) : c(7)
A Gy -0 lm =y >0 dim 6 =y >0

(R.1) There exist an open subset O of R® and a positive function S(u, v, w)E
C=(0O) such that

OD[—as, 65] U[O 00)3

R(u, v, w)=§(20;u;)) on O,

where Js is a positive number and /, m, % are positive integers.

(R.2) %’;i(u, v, w)=0, 22 (4 v, w)<0 for every (u, v, w)E[0, ).

’ 8w
(R.3) There exists a positive constant Cr such that

max{—u**"'R(u, v, w), —v**'R(u, v, w), w?**R(u, v, w)}
< Cr(u? + v+ w™)
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for all (%, v, w)E[0, ©)® and p<[1, ).

Clearly the functions a(7), 6(#»), c¢(r) and R(u, v, w) given by (1.1) satisfy
these conditions. For the boundary data (o, vo, wo) we put

To n 1
Muw =f woardr +—= | wocrdr,
0 No Jr1

1 1

m n

Myw: = 1/ vobrdr+——1/ wocrdr .
WMo Jry No Jr

For the subsequent arguments, we summarize fundamental facts. The following
two propositions are essentially obtained in [21] (see also [10]).

Proposition 2.1. In addition to (A.1), (A.2), (R.1), (R.2) and (R.3),
assume that (uo, vo, wo) satisfies

uOELm(O, 7/0), uOZO in (0) 7/0)3
vo, WeEL™(1r1, 1), v6=0, wo=0 in (1, 1).

Then the boundary value problem (EP) has a unique nonnegative solution(u, v*,
w*, v, w)E C™([0, 70]x(0, )X C*([r, 71]x(0, 2))*x C*([71, 1]1x(0, o))
satisfying the boundary condition at z=0 in L*-sense, i.e.,

1213’1{"71(, 2)— tholz.20+[|0(+, 2)—volla,.0, +w(+, 2)— woll2,0,}=0.

Moreover the solution is bounded uniformly with respect to z and its positivity is
determined by that of Muw, Mww in the following way :

(>0 on [0, 7o) X(0, 00), v*>0, w*>0 on [, 71]Xx(0, ),
v>0, w>0 on [, 1]1X(0, ©) if Muw>0 and Mww>0;

u>0 on [0, 7] X (0, ), v*¥*=w*=0 on [, r1]x(0, ),

4 v=w=0 on [, 1]1X(0, ©) if Muw>0 and Myw=0,

u=0 on [0, 7]X%(0, ), v*>0, w*=0 on [, r]Xx(0, ),

v>0, w=0 on [, 1]1X(0, ) if Muw=0 and Muw>0;

u=0 on [0, 7] % (0, ), v*=w*=0 on [, r]x(0, ),
v=w=0 on [, 1]X(0, ) if Muw=0 and My,=0.

The solution satisfies the law of “mass-conservation.” Precisely the following
holds.

Proposition 2.2. Let (u, v*, w*, v, w) be a solution to (EP). Then (u, v,
w) satisfies
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-[).rou(r, z)a(r)rdr-i——z—;— le(r, 2)c(7)rdr =Muw,
(M) ‘

m [ ! —
o /;1 (v, 2)b(»)rdr+ o s w(r, 2)c(r)rdr =Muw

for zE€[0, o0).

Consider an “equilibrium” for (EP), i.e., a solution that is independent of z.
It is easy to see that an equilibrium for (EP) should be a set (#w, Ve, Weo, Veo, Weo)
of constant functions if it exists. As for the equilibrium to which the solution of
(EP) converges as 2—°, we should take Proposition 2.2 and the nonnegativity of
the solution into consideration. Then the constants #«, V= and we should satisfy

U0=20, V=0, We=0,
R(Ueo, Vo, Wee)=0,

(EP..) |l g0ttt Hlclh 0100 =M,

%”b"hgl Uw+%||0||1,91 woo:Muw.

We can see the following by Theorem 2 in [7].

Proposition 2.3. Suppose that (A.1) and (R. 1) hold. Then, for each pair
(Muw, Myw) of nonnegative numbers, there exists a unique solution (U, Ve, Weo)
to (EP,). More precisely,

Us>0, V>0 and we>0 if Muw>0 and Myw>0;
_ 1 ro s —q.
u‘”—m./; wardr >0, Vo=we=0 if Muw>0 and Muww=0;

1
v”:-ﬂfﬂllT[ vobrdr >0, Us=w=0 if qu=0 and Myw>0;
Ueo™ Vo= Woeo =0 if Muw=0 and My,=0.

Now let us consider the asymptotic behavior of solutions as 2—00. When Muw
=0 or M»»=0, we can easily obtain the asymptotic behavior from Proposition 2.
1. For instance, we briefly explain the case Muw=0< Mupw. Since #=0, w*=0 and
w=0, v* and v satisfies
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v;",+irv;"=0, (7, 2)E(ro, 1) %(0, ),
b(r)vzzvrr'i'_];vr, (ry 2)6(7’1, I)X(O, OO),
1vE(r, 2)=0, z2€(0, o),
v¥(n, 2)=v(n, 2), v¥(n, 2)=mov.(n, z), z2€(0, ),
v,(1, 2)=0, z2€(0, ) ;
Lo(7, 0)=uwo(7)=0, re(n, 1).
Hence

v*(r, 2)=v(n, 2) for (r, 2)E[r, n]x(0, =),
and v satisfies a linear diffusion equation with homogeneous Neumann boundary

condition. Then the standard Energy Method leads us to

1
”v(-, z)—-“?”ll—';A vobra’r“w,m=O(exp(—/hz)) as 2—0,
where A is the least positive eigenvalue for

{_Urr_irvrzllb(7)v in (71, 1),
v-(r)=0v-(1)=0.
For this reason, here and hereafter we will consider only the case Mu, >0 and

My >0.

Theorem A. [In addition to (A.1), (A.2), (R.1), (R.2) and (R.3), assume
that Muw>0 and Myw>0 hold. Let (u, v*, w*, v, w) be the solution to (EP) and
(%o, Voo, Weo) the solution to (EP.). Then

u(s, 2 teo uniformly on
v*(, 20w, w*(*, 2——ww uniformly on 2x; as z——0,
v(+, 20, w(*, 2——ww uniformly on

To investigate the behavior of solutions near the equilibrium we will study the
linearization of (EP) at (%, Ve, Ww, Ve, We=) from spectral analysis. For (#, v, w)
ER? we set

2.1 RY(u, v, w)=Ryu+R3v+Ryw

with

w_ OR w_ OR w_ OR
Ru— au (uoo, voo, w.»), Rv— av (ueo, veo, w:»), Rw aw(uoo, er, Ww).



108 M. lIDA

We introduce an eigenvalue problem associated with the linearization of (EP) at
(oo, Voo, Weo, Voo, Wew). It is a linear boundary value problem for a set (u, v*, w*
v, w) of radially symmetric functions % on 2o, v* and w* on Q«, v and w on .Ql
with a parameter A:

—u,r—irur=/1a(r)u in (0, 7o),

- Z)rr_irv;'k_ - w;"r—irw;"=0 in (VO’ 7’1),

-Urr‘iyvrzlib(r)v, _Wrr_iwaz/lc(r)w in (7, 1);
(EV)

ur(0)=0,

—ur(ro)=—vr(ro)———u/r(ro) R*(u(r), v*(70), w*(70)),

v*(71)=v(7’1), W*(h)—wm),

v¥(n)=mv(n), wi(n)=mw-(n),

v-(1)=w-(1)=0.

We say that a number A is an eigenvalue for (EV) when there exists a set (u, v*,
w*, v, w)*(0, 0, 0, 0, 0) of radially symmetric functions satisfying (EV). We will
prove the following proposition in §6.

Proposition 2.4. In addition to (A.1) and (R. 1), assume that Mu,>0 and
Muyw>0 hold. Then there exist countably many eigenvalues for (EV). They are
all nonnegative, and the set of them has no accumulation points.

As will be seen in §6, an eigenvalue zero for (EV) always appears. This fact
seems to make our analysis complicated. But we can get rid of this difficulty by
virtue of Proposition 2.2. Indeed, in an appropriate Hilbert space, the solution
moves in the direction normal to the eigenspace corresponding to the eigenvalue
zero (see §86, 7). Thus the least positive eigenvalue for (EV) plays an important
role in the local behavior of solutions near the equilibrium.

Theorem B. Under the same assumption as that of Theorem A, the
solution (u, v*, w*, v, w) to (EP) satisfies

loe(+, 2) = theollo, 20+ 0*(+, 2) = Veslloo, 00 |0 * (4, 2) = Wee|lw, 2.
+Ho(+, 2)= veollw,or +w(+, 2) = Weollw,0,= Oexp(—A:+2))  as z——0,

where Ay is the least positive eigenvalue for (EV).

Moreover the solution converges in a much stronger sense than in Theorems A
and B.
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Theorem C. Under the same assumption as that of Theorem A, the

derivatives of the solution to (EP) decay like

|DiDiu(+, 2)lw,00+ 1 DiDi* (¢, 2)|w, 00+ DiDIW*(+, 2)|ec.
+DiDv(+, 2)|w0, I DiDiw(s, 2)||w 0, = Olexp(—A+2)) as z——,

where A+ is the least positive eigenvalue for (EV) and i, j are arbitrary non-

negative integers with (7, 7)=(0, 0).

REMARK. It also holds that

(2.2) |DiDiDX(u — thoo)||oo,00= O(exp(—A+2))  as z——0
(=0, j =0, £>0),

where

x=(n, WEQ; Dy=m— (p=1,2)

In fact, as shown in §9, it holds that
[DE(u—ux)]:=0(exp(—A:2))  as z——0 (i>1, £>0),
where |[+]|: denotes the usual norm in a Sobolev space H(£,). Needless to say,

Theorems B and C imply the corresponding result for v* (w*, v or w) to (2.2).

In what follows, the symbols C; Co, Ci, ***; Coo, Coa, ***, Cro, Ci,1, =+, etc.
denote positive constants that are independent of z unless otherwise stated. For
simplicity, we sometimes denote several different constants by one of them if there
is no confusion.

3. Reduction to a parabolic system

In this section we only impose (R. 1) and (R. 2).

Lemma 3.1. Let d» and dw be given positive numbers. For any (u, v, w)
€[0, o©)® there exists a unique pair (v*, w*)E[0, ©)* such that

{v=v*+dvR(u, v*, w¥),
w=w*—duR(u, v*, w*).

Moreover the implicit functions v*=p(u, v, w) and w*=y(u, v, w) defined by
this relation are of class C([0, ©)?).

Proof. Let u#, v and w be any nonnegative numbers. The given relation is
equivalent to
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* *

v* | w
{dv+dw do
v¥*—v+doR(u, v*, w*)=0.

For this reason, we eliminate w™ and consider the following equation for v*:

ok Ao/, . %)
F(o*): =0* v—l—dvR(u, v*, w+ 4, ))—

It is easy to see from (R. 1) and (R.2) that

F(O)Z—v+dvR<u, 0, w+ dy v>£0,

dy
Z: ) Z:w+dvR<u U+Z,l:

F’(5)=1+a’v%<u, g, w+@(v—é)> dws gR<u, g, w+g,—:’(v—é)>

F<v+ w, 0)20,

>1 for 56[0 v+gv ]

Thus the equation F(2*)=0 has a unique solution v*€[0, v+ dvw/dw]. Conse-
quently there exists a unique pair (v*, w*)E[O, 00)? satisfying the given relation.
The regularity of 8 and 7y is shown by Implicit Function Theorem. []

Let us introduce a function J(%, v, w) that plays an essential role in the
reduction of (EP) to a parabolic system :

T, v, w): =1+d, olg—f(u, Ov+(1—0)0*, Ow+(1—0)w*)do

(3.1)
—dw[(‘g—ﬁ(u, Ov+(1—0)v*, Guw+(1—0)w*)do,

where d», dw are the constants in Lemma 3.1 and v*=4(u, v, w), w*=y(u, v, w).

Lemma 3.2. The function J(u, v, w) satisfies the following for (u, v, w)E
[0, 00)*:

i) J(u, v, w)=1,
(i) R(u, v*, w*)=J(u, v, w)'R(u, v, w),

where v¥*=p(u, v, w) and w*=y(u, v, w).

Proof. Since u, v, w, v* and w™* are nonnegative, (i) follows from (R. 2) and
(3.1). Observe that

R(u, v, w)=R(u, v* *)+f —=R(u, v¥*+ 0(v—20*), w*+ 0(w—w*))db
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=R(u, v*, w*)+(v— v*)f ——(u, Qv+(1—0)v*, w+(1—8)w*)do
+w— w*)/ —(u, Qv+1—0)v*, w+(1—80)w*)db.

The right-hand side equals J(%, v, w)R(u, v*, w*) by virtue of Lemma 3.1. Thus
we get (ii). J

Here and hereafter we set
(3.2) dv=moro10g(71/70), dw=nore log(r1/ 7).

Now we are ready to reduce the elliptic-parabolic system (EP) to a parabolic system

(P).

Proposition 3.3. Let (u, v*, w* v, w) be a solution to (EP). Then the
po

following relation holds between (v*, w*) and (u, v, w):

{v*(ro, 2)=pB(u(ro, 2), v(n, z), w(r, z)),

3.3) w*(ro, 2)=1(u(ro, 2), v(r, 2), w(n, 2)),

2€(0, 00),
Moreover, (v*, w*) satisfies

v¥(7, 2)=0v*(r, 2)+moroR(u(r, 2), v*(r, 2), w*(7, z))logr_'o,
S {W*(r, 2)=w*(ro, )= noroR(u(ro, 2), v*(70, 2), w*(ro, 2))logz
on [r, n]%x(0, ), and (u, v, w) does
Cl(?’)uz Urr+— 1 ur for (rv Z)E(O, 7"O)X(Oy OO)’

() vz=vp+— 1 SUr, c(r)wz=wr+— 1 W for (r, 2)E(r, 1)X(0, ©);

ur(o Z)=0
P) 1 “‘ur(TO, Z)_ Moo vr(rl, Z)__ Z;:;

_ R(u(n, 2), v(n, 2), w(n, 2))
— J(u(n, 2), v(n, 2), w(n, 2))°

wr(n, 2)

vr(1, 2)=w-(1, 2)=0 for 2&(0, o) ;
u(r, 0)=1wuo(r) for »<(0, 7o),
Lo(r, 0)=vo(7), w(7, 0)=wo(r) for r&(m, 1).

Conversely, let (u, v, w) be a solution to (P), and let (v*, w*) be defined by (3.
3) and (3.4). Then (u, v*, w*, v, w) satisfies (EP).
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Proof. Suppose that (%, v*, w*, v, w) is a solution to (EP). A radially
symmetric solution v*(+, 2) of the 2-dimensional Laplace equation satisfies (#v7)r
=0 for z€(0, ).  Hence we have

(3.5) rE(r, 2)=moroR(u(ro, 2), v¥(%0, 2), w*(7o, 2)), (r, 2)E[ro, 1] X (0, ),

which implies the first equality of (3.4). We also see that

7 — 7’11)r(7’1, Z) _ * *

p— vr(n, 2) T R(u(ro, 2), v*(ro, 2), w*(7o, 2))

by (3.5). Similarly we can derive the corresponding results for w*. Since v(r, 2)
=9*(n, 2) and w(r, z)=w*(r, z), we obtain (3.3) from (3.2) and (3.4) by virtue
of Lemma 3.1. Then Lemma 3.2 leads us to

Rlu(n, 2), v(n, z), w(n, 2))
J(u(r, 2), v(n, 2), w(n, z2))°

R(u(ro, 2), v*(ro, 2), w*(ro, 2))=
Thus (%, v, w) satisfies (P). The converse is easily verified. [

The following lemmas will be useful when we derive several estimates for
derivatives of solutions.

Lemma 3.4. Let k be a positive integer. For a function (u, v, w)=(u(z),
v(2), w(z))€ C*([1, ) ; [0, ©©)°) put

v*(2): =B(u(2), v(2), w(z), w*(z): =r(u(z), v(z), w(z)).

Suppose that (d/dz)’u, (d/dz)yv and (d/dzyw are bounded on [1, ) (0<;<
k—1). Then it holds that

Ld** | [ d* 0" | &(| ], |d] | dw]
[ s = B[ |) on [1, ).

where By is a positive constant independent of z.

Proof. We have

dv*zaﬂdu+8,8dv+8,6’dw
dz ou dz O0vdz ow dz’

Differentiate both the sides £#—1 times with respect to z by using Leibniz’ formula.
Then we get

dkl)* _k21< ){ d.l /8,8\a’” J dj /ﬁ\ dk—jv+ dj /ﬁ\d”’jw}
dz" A\ j )dZ\ou) dzF7 T dZ\ov) dzF 7 T dZ\ow ) d2F 7 )

Since S C=([0, )?), the derivatives (d/dz)(68/ou), (d/dz)’(38/dv) and (d/
dz)(0B8/0w) (0<j<k—1) are bounded on [1, ). Thus
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|d’u|_ |d’v| |d'w|
C'zzi(| & Taz | a |)~

d*v*
dz*

We can obtain a similar inequality for w*(z). [J

Lemma 3.5. Let k be a positive integer and let u(z), v(z), w(z), v*(2),
w*(z) be the functions that satisfy the conditions in Lemma 3.4. Then it holds
that

| dPu| | d’v ldjw|>
<BA([ GG HG]) e,

where B, is a positive constant independent of z.

k
%k—R(u, v*, w*)

Proof. An application of Leibniz’ formula to

*
%R(u, v w*)za—R(u, v* ) +QE— u, v*, w*)dL

dz
oR
+7u7 u, v* *) a’z
leads us to
A kE—1\( d’ [ 6R d*"u
Lttt o B o,

oR d*p*
+E<W“ vt W*>>——dzk—f

B )

It follows from Lemma 3.1 that
vt wr v

dv dw do
which implies the boundedness of v* and w* on [1, ©). Thus, with the aid of
Lemma 3.4, we see that

g—;(—%%(u, v*, w*)), Z"zj (—%Ig- u, v* w*)), %(%Iu% u, v¥ *))

(0£j£k—-1)

w

+ T,

are bounded on [1, ). Consequently we obtain

| @], |dv|, | dw”|
Rt o wi|< B [ |+ [ ). ==t =)

Applying Lemma 3.4 to the right-hand side of this inequality, we can obtain the
conclusion. [
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Corollary 3.6. Let k be an integer with k=2 and let u(2), v(z), w(z)

*(2), w*(2) be the functions that satisfy the conditions in Lemma 3.4. Then it
holds that

where B, is a positive constant independent of z.

4. Lemmas

In this section we prepare fundamental lemmas that will be used in the proofs
of Theorems later.

Lemma 4.1. For a positive integer ko, let {pe(D}ozkzr 1D #(2)h1<k2h
{gx(2}o<r<is {T(2)}oss<u-1 be sequences of nonnegative functions of class
1

C'[1, c©) and let si(z) be a nonnegative function of class C[1, ). Suppose that

dbo

E‘i‘(]o‘}‘soﬁo,
daé]zo ‘f‘fl— 1 (]0,
632‘1’ 13—(_51‘*‘(10),
LDt 5us (B D+ B0 (=2, )
?k k<_(2 §J+ZQJ) (k=2y '“y kO),
2
£7(,§1 25]'+j§)qj) (k=1, 2, =+, ko)

for zE[1, o), where 7 is a positive constant

{ ./1 " sodz < 00,

Ll_l:g [)k(Z)=0 (k:]., 2, L ko)

Then

For the proof see [8, Lemma 3.2].

Lemma 4.2. For a positive integer ko, let {pr(2)}i<i<n be a sequence of
nonnegative functions of class C'[Z, ) and let {qx(2)}ocr<r, {02(2)}o<e<s be

sequences of nonnegative functions of class C[Z, o). Suppose that
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o : =suplow(z); 0<k<ky, z>37}<1,

Dr 1 4,< 03 a5 zE€[Zz, )

dz =0 » Tl

AP =<qn, z€[z, o)
for k=0, 1, -, ko, where A is a positive constant. Then

px(2)=0(exp(— A2))  as z—o (k=0, 1, -, ko).
Here A<(0, A) is an appropriate constant such that A /A depends only on p.
Moreover, if px(z)ELY(Z, ) (k=0, 1, -, ko), then we can choose A as A.
For the proof see [11, Lemmas 3.2, 3.3].
Lemma 4.3. Set i=0 or i=1. Let a function o< L{£;) be positive almost
everywhere in ;. Then, for any €>0 there exists a positive number K such that

u( Vi)zé 6" u7||%,91+K€” u"%.ﬂ-;w,
" u"%»QI é e” u?‘"%,gi + Ke" u”% Qi

for all ue H}(L,).

Proof. We will show the inequalities for 7=0 (the proof for 7=1 is easier).
Fix any number 8€(0, 7/2). For p, 0’€(0, 7] we have

— o+ [
u(e)=uo)+ [~ u )7 ar.
Applying Schwarz’ inequality to the right-hand side, we get

'/:u?rdrl.

Multiply both the sides by w(0")p” and integrate them with respect to o’ over [p
—30, p] for pE(70/2, 7). Then we get

u(p)ZSZu(p’)z—i-Z‘log ::,‘

4 14
u(p)z‘/;_scurdr£2Huﬂﬁ,g;w+2 log pfb‘ /p_aa)rdrllurllg,go.

Hence

u(p)zsc%llullia;ﬁﬂog pfallurllioo, 06(%, Vo],

where

o
Cs: = min wrdr >0.
8<p<nJp—8

In particular, we get the first inequality in this lemma by putting
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o=r and €=2log 70126"

Similarly we can derive

w(oP<Eult o+ 2108252 ur ko, 0(0, 2]

Consequently we have

A u pdpS ||u||zg, ot 2|3, "°{£ o log2 a’p-l—/ plog 6a’p}

Observing that

T0/2 p_|_ 6 . 70/2 P+8L
e log a’p—/ pf a’m’p

_/- /pdpdr—l—/r 2] i spdpdr [ro/2+si r:/zpdpdr,

v

we can find a positive constant C satisfying

T0/2

ptd o o
o log dp+[o/2p log—£-5do< C

for 8&(0, 7/2). Thus we obtain the second inequality in this lemma by putting
e=2C¢6. [

Lemma 4.4. Set i=0or i=1. Let u be a radially symmetric function on $2;.
Suppose that

uELZZOC(-Qi), Auzurr-i—lrurELzr(.Qi).
Then us HXQ:)NCH ;). Moreover, if i=0, then
o
@1) uoP < [ 1aulrdr, o<I0, rl;
if i=1 and if u-(1)=0, then

rdr, p€[n,1].

(42) ur(p)?< 12 0

Proof. For simplicity we define 7; and 7: (=0, 1) by
(r0, 70)=(0, n), (r1, 71)=(m, 1).

Since # and du belong to L%c(£2:), the regularity theory for elliptic equations
leads us to the fact u(|x|)E Hc(£2:), which yields ru,(r)E L' (p, p) with 7:< p<
© < 7: On the other hand, we have (7u,),=7r4duE L(r;, 7:). Hence
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o ur( ﬁ)—gur(g)=ﬁrdudr, 7:i<p<p< 7.
I

In view of du& L Q;), we can derive from this equality that

CX0, 7o) if =0,

(@.3) ”(’)E{cl[n, 11 ifi=1

Consider the case 7=1 under the condition #%-(1)=0. Letting p tend to 1 and
using Schwarz’ inequality, we get

2
Qzur(ﬁ)zsfﬁra’rfﬁldulzrdr=l 23 fgldulzm’r,

which implies (4.2).
Now we consider the case 7=0. We will show (4.1) and

(4.4) lim 2,(7)=0.

Observing 7u-(r)= L0, ), we can see that 7u-(7) is abosolutely continuous on
[0, 7o] and satisfies

lim ru(r)=n,
4.5) o o
pur(p)=77+'/0‘ (rur)ra’7=7)+/°. rdudr, p<(0, 7]
for a number 7. Suppose that 7>0. Then we have

7
ur(V)Z 27 TE(O, 6)
for some 0<(0, 7). Since u(7)= C*(0, 7], we see that
0 0

u(p)— u(e)=/; urdr 2%'/; d—: 0<e<p<9.

The right-hand side of the inequality tends to ©© as é—0. This contradicts the fact

uS Ho(82:)C C(8). Similarly 7<0 implies contradiction. Therefore (4.5) is
rewritten as

o
pur(p)=£ rdudr, o0<(0, 7).
By virtue of Schwarz’ inequality, we have
2 2 e f 2 Pz ? 2
o’ ur(p) =_£ rdrfo | du| rdr=7£ |[dulPrdr, p<(0, 7o),

which implies (4.1) and (4.4).
To conclude the proof, we verify the regularity of # in both the cases =0, 1.
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It follows from (4.3) and (4.4) that v & CH ;). Moreover, the boundary values of
u(|x]) on 02: equal a constant or two constants. Thus we can see that # < H(£2;)
by the regularity theory for elliptic boundary value problems. []

Lemma 4.5. Let I be a closed interval in R with I1=0; Q2 an open subset
of R? with smooth boundary ; F(£) a sufficiently smooth function on I with F(0)
=0; u(x, 2) a sufficiently smooth function from 2X[1, ) to I; k a non-

negative integer. B
(i) Suppose that D¥u (0<k<k) are bounded on 2 X[1, ). Then

SIDIF(u(, D)ha< LB DI, D, 2[1,00)

holds for a positive constant L that is independent of z but dependent on

ko.
(ii) Let 7o be an integer with 10>2. Suppose that |[Diu(:, 2)]|iwe (0<E<
ko) are bounded on [1, ). Then

SIDEF (-, D)wo=<N ZJIDku(-, 2)llos, 2E[1,00)

holds for a positive constant N that is independent of z but dependent on
io and ko.
Here |[+|..0 denotes the usual norm in a Sobolev space H'(R).

Proof. According to the convention, we use the following abbreviation for
differential operators with respect to x=(x1, x2) :

a=(a, @), |el=a+a,
o a ai a az
Dx_( axl) <(9XZ> ’

where @ and @ are nonnegative integers. We also abbreviate |[+]|:,0 to |[*]]..
(i) Seeing that F(0)=0, we have

IFGOl=| [“F@)de] < sup |F (@l
Moreover we have
k-1 k—l i .
#F(u)=Di(F)Dau)= 5 (* ) D ()DE 1<k<h;
o :F(u)=D:{F'(u>D:u}=g(§) SF(u)DEDE 7w, lo|=1, 0< k<.

Hence the uniform boundedness of D%« leads us to
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(DEF(Ih< G Diull, 0< k<t

(ii) Since H(Q)C C(Q), D*u (0< k<k) are bounded on 2 X[1, ). Then
the argument in (i) is still valid, so it suffices to show that

k .
(4.6) |DEDEF()le< Civpo 2| [ Diutllie, 0<k< koo

for all @ with 2<|a|<io. In the case |a|=2, setting a=4+ y with |B|=]7|=1, we
have

DDEF(u)=DXF'(u)Déu~+ F"(u) DiuD}u},

which implies
k . k . k .
| Ds ?F(u)"zSCk{E)IID;‘? 5qu+(E)IIDiDéth)(E)]IDI Julls)}.

Recall the fact H'(2)CL*f2). Then the boundedness of |[DZx]|; leads us to (4.
6) with |a|=2. For >3 we will show (4.6) with 3<|a|<17, by induction. Let 7
be an integer with 3<7 <y, and suppose that (4.6) holds for all @ with |a|=7—1.
In this case we may further assume the same inequality where F° (u) is replaced with
F'(w). Setting e=(a1, @), B=(B, B2) and y=(n, 72) with

lel=1, |Bl=l7I=1, B+7<e,
we have
DEDEF(u)=Di DD *"{F'(u)Diu}]

13
=D§{2 ("f)cap,sDzDgFf(u)Dg-ﬁ—ap:-fu}

7=00<8<a-8-7\]

+D§{g(f)pz-ﬁ-rpzp(u>m i}

I
Mo
™M

<.,
Il
o

_F
M= ¢

(?)CaﬁraDﬁ?”DﬁF'(u)Dﬁ_ﬁ_st_ju

>

N
R
I

™
|
<

o (f>cammpz () DE* DAy

<é<a—B-7y
].) <7 DiF"(4) DD u
f)D}?""’DéF’(u)Dﬁ“Dé‘"u.

<
Il
o

_F
M
/N TN o
By

<
I
o

.F

M=

J

Here casrs is a positive integer determined only by @, 5, ¥ and 8. Besides
D DiF(u), DIDIF(u), D} 2 7u and Di™*7"DiF'(u) are bounded on 2 X
[1, o), because H*(2)C C**(2) and |8|<i—3. Hence

IDSDEF ()= Cun ([ Diulle+1D5 " DF ().
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Since |@— y|=7—1, the assumption in the induction leads us to (4.6) with la|=1.
Thus we complete the proof. []

In the same manner we can prove the following lemma.

Lemma 4.6. Let X be a closed subset of R® with X =(0,0,0); 2 an open
subset of R? with smooth boundary ; F(&, n, §) a sufficiently smooth function on
K with F(0, 0 0)=0; u(x, 2), v(x, z) and w(x, z) sufficiently smooth functions
on 2X[1, o) with (u(x, z), v(x, 2), w(x, 2)EX on 2 X[1, ©); k a non-
negative integer.

(i) Suppose that Diu, Div and Diw (0<k<k) are bounded on 2 X%

[1, ). Then

SIDEF(u(, 2), o(-, 2, w(-, D)hs

< LI (Dku(:, DhatIDEoC-, Dhat[Diw(-, Do), 2E[L, )

holds for a positive constant L that is independent of z but dependent on
ko.

(ii) Let io be an integer with i>2. Suppose that |[Dfu(:, 2)]lie,
[[D2v(+, 2)lli0 and |[DEw(+, 2)]|ie (0<k<ky) are bounded on [1, ).
Then

SIDEF(u(-, 2), v, 2), w(, D)o

<N ([D2u(-, Dlaa+I[DEo(-, Do +I[DEw(, 2)llono),
z2E€[1, o)

holds for a positive constant N that is independent of z but dependent on
10 and ko.
Here |[+]|:,9 denotes the usual norm in a Sobolev space H'(R).

Finally we give a lemma that is useful when we derive the uniform bounded-
ness of derivatives of solutions from their L?-boundedness. Only here we use (A.
2).

Lemma 4.7. Let u=u(7, z) be a function of class C'([1, o) ; C[0, n])N
C([1, o) ; C¥0, »]) and v=0v(r, 2), w=w(r, 2) functions of class C'([1, ) ;
Clr, 1N C([1,0); C¥n,1]). In addition to (A. 1) and (A.2), assume that (u,
v, w) satisfies
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a(r)uz=urr+%ur, (7, 2€(0, 70)X[1, o),
b(r)vzzvrr-kirvr, C(V)w,eIWrr_"lrWr, (r, 2)€(r, 1)X][1, ) ;
4.7)
u(0, 2)=0, 2€[1, ),
v-(1, 2)=w-(1, 2)=0, zE€([1, ),
lur(ro, 2)|+|0vr(71, 2)|+|wr(r1, 2)|
<xf{lu(r, 2)|+|v(n, 2)|+|lw(n, 2)|+1}, 2z2€[1, )

and
K : =sup(lulea:otlvlso:tlwla)<oo,
where x is a positive constant independent of z. Then
lee(-, 2,00t 0(e, Dllowas +lw(e, 2,0 <Ck, 2E[1, )
holds for a positive constant Ck that is independent of z but dependent on

"u(.y 1)""“790, “U(-! 1)"‘”»91: HW(', 1)"“‘%91; X and K

Yamada and Yotsutani showed a similar fact to this lemma in [19, proposi-
tion 8.1], where the inequality corresponding to the last one in (4.7) has no
constant term in the right-hand side. In our case we can not omit a constant term
in the right-hand side because of later necessity. However, we can prove this lemma
in a similar manner to their proof. The idea of the proof is based on Alikakos [2,

Theorem 3.1], which is an application of an iteration technique due to Moser [12],
[13] and [14].

5. Proof of Theorem A

For functions #(7)E C[0, 7] and v(#), w(»)E C[ 7, 1] we use the abbrevia-
tion U=(u, v, w) and define energy functionals :

E(U): =5 (lulbaotlolBon+lwlhan).

E(U; Wo, W1, a)Z): :';_("u"g,.%;m_f_”’U"%,Qx;an"_Ilwngvﬂn;w»,
where

WS LY ), wo>0  ae. in $;
w1, W2& Llr(Ql), w1>0, w2>0 a.e. in Q.

Additionally if %, v and w are all positive functions, we use the energy functional
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rU): = Zum[;rogb(u—i)ardr + mvw—Z—;,/r:gb(—z%) brdr
+ N /; :¢'<i>crdr,

No Woo

where
t
o(t) - =[10g tdr=tlog t—(t—1)=>0 for >0

(note that #~>0, v=>0 and w«>0; cf. Proposition 2.3). It is easy to see that

5.1 U(U)=0 if and only if U=(tw, Ve, Ww).

REMARK. Rothe [16] employed a Lyapunov function that resembles ¥. He
investigated the asymptotic behavior of solutions to a reaction-diffusion system
with homogeneous Neumann boundary conditions. His system is a mathematical
model that describes chemical reactions not on the boundary but in the domain.

The following energy estimates play an essential role.
Proposition5.1.  The solution U=(u(r, z), v(7, z), w(r, 2)) to (P) satisfies
(5.2) L yp(U)+eB(DU)+elulro, 2)'v(r, 2" w(n, 2"F<0,
LE(D,U; £, 9. W+2ED:U; af, by, ch)=E(D,U),
(%E(DZU; a, b, c)+E(D.D;:U)<NE(D.U; af, bg, ch),
E(D.U; a, b, c)<NA{E(D.U ; af, bg, ch)+E(D.;D;U)}
for 2z&(0, ). Here €, Ny are positive constants that are independent of z, and
)= ["a()t log 2 at, re0, 7o),
g(r)=£l b(t)t log%dt, h(r)zﬁ c(t)t log—’—fl—a’t, re(n, 1),
DfU:(uT: Ur, wf), DZU:(uz, Ve, wz).

We prove Theorem A by using this proposition, whose proof is given later.

Proof of Theorem A. We will show that the solution U= U(z)=(u(-, 2),
v(+, 2), w(+, 2)) to (P) converges to the equilibrium U= (2w, Ve, We=). Combining
the inequalities in Proposition 5.1, we can derive

(5.3) [w{u(ro, 2)'v(n, 2)"—w(n, 2)"2dz< o,
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(5.4) IimE(D.U; a, b, c)=0
z—»ee

(use, for instance, Lemma 4.1 with k=1). Since %, v and w satisfy diffusion
equations, Lemma 4.4 yields
leerl2+ | or |2+ |w-2< CE(D:U ; a, b, c).
Thus we obtain from (5.4) that
(5.5) lim{llee(+, 2w +lv:(+, 2t 0r(+, 2)]} =0.
Therefore the family {#(+, 2)}.=1 is uniformly bounded and equi-continuous on [0,

70], so are the families {v(+, 2)}.»1 and {w(+, 2)}.>1 on [71, 1]. On account of (5.
3), there exists a sequence {z;};=1,23,- such that

limz;=o0 and I.iﬁm{u(ro, z)'v(r, z)"—w(n, z;)"=0.

oo

By Ascoli-Arzeld’s theorem we can choose a subsequence from {z;} (denoting it by
{z;} again) such that

lim{lu(-, 2)= @lstllv(-, 2)= Tlotw(:, 2)— ]} =0.

Here it follows from (5.5) and Proposition 2.2 that %, U, @ are nonegative
constant functions satisfying

R(u, v, w)=0,

lal 7+ ¢l @ = Mo,
o

ool 7+ clh @ = M.

Recalling Proposition 2.3, we see that (%, 7, @)= U.. Hence
Lim{llae(+, 2) = ttallwt[0(+, 27) = Ol [0, 25)— well} =0,
which implies
lim ¥(U(z,))=¥(U=)=0.
Moreover we see by (5.2) that ¥'(U(z)) monotonically decreases. Thus we obtain

(5:6) lim ¥(U(2))=0.

Since {U(2)}.s1 is uniformly bounded and equi-continuous, the facts (5.1) and (5.
6) lead us to

(5.7) lim{a(+, 2) = oot l0(+, 2) = vallw (-, 2)—wal}=0.
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Finally we show the convergence of v* and w*. Using Lemma 3.2 and (3.3),
we obtain from (5.7) that

R(thoo, Voo, Woo)

J(Ueo, Voo, Weo) =0,

(5.8) Li{ER(u(rO, 2), v¥(r, 2), w*(r, 2))=
which, combined with Lemma 3.1, implies
lim v*(70, 2)=Veo, lim w*(70, 2)= Wen.
Letting z tend to < in (3.4), we complete the proof. []
In order to prove Proposition 5.1, we prepare some differential (in)equalities.

Lemma 5.2. The solution U=(u, v, w) to (P) satisfies

—qf(U)Hf

2

vE m fw
/ “Lydy +n—~ | ZLrdr

Mo Jri v NoJrn W

+ roflog u(r, 2)'v(n, 2)™—log w(r, z)"} I;((Z((Z’ 5)) 2 :((7:1,’ ZZ)) . Zj}((;l” ZZ))))

=0.

We can prove this lemma in the same way as the calculation of d¥ (u, u«*)/
dz in [7, p. 493].

Lemma 5.3. The solution (u, v, w) to (P) satisfies

1 2
7d4‘inu,uz;f+uuznz;a,%uurné,
L orlt s+ Lol = 01,
1 d 2 1
Lo+ 0l o= 00

Proof. Observe that

u-(0, 2)=f(r)=0, hmf’(r) =0, < ):L

a(r) r
Moreover 7fr/a is bounded near »=0. Accordingly we have
%di;{lurlli; = _l " tzrrurfdr
=—A-Touz(rur)rfdr—A-rouzrurfrdr
=— /0 rouzmuzfdr— /0 mmuzrurf—;dr
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Y BANP (" fr
= _/(; uzafrdr /0 (rur)rrur T
N2 _Lf"’ o Jr
= —lwclsor—5 | AGur)}—dr
= o+ [y L ar
Z||2; af 2 o r 7
1

= " uz"%;af +7"ur"%

Similarly the facts

vr(1, 2)=g(n)=0, hmg’(r) =0, <rb> _1

» b(7) r’
wr(1, 2)=h(r)=0, hm r((r)) =0, <f;> —ir

and the boundedness of 7g-/b, 7hr/c near » =1 lead us to the equalities for v and

w. O
Lemma 5.4. The solution U to (P) satisfies

L E(D.U; a, b, )+ E(DDU)<NEDU; af, ba, ch).

Proof. Differentiate equations for # in (P) with respect to 2. Thereby we
have

To To
%%Iluzllé;a= A UV AQUdY = '/0‘ u(Yitzr)rdr

= — w1, z)ro%;R(u(ro, z), v*(ro, 2), w*(ro, 2))—|uer|l3

(in the last equality we have used (ii) of Lemma 3.2). After similar calculations for
v and w, we see that

d%E(DzU; a. b, )+ 2E(D,D,U)
=7’0{—uz(7’0, Z)_%Uz(rb z)+%w2(71, Z)}
a?;R(u(ro, z), v*(ro, 2), w*(ro, 2)).

In view of Lemma 3.5, the right-hand side is bounded from above by
Clu(ro, 2> +vo(n1, 2>+ w1, 2)%

on (0, o). Thus we arrive at the conclusion by using Lemma 4.3. []
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Proof of Proposition 5.1. The last inequality immediately follows from
Lemma 4.3, so it suffices to show (5.2). Observe that
(log x—log y)(x—y)=x(x—y)*  for x, yE(0, xo],
where x=1/x0. In particular, by choosing

xo=max{sug) u(7o, z)lsugJ v(n, 2)", sup w(r, 2)"}(<o0),
z2> Z> z>

we obtain that
VR(u(ro, 2), v(n, 2), w(n, 2))
P J(u(ro, 2), v(r, 2), w(n, 2))

x{u(ro, 2)'v(n, 2)"—w(n, 2"
S(u(ro, 2), v(n, 2), w(n, 2)J(u(r, 2), v(n, z), w(n, z))

{log u(7o, 2)'v(n, 2)"—log w(r, z)"

for z&(0, o). Here we have used the positivity of S and /. Consequently we can
derive (5.2) from Lemma 5.2, because U is positive and uniformly bounded. []

6. Eigenvalue problem

In this section we will show that the eigenvalues for (EV) are nonnegative and
will characterize the least positive eigenvalue by a quadratic form.

Lemma 6.1. In addition to (A. 1) and (R. 1), assume that Muw>0 and My
>0 hold. Then

w__ OR

R; = (Uoo, Voo, Weo) >0,
w__ OR

R; =5 (Uoo, Voo, Weo) >0,

oo__a_R
Ry= 8w(u°°’ Voo, Weo) < 0.

Proof. By Proposition 2.3 we have
U >0, V>0, we>0.
Combined with R(%w, Ve, We)=0, the identity
aS (uw,

_R(uoo, Voo, Weo/ S(uw

aR Ve, W)

Tub ol
(u«», Veoy Weo) = S(

Ueo, Voo, Weo) Veoy Weo)

implies R >0. Similarly we get R5 >0 and R%<0. []

In the following lemmas d» and dw denote the positive constants defined by (3.
2).
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Lemma 6.2. For any (u, v, w)E R® there exists a unique pair (v*, w*)E R*
such that

{v=v*+dvRL(u, v*, w¥),
w=w*—dwR"(u, v*, w*).
Proof. It suffices to solve the linear equation
—dwRy 1—duRa/\w* w+duwR3u
(recall the definition (2.1) of R*). We see by Lemma 6.1 that

1+dvR7  dvR%

=14+dvR7—dwR5>1;
so that the above linear equation is uniquely solved. []

We denote v*, w* corresponding to %, v, w in this lemma by
v*=pB"u, v, w), w*=r"(u, v, w).
For simplicity we put

Jo ! =J(Uoo, Voo, Weo).

Lemma 6.3. It holds that

(ii) R*(u, v*, w*)=J'R*(u, v, w) for (u, v, w)ER?,

where v*=p(u, v, w) and w*=yr"(u, v, w).

Proof. Since R(#w, Ve, We<)=0, we can see by Lemma 3.1 that
Veo=B(Ueo, Voo, Weo), Weo=Y(Uhoo, Voo, Weo).

Thus the definition (3.1) of J implies the equality in (i). The inequality in (i) is
derived from Lemma 6.1. :
Recalling (2.1), we see that

R¥(u, v, w)=R"(u, v*, w*)
+£IG%RL(Z¢, v¥*+0(v—0*), w*+6(w—w*))do
=R (u, v*, w*)+(v—v*)Ry+(w—w*)R3.

The right-hand side is equal to JoR*(u, v*, w*) by virtue of Lemma 6.2.
Consequently we obtain (ii). [J
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Using Lemmas 6.2 and 6.3, we can reduce (EV) to an eigenvalue problem for
u, v and w in the same way as the proof of Proposition 3.3:

Proposition 6.4. Suppose that a set (u, v*, w* v, w) of smooth and
radially symmetric functions u on s, v* and w* on 24, v and w on £ satisfies
(EV) for a parameter A. Then (u, v, w) satisfies

—urr—irur=/1d(7’)u in (0’ 70)’

—vﬂ—%vr=/1b(r)v, ——wrr—%wr=/10(r)w in (n, 1);

(EVY
ur(O) = O,

—ur(ro)= Z;:; vr(n)=— Z;:; wr(r)=Ja"R*(u(ro), v(n), w(n)),

‘Z)r(].):uh'(].):o

for the same A. Moreover (v*, w*) is represented by (u, v, w) as
v*(r0)=B*(u(r0), v(n), w(r)), w*(r)=r"(u(r), v(n), w(n));

v*¥(7)=0v*(70) + moroR*(u(r0), v*(70), w*(ro))log;;,

6.1)

w*(7)=w*(r0) — noro R (u(ro), v*(), w*(ro))log% on [», nl.

Conversely, suppose that a set (u, v, w) of smooth and radially symmetric
functions u on £, v and w on $2 satisfies (EV) for a parameter A. Then (u, v*,
w*, v, w), where v* and w* are defined by (6.1), satisfies (EV) for the same A.

We will formulate (EV)" as an eigenvalue problem for a linear operator in
LA ; a)X LA ; b)X LA ; c). Define a linear operator £ with its definition
domain D(&£) by

D(L): ={U=(u, v, W)ELAQo; a) X LAL; b)X LAL:; c);

s ¢ 1y, o), A7 c 10 b), (Cr(“;))r SLYL; o),

a(r)r * b(v)r
() =vr()=10:()=0, —ur(r)=""1"0,(r)
=M, (1) =] RYu(r), v(n), w(n))},

No%o

2 =G5 BT ) o Ut v D)

By Lemma 4.4 we can see that D(£) is well defined and that
D(L)C(HE2) N CH20)) X (HH2) N CH21)).
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Clearly A is an eigenvalue of £ if and only if there exists a (%, v, w)=(0, 0, 0)
satisfying (EV)’ for A. Thus the set of the eigenvalues for (EV) coincides with that
of &£. Moreover the linearization of (P) at (#w, V=, =) can be represented by the
abstract form

“;?z‘ +EU=0  in LADs; @)} LA : b)X LR : ¢,

Consequently it is important for us to analyze the spectrum of £.

A remarkable point among properties of £ is the fact that £ is self-adjoint in
LY ; a)}X LA ; b)X LY ; c¢) equipped with an appropriate inner product.
We will show this fact.

Let us construct a symmetric bilinear from associated with £. For (%, v, w)
€D(L) and («/, v, w)E CH o) X CHL1)* we have

A”{ i }u dm’r—_f (rur)rtt’ dr=—[rusu’l °+/ rururdr

ar

=£ uru’rrdr-i-%RL(u(ro), v(7), w(n))u'(r),

/;:{ (rlz);;) }v brdr = /;:vrv;rdr+ :Zf;: RY(u(ro), v(r1), w(r))v'(r),

{72 erar= [ wwirar - TER (), v(n), w(r)w/(n).

Recall the definition (2.1) of R*. Then these three identities lead us to

w [T _ (rur)r M1 e [ (rvr)r
Ruﬁ { Y }u ara’r+ R ’/r.l{ by }v brdr
nl( R”)/{ (Vw’) }w’crdr
(6.2) —Rf _1, e U
=R7 | ururrdr + val Vrdr + no( R3) 5 wrwrrdr
+—}1RL(Z¢(7’0), v(n), w(n)R (' (r), v'(n), w(n)).

Seeing both the sides, we introduce the following symmetric bilinear forms :

KU, U =R3forouu’am’r+ Z; RZ"/:vv’brdr +%(—R°,E)/:ww’cm’r
for U =(u, v, w)r,oﬂ’=(u’, v, w’)EI;i(_Qo; a)}XL¥Q: b) Xler(Ql; c):
Qtt, w): =Rz [ wnusrdr + 2R [ vwwirdr + (= R3) [ wnorrdr
+—]%RL(u(ro), v(71), w(n))R (u'(r0), v'(n), w'(r))
for U=(u, v, w), U'=(u', v, w)E H}N ) X Hr () .
In view of Lemma 6.1, we can define a Hilbert space 76 by L ; a) X LA, ; b)
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X LY ; c) equipped with an inner product <+, +>. We denote by [||+||| the norm
in # and abbreviate Q(U, %) to Q(U), i.e.,

(6.3) 211P= Rl oot~ - RE IOl a0+~ Rl
for U =(u, v, w)EX and
Q) =RilurlBavt— Relorlh 0.+ H(— R wrlBa,
0 "o

(6.4) +%RL(u(n,), v(n), w(n))?
>0

for U=(u, v, w)E H} () X H}(£1)?. Clearly the identity (6.2) also holds for (z’,
v, w)E(HN )N CH))X H}2)?. Thus we have obtained the following
lemma.

Lemma 6.5. The identity
KLU, UP=Q(U, U)
holds for UED(L), U (H )N Cr(0)) X H} ()%

Lemma 6.6. The operator £ is self-adjoint and positive semidefinite in J6.
It has a compact resolvent in 76.

Proof. Fix an arbitrary element 7 of /6. We see by Lemma 4.3 that <+, +>
+Q(+, +) is an inner product equivalent to the usual inner product in H7(£) X
H?(£,)?. Hence Riesz’ theorem leads us to the fact : there exists a unique element
U< H} (o) X H}(£1)? such that

U, UD+QU, U)=LF, U>  for all UW'EHH )X H ().

By virtue of Lemma 4.4, we can show & € D(£) in the standard manner for elliptic
boundary value problems. Thus, with the aid of Lemma 6.5, we get

U+ LU=ZF,
i.e., the range of I+ coincides with /6. On the other hand Lemma 6.5 yields

LU, UH>=<U, of‘Zé’>,}

(LU, U>=Q(U)=0 for %, U'ED(L).

Consequently £ is self-adjoint and positive semidefinite. We can derive the
compactness of resolvents for £ by a standard argument about elliptic differential
operators in a bounded domain. []
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By virtue of this lemma, the spectrum of &£ consists of countably many
nonnegative eigenvalues and has no accumulation points. We can see that dim Ker
£ =2 by the following lemma.

Lemma 6.7. Zero is an eigenvalue of £ and the corresponding eigenspace
consists of constant functions. More precisely,
Ker £ ={s®0:+10:; s, tER}

with
(1 1 _ 1 1 3
O, _<_RZ° , 0, R ), 02—-(0, R )E R°.

Proof. We have only to see that & =(u, v, w)EKer £ if and only if U is
a constant satisfying R*(u, v, w)=0. [

On the basis of Lemmas 6.6 and 6.7 we denote the eigenvalues of £ by
{Ai}i=1,23, with
(0=)/11=/12</13£/14S"°_
Since £ is self-adjoint, we have

6.5) Aszmin{&ﬁ]%m%—‘l; U D(£L)\0, % LKer £ in Jé}.

Seeing that

KU, G)l>=/r°uara’r+ﬂ/1wcm’r
0 No Jr1

I e [l for U=(u, v, w)EH,

(U, @2>—W0—/“ vbrdyr +7z;fn werdr

we can easily obtain the following.

Lemma 6.8. For U =(u, v, w)E¥ the following holds : U LKer £ in # if
and only if (u, v, w) satisfies

To 1 1 1
(Mo) / uardr +25- / werdr =24 / vbrdy +-2% f werdr =0.
0 No Jr1 Mo Jr No Jr1

0

Now we are ready to characterize A+ by Q(+) and |||+|]].

Proposition 6.9. The eigenvalues for (EV) are all nonnegative and the set
of them has no accumulation points. The least positive eigenvalue A+ is represent-
ed as
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A+=inf{%m>7; UE(HXQ) X BRI, U satisfes (Mo,

Proof. Since the set of the eigenvalues for (EV) coincides with that of £, it
suffices to show the latter part. Observe that we can choose <+, >+ Q(-, +) as an
inner product in H}(2)X H}(£)’>. Then, by a standard argument about self-
adjoint operators, we can derive

inf{ﬂ%‘m)f; U (HNQ) X H(2))\0, U satisfies (Mo)}
=inf{—lﬁ%m)2— - U (HNQ) X HQ))\0, % LKer £ in Jg}

am{ﬁ—&lﬁ%; Ue DL\, % LKer £ in %}
=/13=/1+

(see, e.g., Courant-Hilbert [3]). [J
7. Proof of Theorem B
As an application of the preceding section, we get the positivity of @().
Lemma 7.1. If U=(u, v, w)E H}() X H}($1)? satisfies (Mo), then

(7.1) AdllulP<Q(w),
(7.2) u(r0)* +v(n)’+w(n)’<KQ(U),

where K is a positive constant independent of U.

Proof. Proposition 6.9 implies (7.1). We can show (7.2) by using (7.1) and
Lemma 4.3. []

Let (u, v, w) be the solution to (P). Throughout this section we use the
following abbreviations :

U: U U, V. =V Vo, W: =W We,

U2): =(u(-, 2), 7(-, 2), W(-, 2),

D:U(2): =(u(+, 2), D+, 2), W+, 2)),

12(D]e: =[7(+, Dllow,00t 17 (¢, 2w+ (2, 2)]eo,1.

Since (u, v, w) satisfies (M) for all zE[0, ), we have
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ro _ n [
f Aardr +—f werdr
0 Mo Jr1

To 1
=£ uardr +%£ werdr — Muw =0,
(7.3) '

1 1
m ~ n .
1/ vbrdr+—1/ Werdr
Mo Jr1 No Jry

__m
L mo

1 1
/ vbrdr +—an werdr — Myw=0.
71 Mo Jr1

Hence % (z) satisfies (Mo) for all zE[0, o). Moreover, by differentiating (7.3) with
respect to 2, we can see that D.%(z) also satisfies (Mo) for all zE(0, o). These
facts play an essential role in the proof of Theorem B.

Proposition 7.2. There exists a positive constant N such that

T uIP+Q(ul2)

SNQ(UN @ (7o, 2)|+| 7 (11, 2)|+|@W(n, 2)},
+-IDuIIF+QD:(2)

SNQ(D: U % (70, 2)|+| 7 (7, 2)|+| @ (7, 2)|}

(7.4)

for z€(0, o).

Proof. Since |2 (2)|« is bounded on (0, @), it follows from R(%ew, Ve, Ww)
=0 that

(7.5)

Riadro, 2 vin, 2wl 2 1R (it(ro, 2), 5, 2), i, D)+ R(),

where F(2) is a function of class C=(0, ) satisfying
(1.6) |R(2)|<Cla(r, 2)*+ 7(n, 2)*+ @w(n, 2)3,
R\ = Clla(n, 2l+15(n, 2l +li(n, 2)

{| #(ro, 2)|+|T2(1, 2)|+| W11, 2)]}

‘i
(7.7) ldz

for z&(0, 00),
We will show the first inequality of (7.4). Multiplying both the sides of

a(r)uz=ur~+r"'u,(=r""(ru-),;) by r# and integrating them from 0 to 7, we
have

]_ d To To To _
> h u2a7d7=/; uauzrdr=/0 a(rur)rdr

To
=[ ﬁrur]?—j; & rvurdr
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R(u(ro, 2), v(n, 2), w(n, 2))
Tu(ro, 2), v(n, 2), w(n, 2))

To
=— 7 (7, 2)70 A Asrdr

=— (7, z) RL(u(ro, 2), 7(n, 2), W(n, 2))— @ (r, 2)rR(2)

—[; wirdr.

Accordingly,

2 = AT ur||z+ it (ro, )R (@(r0, 2), T(m, 2), W(r, 2))
=— ot (7o, z)R(z).
Similarly we can derive

|| of s I RS m"fr" 7 (n, 2)R*(#(r, 2), 7(n, 2), W(n, 2))

=— m" . ~(rl, 2)R(2),

1

dzlltvll tlw 13— nm =i (n, )R @(r, 2), T(n, 2), ®(n, 2))

"m —w(n, Z)R(z)
Summing up these three equalities, we get
LU+ Q)= — R it (r, 2), D(n, ), W(r, DR ()
(recall (6.3) and (6.4)). Since % (z) satisfies (Mo), (7.2) holds with 2% =% (z). Thus,
with the aid of (7.6), we obtain the first inequality of (7.4).
After the differentiation of equations in (P) with respect to z, similar calcula-
tion yields
1 d 2
5z 1P UG+ Q(D:2(2)
=—nR#r, 2), Tn, 2), Wn, Z))d—iﬁ(z}

In view of (7.7) and (7.2), we obtain the second inequality of (7.4). [

Lemma 7.3. There exists a number €e<(0, A.) such that

12 (2)|e=O(exp(—Asz+€2))  as z——0.

Proof. The inequality (7.1) holds with % =%(z) and with % =D.%(z),
because % (z) and D.%(z) satisfy (Mo). Then Theorem A and (7.4) lead us to
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as 200

12 (2)ll|= O(exp(—A+z+ €2)), }
1D (2)]|l= O(exp(—A+z+ €2))

with some €<0 (use, for instance, Lemma 4.2 with 2=1). Now it suffices to show
that

(7.8) I (2)l< C{lllL I+ D2 (NI}
Applying Lemmas 4.3 and 4.4 to the right-hand side of

a(r, 2)=1u(r, z)—[oz?r(p, z)dp,

we get
I o< Cl @le:at42]-).
Moreover # satisfies a diffusion equation. Thus we have
N @< Cll 2ot #ele; o).

We can derive similar inequalities for 7 and #@. Consequently we obtain (7.8) and
complete the proof. [

Lemma 74. ||%(2)]~=0(exp(—A+z)) as z——0,

Proof. We have only to repeat the argument in the proof of Lemma 7.3, using

the fact
| @ (7, 2)|+| 0 (n1, 2)|+|W(n, 2)|=0(exp(—Asz+€z))  as z—o

in place of Theorem A. []

Proof of Theorem B. Using (ii) of Lemma 3.2 and (3.3), we can rewrite (7.5)
as
R(u(ro, 2), v*(ro, 2), w*(ro, 2))=J='R (7 (ro, 2), 7(n, 2), W(n, 2))+ R (2),
which, combined with (7.6) and Lemma 7.4, implies
(7.9) R(u(n, 2), v*(ro, 2), w*(r, 2))=0(exp(—A+2))  as z2—00,
Hence Lemma 3.1 and (3.3) lead us to

v¥(r0, 2)— Vo= 0 (11, 2)— doR(u(r0, 2), v*(10, 2), W*(#o, 2))
= O(exp(—A+2)) as 20,

Consequently, using (3.4), we obtain from (7.9) that

[0*(¢, 2) = Vefl=O(exp(—A:2))  as z—co.
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*

Similarly we can derive the corresponding result for w™; so that the proof is

completed. [

8. Proof of Theorem C-(i) L”-decay of derivatives

In this section we prove that all derivatives of solution converge to 0 uniformly
for » as z—o0, Using it, we will derive the rates of their convergence in the
succeeding section. First we give some energy estimates for derivatives of solutions.
Here again we use the abbreviation and the energy functionals in §5.

Proposition 8.1. Let k be an integer with k=2. The solution U=(u, v, w)
to (P) satisfies

a%E(Dr 51T £ g W) 42E(DAU ¢ af, by, ch)=E(D.DEU),
E(D:U ; a, b, c)<NAE(D2U ; af, bg, ch)+ E(D.D*U)}

for 2z&(0, ). Here Ny is a positive constant that is independent of z; f, g and
h are the weight functions that are given in Proposition 5.1 ;

D;U=(D?}u, D}v, Dfw), D:DfU=(D,;D}u, D;D:v, D:Diw).

Proof. The inequality immediately follows from Lemma 4.3. To obtain the
equality, differentiate (P) £—1 times with respect to 2. Then the same calculation
for D' U as the proof of Lemma 5.3 leads us to the equality. [

Proposition 8.2. Let k be an integer with k>=2. Suppose that Diu(ro, *),

Div(r, +), Diw(r, +) (0<j<k—1) are bounded on [1, ) for the solution U=
(u, v, w) to (P). Then U satisfies

diE(D:U; a, b, ¢)+E(D,D*U)
v4

8.1 & . k=1 )
<NMZEDIU; af, by, ch)+ & E(DDIV))

for zE€[1, ). Here N, is a positive constant that is independent of z.

Proof. After differentiating (P) % times with respect to 2z, repeat the same
argument as the proof of Lemma 5.4. []

Let ¢ be a function of class C*[71, 1] satisfying
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0<é(r)<1 on [n, 1],
1 if Tlérﬁ—z%ﬂ,

¢(r)=
0 ifh—;—2—£7<l.

For the solution (%, v, w) to (P) we use the abbreviation
U=UUo, V=0V Voo, W=W— Weo
and introduce three functions

Gulr, o): ——Rlr B vir g win. 2), (r, DEI0, 7 x[1, ),

Glr, 2): =gl mereRlun b olr B wlr 2, el 1x00, ),

Gutr,2: == ) Bt Bt . 1 et 1, ),

We give a priori estimates for Sobolev norms of the solution to (P).
Lemma 8.3. For any nonnegative integer 1 there exists a positive number L;
such that

\[D% @ li+2.00 < Li(| D8 @ 200+ |[ D5 & ]|is00+ [ DEGu]li41.00), zZ€E€([1, o),
(D27 1|i+2.0: < LAID2 7 o0, +|[D2*' T )]s, +[DEGo ] i41,00),  2E[1, 00),
|[D§ﬁ][i+2.mSLi(||D§w||z.m+|[D§+IW]|1,91‘|‘|[Dsz li+1,90), zE€[1, o)

for k=0,1,2, -, where |[+]|:.0, denotes the usual norm in a Sobolev space H'($2;)
(=0, 1).

Proof. Since

min(u(ro, 2), v(n, 2), w(n, 2))°’ x€1],

{Gv(m, 2)= moroR(u(ro, 2), v(n, 2), w(n, z))
Gv(|x|, Z)ZO, xE[‘Z,

the function D7 (|x|, 2) of x satisfies

ADE v =b(|x|)DE* 7 in 2,

ailez 7=D:G, on I,
aiyzpz 7 =D:G, on Iy

for z&€[1, o). Hence we get

D27 |i42.0. < C| DE ¥ 2,0, +|[ 6D 71|10, + [ DEGo)|i+1/2,50:)
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by virtue of Agmon-Douglis-Nirenberg [1]. This a priori estimate yields the
conclusion for 7. Similarly we obtain the estimates for # and @. []

Now we prove that

| DiDgutllw, 20 + | DEDZ0* |l 0,0, + | DiD5w* ||, 2.

(8.2) +| DiDivllw,0,+ | DiDiw]w,0,—0 s 200

for all nonnegative integers Z, 7 with (z, 7)=(0, 0\) by using Propositions 8.1, 8.2 and
Lemma 8.3.

Proof of (8.2). We divide the proof into three steps.
First we will show that

(8.3) sup{|Dz"u(, 2)|=+[Dz7"0(:, 2t Dz (s, 2)]w} <00,
(84) LIIE("D;Z‘(" Z)"z;a'*’"D:Z)(‘, Z)"Z;b+"D§W(', Z)"z;c)zo
for £=1, 2, 3, ---. We have already verified them for =1 (see (5.4)). Let us

consider the case £#=2. By virtue of (8.3) and Lemma 3.5 with £=1, we see that
(Dzu, Dzv, D.w) satisfies (4.7). Hence we can derive (8.3) with £#=2 from (8.4)
with £=1 by using Lemma 4.7. According to Proposition 8.2, we obtain (8.1) with
k=2 from (8.3) with £<2. Consequently, as an application of Lemma 4.1, we can
derive (8.4) with £=2 from Propositions 5.1, 8.1 and (8.1) with 2=2. For k=3,
repeat this argument with Lemma 3.5 replaced by Corollary 3.6. Then we can
inductively prove (8.3) and (8.4) for £=3, 4, 5, ---.
Next we will show the convergence of Sobolev norms of %, v and w :

(8.5) lim|[Dz@ (-, 2)]l:+[[Df (-, Dl +|[Dzaw (-, 2)]l:=0

for £=0, 1, 2,>-; =1, 2, 3, ---. Here we denote by |[-]|; the usual norm in a
Sobolev space H(£2;) (=0 or j=1). By Lemma 4.4 we have

ID- Dbl < |aDkule =Dt ulp <l D4 ..

which, together with Lemma 4.3, implies
Dzl < C(IDz & o;a+ D2 Elleo).
Similar inequalities hold for ¥ and w. Thus we obtain

I[Df# ] +|[Ds 7 ). +I[Diw ]
(8.6) <CDz # llsat D2 ¥ s+ D2 Wl c
D2 & oot | D2 Tl + D2 0] ).

Consequently we get (8.5) with =1 from (8.4) and Theorem A. Consider the case
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1=2. Take

_ R(tet€, vaty, wot§)
F& 0 =0, e et wet o)
Q=25,

u(x, 2)= (x|, 2), v(x, 2)=0(n, 2), wix, 2)=@w(n, 2)

in Lemma 4.6. Then it follows from (8.3) that
[D£Guln00= CaZIDLE (-, s +IDET (7, 2lhas+ D2 (71, Do)
<CuDLa(-, vt DL (s, 2)|+IDE(, 2
As a result, we see by Lemma 4.3 that
[DzGullreo< Ckg{l[D%'z?(-, oo +I[D27(+, 2)]le,+I[DEw (-, 2)]ei).
Combining this inequality with Lemma 8.3, we get
102 1< Can{|LDE @+ Z(LDE 1 +([D2 0 T+ DL ).

Similar a priori estimates hold for ¥ and @. Thus we obtain

D47 ]lo+|[D% 7o+ |[Di @ e
(8.7) SCz,h{l[D”+1 lo+I[D2* 7 1lo+I[ D& i ]l

+J§0(|[ ,Jzu:”l'i'l zU |1+| Dzw:lll)},

which implies (8.5) with 7=2. In the case =3, use the boundedness for the
H?-norms of D}#%, D7, D} instead of (8.3). Thereby we can similarly derive
(8.5) with 7=3. Repeating this argument, we can inductively derive (8.5) for 1=
4,5, 6, -=-. Consequently we obtain by Sobolev’s lemma that

Lifg(||D§D§u(', 2)|e+DiD2v(+, 2)|e+|DiD2w(+, 2)|s)=0

for all nonnegative integers 7, £ with (7, £)=(0, 0).
Finally we will show that

(8.8) Li}g(]]DiDﬁv*(-, 2w+ DiDEw*(+, 2)||)=0

for all nonnegative integers 7, &£ with (Z, £)=(0, 0). Differentiating (3.4) 7 times
with respect to 7, we get

IDiv*(+, 2o+ 1Diw*(+, 2)|e< Ci\R(u(ro, 2), v*(70, 2), w*(70, 2))|,

(8.9) z2€(0, ©); =1, 2, 3, -

Accordingly (5.8) yields (8.8) with 7>1 and £=0. Differentiate (3.4) ¢ times with
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respect to # and % times with respect to 2. Then, using Lemmas 3.4 and 3.5, we
can derive

IDiDsv*(+, 2)lw+|DiDZw*(+, 2)|
k . o -
(8.10) SC,-,ngl{lDéu(ro, 2)|+|Div(n, 2)|+|Diw(n, 2)|},
z€[1, ©); i=0,1, 2, =+; k=12, 3, --.

Consequently we obtain (8.8) with 7>0 and £>1. []

9. Proof of Theorem C-(ii) rates of decay

Let (%, v, w) be the solution to (P). Throughout this section we use the

following abbreviation :

U: U Uy, T . =V Vo, W: =W Woo,

Uz): =(u(-, 2), (-, 2), W(-, 2)),

$U(2): =(Diu(-, 2), Do (-, 2), Dz (-, 2)),

|D2%U(2)|e : =|D2%(+, 2)lw,00t1DET(+, 2w, +DED(+, 2)]eo,01,
where £=1, 2, 3, ---. It is important that D}%(z) (k=1, 2, 3, --*) satisfy (M,) for
all z&(0, ). We can see this fact by differentiating (7.3) & times with respect to
z. Consequently the inequalities (7.1) and (7.2) hold with &% =D}%U(z) (k=1, 2,
3, ...)‘

Proposition 9.1. Let k be a positive integer. There exists a positive constant
N such that

1

LD+ QUDEU(2)

9.1) k
< N{|D2% (7o, 2)|+|DE v (11, 2)|+| D2 (1, z)I}E)Q(Diu(z))
for zE€[1, ).

Proof. Differentiate (7.5) and each equation of (P) % times with respect to 2.
Then a similar argument to the proof of Proposition 7.2 leads us to

L_‘}’_ k 2 k
L D)+ QDR
ko
=—nR"(D:u(n, 2), DEv(n, 2), DEiw(n, Z))%R(Z)-
Since | D42 (2)|» (=0, 1, 2, ---) are bounded on [1, ), we can easily derive

B L . . .
L5 R(o)| < CoglIDia(ro, 2 +IDiw (r, D +IDi(, D), 2€11, o).
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Thus we obtain the conclusion with use of (7.2). [

Proof of Theorem C. We have obtained by Theorem A and (8.2) that
Li}g{lD?ﬁ(ro, 2)\|+|DEv (n, 2)|+|DEw(n, 2)|}=0 (£=0,1,2, ---).
By similar arguments to the proofs of Lemmas 7.3 and 7.4, we can derive from (7.
1), (7.4) and (9.1) that
D22 (2)|e=O(exp(—A+z))  as z— (k=1, 2, 3, -+*)
(use, for instance, Lemma 4.2). Accordingly we obtain from (8.6) that
I[D:# ) +|[Ds 7 ] +I[Diw]li=O(exp(—A+z))  as z—o0 (=0, 1, 2, -+)

where |[+]: denotes the usual norm in a Sobolev space H'(£2;) (j=0 or j=1).
Recalling that |[D2# ]|, |[D27]|: and |[D%@]|: (=2, £=0) are bounded for zE
[1, o), we can show in the same manner as the proof of (8.7) that

I[Dz @]l +|[Dz 7 ]| +|[Dzw]|:
<Czk{|[D"+l Nt (D24 T )|ie +|[ D27 @]l

+J§)|[Dzu Nimt HI[D30 N|ica +I [ Diw ]| i-1).

for =2 and £=0. Thus, by induction with respect to 7, we can derive

\[Du]l:+|[D} 7 ]l:+i[Diw]l:= Oexp(— /1+Z)) as 200
(1=2, 3,4, ---; k=0,1, 2, --+).

Hence we see by Sobolev’s lemma that

|DiD%u|w+||DiDkv|w+ | DiD%w|w= O(exp(— /1+z)) as 200
(l 1: 2) 3) ’ k=0, 1y 2, ”.)'

On the other hand, in view of (8.9) we get from (7.9) that
IDf* |t IDito* o= Olexp(~4,2))  as 700 (i=1,2,3, )
Moreover, it follows from (8.10) that

| DiD%v*||w+ | DiD2w*|o= O(exp(—A+2))  as z—co
(i=0,1,2, ; k=1,2,3, ).

Thus we accomplish the proof. []
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